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Abstract. Deep convolutional networks (CNNs) have exhibited their
potential in image inpainting for producing plausible results. However,
in most existing methods, e.g., context encoder, the missing parts are
predicted by propagating the surrounding convolutional features through
a fully connected layer, which intends to produce semantically plausible
but blurry result. In this paper, we introduce a special shift-connection
layer to the U-Net architecture, namely Shift-Net, for filling in missing
regions of any shape with sharp structures and fine-detailed textures.
To this end, the encoder feature of the known region is shifted to serve
as an estimation of the missing parts. A guidance loss is introduced on
decoder feature to minimize the distance between the decoder feature
after fully connected layer and the ground-truth encoder feature of the
missing parts. With such constraint, the decoder feature in missing region
can be used to guide the shift of encoder feature in known region. An
end-to-end learning algorithm is further developed to train the Shift-Net.
Experiments on the Paris StreetView and Places datasets demonstrate
the efficiency and effectiveness of our Shift-Net in producing sharper,
fine-detailed, and visually plausible results. The codes and pre-trained
models are available at https://github.com/Zhaoyi-Yan/Shift-Net.

Keywords: Inpainting · feature rearrangement · deep learning

1 Introduction

Image inpainting is the process of filling in missing regions with plausible hy-
pothesis, and can be used in many real world applications such as removing
distracting objects, repairing corrupted or damaged parts, and completing oc-
cluded regions. For example, when taking a photo, rare is the case that you are
satisfied with what you get directly. Distracting scene elements, such as irrele-
vant people or disturbing objects, generally are inevitable but unwanted by the

https://github.com/Zhaoyi-Yan/Shift-Net
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Fig. 1. Qualitative comparison of inpainting methods. Given (a) an image with a miss-
ing region, we present the inpainting results by (b) Content-Aware Fill [11], (c) context
encoder [28], and (d) our Shift-Net.

users. In these cases, image inpainting can serve as a remedy to remove these
elements and fill in with plausible content.

Despite decades of studies, image inpainting remains a very challenging prob-
lem in computer vision and graphics. In general, there are two requirements for
the image inpainting result: (i) global semantic structure and (ii) fine detailed
textures. Classical exemplar-based inpainting methods, e.g., PatchMatch [1],
gradually synthesize the content of missing parts by searching similar patches
from known region. Even such methods are promising in filling high-frequency
texture details, they fail in capturing the global structure of the image (See
Fig. 1(b)). In contrast, deep convolutional networks (CNNs) have also been sug-
gested to predict the missing parts conditioned on their surroundings [28, 41].
Benefited from large scale training data, they can produce semantically plausi-
ble inpainting result. However, the existing CNN-based methods usually com-
plete the missing parts by propagating the surrounding convolutional features
through a fully connected layer (i.e., bottleneck), making the inpainting results
sometimes lack of fine texture details and blurry. The introduction of adversarial
loss is helpful in improving the sharpness of the result, but cannot address this
issue essentially (see Fig. 1(c)).

In this paper, we present a novel CNN, namely Shift-Net, to take into account
the advantages of both exemplar-based and CNN-based methods for image in-
painting. Our Shift-Net adopts the U-Net architecture by adding a special shift-
connection layer. In exemplar-based inpainting [4], the patch-based replication
and filling process are iteratively performed to grow the texture and structure
from the known region to the missing parts. And the patch processing order
plays a key role in yielding plausible inpainting result [22, 40]. We note that
CNN is effective in predicting the image structure and semantics of the miss-
ing parts. Guided by the salient structure produced by CNN, the filling process
in our Shift-Net can be finished concurrently by introducing a shift-connection
layer to connect the encoder feature of known region and the decoder feature
of missing parts. Thus, our Shift-Net inherits the advantages of exemplar-based
and CNN-based methods, and can produce inpainting result with both plausible
semantics and fine detailed textures (See Fig. 1(d)).



Shift-Net: Image Inpainting via Deep Feature Rearrangement 3

Guidance loss, reconstruction loss, and adversarial learning are incorporated
to guide the shift operation and to learn the model parameters of Shift-Net. To
ensure that the decoder feature can serve as a good guidance, a guidance loss is
introduced to enforce the decoder feature be close to the ground-truth encoder
feature. Moreover, ℓ1 and adversarial losses are also considered to reconstruct
the missing parts and restore more detailed textures. By minimizing the model
objective, our Shift-Net can be end-to-end learned with a training set. Experi-
ments are conducted on the Paris StreetView dataset [5], the Places dataset [43],
and real world images. The results show that our Shift-Net can handle missing
regions with any shape, and is effective in producing sharper, fine-detailed, and
visually plausible results (See Fig. 1(d)).

Besides, Yang et al. [41] also suggest a multi-scale neural patch synthesis
(MNPS) approach to incorporating CNN-based with exemplar-based methods.
Their method includes two stages, where an encoder-decoder network is used
to generate an initial estimation in the first stage. By considering both global
content and texture losses, a joint optimization model on VGG-19 [34] is min-
imized to generate the fine-detailed result in the second stage. Even Yang et

al. [41] yields encouraging result, it is very time-consuming and takes about
40, 000 millisecond (ms) to process an image with size of 256× 256. In contrast,
our Shift-Net can achieve comparable or better results (See Fig. 4 and Fig. 5
for several examples) and only takes about 80 ms. Taking both effectiveness and
efficiency into account, our Shift-Net can provide a favorable solution to combine
exemplar-based and CNN-based inpainting for improving performance.

To sum up, the main contribution of this work is three-fold:

1. By introducing the shift-connection layer to U-Net, a novel Shift-Net archi-
tecture is developed to efficiently combine CNN-based and exemplar-based
inpainting.

2. The guidance, reconstruction, and adversarial losses are introduced to train
our Shift-Net. Even with the deployment of shift operation, all the network
parameters can be learned in an end-to-end manner.

3. Our Shift-Net achieves state-of-the-art results in comparison with [1, 28, 41]
and performs favorably in generating fine-detailed textures and visually plau-
sible results.

2 Related Work

In this section, we briefly review the work on each of the three sub-fields, i.e.,
exemplar-based inpainting, CNN-based inpainting, and style transfer, and spe-
cially focus on those relevant to this work.

2.1 Exemplar-based inpainting

In exemplar-based inpainting [1, 2, 4, 6, 8, 15, 16, 20–22, 29, 33, 35, 37, 38, 40], the
completion is conducted from the exterior to the interior of the missing part by
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Fig. 2. The architecture of our model. We add the shift-connection layer at the reso-
lution of 32× 32.

searching and copying best matching patches from the known region. For fast
patch search, Barnes et al. suggest a PatchMatch algorithm [1] to exploit the
image coherency, and generalize it for finding k-nearest neighbors [2]. Generally,
exemplar-based inpainting is superior in synthesizing textures, but is not well
suited for preserving edges and structures. For better recovery of image structure,
several patch priority measures have been proposed to fill in structural patches
first [4, 22, 40]. Global image coherence has also been introduced to the Markov
random field (MRF) framework for improving visual quality [20,29,37]. However,
these methods only work well on images with simple structures, and may fail in
handling images with complex objects and scenes. Besides, in most exemplar-
based inpainting methods [20, 21, 29], the missing part is recovered as the shift
representation of the known region in pixel/region level, which also motivates
our shift operation on convolution feature representation.

2.2 CNN-based inpainting

Recently, deep CNNs have achieved great success in image inpainting. Originally,
CNN-based inpainting is confined to small and thin masks [19,31,39]. Phatak et

al. [28] present an encoder-decoder (i.e., context encoder) network to predict the
missing parts, where an adversarial loss is adopted in training to improve the
visual quality of the inpainted image. Even context encoder is effective in cap-
turing image semantics and global structure, it completes the input image with
only one forward-pass and performs poorly in generating fine-detailed textures.
Semantic image inpainting is introduced to fill in the missing part conditioned on
the known region for images from a specific semantic class [42]. In order to obtain
globally consistent result with locally realistic details, global and local discrimi-
nators have been proposed in image inpainting [13] and face completion [25]. For
better recovery of fine details, MNPS is presented to combine exemplar-based
and CNN-based inpainting [41].

2.3 Style transfer

Image inpainting can be treated as an extension of style transfer, where both the
content and style (texture) of missing part are estimated and transferred from
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the known region. In the recent few years, style transfer [3,7,9,10,12,17,24,26,36]
has been an active research topic. Gatys et al. [9] show that one can transfer style
and texture of the style image to the content image by solving an optimization
objective defined on an existing CNN. Instead of the Gram matrix, Li et al. [24]
apply the MRF regularizer to style transfer to suppress distortions and smears.
In [3], local matching is performed on the convolution layer of the pre-trained
network to combine content and style, and an inverse network is then deployed
to generate the image from feature representation.

3 Method

Given an input image I, image inpainting aims to restore the ground-truth image
Igt by filling in the missing part. To this end, we adopt U-Net [32] as the baseline
network. By incorporating with guidance loss and shift operation, we develop
a novel Shift-Net for better recovery of semantic structure and fine-detailed
textures. In the following, we first introduce the guidance loss and Shift-Net,
and then describe the model objective and learning algorithm.

3.1 Guidance loss on decoder feature

The U-Net consists of an encoder and a symmetric decoder, where skip connec-
tion is introduced to concatenate the features from each layer of encoder and
those of the corresponding layer of decoder. Such skip connection makes it con-
venient to utilize the information before and after bottleneck, which is valuable
for image inpainting and other low level vision tasks in capturing localized visual
details [14, 44]. The architecture of the U-Net adopted in this work is shown in
Fig. 2. Please refer to the supplementary material for more details on network
parameters.

Let Ω be the missing region and Ω be the known region. Given a U-Net of L
layers, Φl(I) is used to denote the encoder feature of the l-th layer, and ΦL−l(I)
the decoder feature of the (L − l)-th layer. For the end of recovering Igt, we
expect that Φl(I) and ΦL−l(I) convey almost all the information in Φl(I

gt). For
any location y ∈ Ω, we have (Φl(I))y ≈ 0. Thus, (ΦL−l(I))y should convey

equivalent information of (Φl(I
gt))y.

In this work, we suggest to explicitly model the relationship between (ΦL−l(I))y
and (Φl(I

gt))y by introducing the following guidance loss,

Lg =
∑

y∈Ω

∥

∥

∥
(ΦL−l(I))y −

(

Φl(I
gt)

)

y

∥

∥

∥

2

2
. (1)

We note that (Φl(I))x ≈ (Φl(I
gt))x for any x ∈ Ω. Thus the guidance loss is

only defined on y ∈ Ω to make (ΦL−l(I))y ≈ (Φl(I
gt))y. By concatenating Φl(I)

and ΦL−l(I), all information in Φl(I
gt) can be approximately obtained.



6 Yan et al.

(a) (b) (c) (d)

Fig. 3. Visualization of features learned by our model. Given (a) an input image, (b)
is the visualization of

(

Φl(I
gt)

)

y
(i.e., Hgt), (c) shows the result of (ΦL−l(I))y (i.e.,

H
de) and (d) demonstrates the effect of

(

Φshift

L−l (I)
)

y

.

Experiment on deep feature visualization is further conducted to illustrate the
relation between (ΦL−l(I))y and (Φl(I

gt))y. For visualizing {(Φl(I
gt))y |y ∈ Ω},

we adopt the method [27] by solving an optimization problem

Hgt = argmin
H

∑

y∈Ω

∥

∥

∥
(Φl(H))y −

(

Φl(I
gt)

)

y

∥

∥

∥

2

2
. (2)

Analogously, {(ΦL−l(I))y |y ∈ Ω} is visualized by

Hde = argmin
H

∑

y∈Ω

∥

∥

∥
(Φl(H))y − (ΦL−l(I))y

∥

∥

∥

2

2
. (3)

Figs. 3(b)(c) show the visualization results of Hgt and Hde. With the introduc-
tion of guidance loss, obviously Hde can serve as a reasonable estimation of Hgt,
and U-Net works well in recovering image semantics and structures. However,
in compared with Hgt and Igt, the result Hde is blurry, which is consistent with
the poor performance of CNN-based inpainting in recovering fine textures [41].
Finally, we note that the guidance loss is helpful in constructing an explicit re-
lation between (ΦL−l(I))y and (Φl(I

gt))y. In the next section, we will explain

how to utilize such property for better estimation to (Φl(I
gt))y and enhancing

inpainting result.

3.2 Shift operation and Shift-Net

In exemplar-based inpainting, it is generally assumed that the missing part is
the spatial rearrangement of the pixels/patches in the known region. For each
pixel/patch localized at y in missing part, exemplar-based inpainting explic-
itly or implicitly find a shift vector uy, and recover (I)y with (I)y+uy

, where

y + uy ∈ Ω is in the known region. The pixel value (I)y is unknown before
inpainting. Thus, the shift vectors usually are obtained progressively from the
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exterior to the interior of the missing part, or by solving a MRF model by con-
sidering global image coherence. However, these methods may fail in recovering
complex image semantics and structures.

We introduce a special shift-connection layer in U-Net, which takes Φl(I)
and ΦL−l(I) to obtain an updated estimation on Φl(I

gt). For each (ΦL−l(I))y
with y ∈ Ω, its nearest neighbor (NN) searching based on cross-correlation in
(Φl(I))x (x ∈ Ω) can be independently obtained by,

x∗(y) = argmax
x∈Ω

〈

(ΦL−l(I))y , (Φl(I))x

〉

‖(ΦL−l(I))y ‖2‖(Φl(I))x ‖2
, (4)

and the shift vector is defined as uy = x∗(y)− y. We also empirically find that
cross-correlation is more effective than ℓ1 and ℓ2 norms in our Shift-Net. Similar
to [24], the NN searching can be computed as a convolutional layer. Then, we
update the estimation of (Φl(I

gt))y as the spatial rearrangement of the encoder
feature (Φl(I))x,

(

Φshift
L−l (I)

)

y
= (Φl(I))y+uy

. (5)

See Fig. 3(d) for visualization. Finally, as shown in Fig. 2, the convolution fea-

tures ΦL−l(I), Φl(I) and Φshift
L−l (I) are concatenated and taken as inputs to the

(L− l + 1)-th layer, resulting in our Shift-Net.
The shift operation is different with exemplar-based inpainting from sev-

eral aspects. (i) While exemplar-based inpainting is operated on pixels/patches,
shift operation is performed on deep encoder feature domain which is end-to-end
learned from training data. (ii) In exemplar-based inpainting, the shift vectors
are obtained either by solving an optimization problem or in particular order.
As for shift operation, with the guidance of ΦL−l(I), all the shift vectors can be
computed in parallel. (iii) For exemplar-based inpainting, both patch process-
ing orders and global image coherence are not sufficient for preserving complex
structures and semantics. In contrast, in shift operation ΦL−l(I) is learned from
large scale data and is more powerful in capturing global semantics. (iv) In
exemplar-based inpainting, after obtaining the shift vectors, the completion re-
sult can be directly obtained as the shift representation of the known region.
As for shift operation, we take the shift representation Φshift

L−l (I) together with
ΦL−l(I) and Φl(I) as inputs to (L− l+ 1)-th layer of U-Net, and adopt a data-
driven manner to learn an appropriate model for image inpainting. Moreover,
even with the introduction of shift-connection layer, all the model parameters in
our Shift-Net can be end-to-end learned from training data. Thus, our Shift-Net
naturally inherits the advantages of exemplar-based and CNN-based inpainting.

3.3 Model objective and learning

Objective. Denote by Φ(I;W) the output of Shift-Net, where W is the model
parameters to be learned. Besides the guidance loss, the ℓ1 loss and the adver-
sarial loss are also included to train our Shift-Net. The ℓ1 loss is defined as,

Lℓ1 = ‖Φ(I;W)− Igt‖1, (6)
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which is suggested to constrain that the inpainting result should approximate
the ground-truth image.

Moreover, adversarial learning has been adopted in low level vision [23] and
image generation [14, 30], and exhibits its superiority in restoring fine details
and photo-realistic textures. Thus, we use pdata(I

gt) to denote the distribution
of ground-truth images, and pmiss(I) to denote the distribution of input image.
Then the adversarial loss is defined as,

Ladv= min
W

max
D

EIgt∼pdata(Igt)[logD(Igt)] (7)

+ EI∼pmiss(I)[log(1−D(Φ(I;W)))], (8)

where D(·) denotes the discriminator to predict the probability that an image
is from the distribution pdata(I

gt).

Taking guidance, ℓ1, and adversarial losses into account, the overall objective
of our Shift-Net is defined as,

L = Lℓ1 + λgLg + λadvLadv, (9)

where λg and λadv are two tradeoff parameters.

Learning. Given a training set {(I, Igt)}, the Shift-Net is trained by minimizing
the objective in Eqn. (9) via back-propagation. We note that the Shift-Net and
the discriminator are trained in an adversarial manner. The Shift-Net Φ(I;W)
is updated by minimizing the adversarial loss Ladv, while the discriminator D is
updated by maximizing Ladv.

Due to the introduction of shift-connection, we should modify the gradient
w.r.t. the l-th layer of feature Fl = Φl(I). To avoid confusion, we use F

skip
l to

denote the feature Fl after skip connection, and of course we have F
skip
l = Fl.

According to Eqn. (5), the relation between Φshift
L−l (I) and Φl(I) can be written

as,

Φshift
L−l (I) = PΦl(I), (10)

where P denotes the shift matrix of {0, 1}, and there is only one element of 1 in
each row of P. Thus, the gradient with respect to Φl(I) consists of three terms:
(i) that from (l + 1)-th layer, (ii) that from skip connection, and (iii) that from
shift-connection, and can be written as,

∂L

∂Fl

=
∂L

∂F
skip
l

+
∂L

∂Fl+1

∂Fl+1

∂Fl

+PT ∂L

∂Φshift
L−l (I)

, (11)

where the computation of the first two terms are the same with U-Net, and
the gradient with respect to Φshift

L−l (I) can also be directly computed. Thus, our
Shift-Net can also be end-to-end trained to learn the model parameters W.
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(a) (b) (c) (d) (e)

Fig. 4. Qualitative comparisons on the Paris StreetView dataset. From the left to the
right are: (a) input, (b) Content-Aware Fill [11], (c) context encoder [28], (d) MNPS [41]
and (e) Ours. All images are scaled to 256× 256.

4 Experiments

We evaluate our method on two datasets: Paris StreetView [5] and six scenes
from Places365-Standard dataset [43]. The Paris StreetView contains 14,900
training images and 100 test images. We randomly choose 20 out of the 100 test
images in Paris StreetView to form the validation set, and use the remaining as
the test set. There are 1.6 million training images from 365 scene categories in
the Places365-Standard. The scene categories selected from Places365-Standard
are butte, canyon, field, synagogue, tundra and valley. Each category has 5,000
training images, 900 test images and 100 validation images. The details of model
selection are given in the supplementary materials. For both Paris StreetView
and Places, we resize each training image to let its minimal length/width be
350, and randomly crop a subimage of size 256 × 256 as input to our model.
Moreover, our method is also tested on real world images for removing objects
and distractors. Our Shift-Net is optimized using the Adam algorithm [18] with
a learning rate of 2 × 10−4 and β1 = 0.5. The batch size is 1 and the training
is stopped after 30 epochs. Data augmentation such as flipping is also adopted
during training. The tradeoff parameters are set as λg = 0.01 and λadv = 0.002.
It takes about one day to train our Shift-Net on an Nvidia Titan X Pascal GPU.

4.1 Comparisons with state-of-the-arts

We compare our results with Photoshop Content-Aware Fill [11] based on [1],
context encoder [28], and MNPS [41]. As context encoder only accepts 128×128
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(a) (b) (c) (d) (e)

Fig. 5. Qualitative comparisons on the Places. From the left to the right are: (a) input,
(b) Content-Aware Fill [11], (c) context encoder [28], (d) MNPS [41] and (e) Ours. All
images are scaled to 256× 256.

images, we upsample the results to 256×256. For MNPS [41], we set the pyramid
level be 2 to get the resolution of 256× 256.

Evaluation on Paris StreetView and Places. Fig. 4 shows the comparisons
of our method with the three state-of-the-art approaches on Paris StreetView.
Content-Aware Fill [11] is effective in recovering low level textures, but per-
forms slightly worse in handling occlusions with complex structures. Context
encoder [28] is effective in semantic inpainting, but the results seem blurry and
detail-missing due to the effect of bottleneck. MNPS [41] adopts a multi-stage
scheme to combine CNN and examplar-based inpainting, and generally works
better than Content-Aware Fill [11] and context encoder [28]. However, the
multi-scales in MNPS [41] are not jointly trained, where some adverse effects
produced in the first stage may not be eliminated by the subsequent stages.
In comparison to the competing methods, our Shift-Net combines CNN and
examplar-based inpainting in an end-to-end manner, and generally is able to
generate visual-pleasing results. Moreover, we also note that our Shift-Net is
much more efficient than MNPS [41]. Our method consumes only about 80 ms
for a 256 × 256 image, which is about 500× faster than MNPS [41] (about 40
seconds). In addition, we also evaluate our method on the Places dataset (see
Fig. 5). Again our Shift-Net performs favorably in generating fine-detailed, se-
mantically plausible, and realistic images.

Quantitative evaluation. We also compare our model quantitatively with the
competing methods on the Paris StreetView dataset. Table 1 lists the PSNR,
SSIM and mean ℓ2 loss of different methods. Our Shift-Net achieves the best
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Table 1. Comparison of PSNR, SSIM and mean ℓ2 loss on Paris StreetView dataset.

Method PSNR SSIM Mean ℓ2 Loss

Content-Aware Fill [11] 23.71 0.74 0.0617

context encoder [28] (ℓ2 + adversarial loss) 24.16 0.87 0.0313

MNPS [41] 25.98 0.89 0.0258

Ours 26.51 0.90 0.0208

Fig. 6. Random region completion. From top to bottom are: input, Content-Aware
Fill [11], and Ours.

numerical performance. We attribute it to the combination of CNN-based with
examplar-based inpainting as well as the end-to-end training. In comparison,
MNPS [41] adopts a two-stage scheme and cannot be jointly trained.
Random mask completion.Our model can also be trained for arbitrary region
completion. Fig. 6 shows the results by Content-Aware Fill [11] and our Shift-
Net. For textured and smooth regions, both Content-Aware Fill [11] and our
Shift-Net perform favorably. While for structural region, our Shift-Net is more
effective in filling the cropped regions with context coherent with global content
and structures.

4.2 Inpainting of real world images

We also evaluate our Shift-Net trained on Paris StreetView for the inpainting of
real world images by considering two types of missing regions: (i) central region,
(ii) object removal. From the first row of Fig. 7, one can see that our Shift-Net
trained with central mask can be generalized to handle real world images. From



12 Yan et al.

Fig. 7. Results on real images. From the top to bottom are: central region inpainting,
and object removal.

(a) U-Net (b) U-Net (c) Ours (d) Ours
(w/o Lg) (w/ Lg) (w/o Lg) (w/ Lg)

Fig. 8. The effect of guidance loss Lg in U-Net and our Shift-Net.

the second row of Fig. 7, we show the feasibility of using our Shift-Net trained
with random mask to remove unwanted objects from the images.

5 Ablation Studies

The main differences between our Shift-Net and the other methods are the in-
troduction of guidance loss and shift-connection layer. Thus, experiments are
first conducted to analyze the effect of guidance loss and shift operation. Then
we respectively zero out the corresponding weight of (L− l+ 1)-th layer to ver-

ify the effectiveness of the shift feature Φshift
L−l in generating fine-detailed results.

Moreover, the benefit of shift-connection does not owe to the increase of feature
map size. So we also compare Shift-Net with a baseline model by substituting
the NN searching with random shift-connection in the supplementary materials.
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(a) λg = 1 (b) λg = 0.1 (c) λg = 0.01 (d) λg = 0.001

Fig. 9. The effect of the tradeoff parameter λg of guidance loss.

5.1 Effect of guidance loss

Two groups of experiments are conducted to evaluate the effect of guidance loss.
In the first group, we add and remove the guidance loss Lg for U-Net and our
Shift-Net to train the models. Fig. 8 shows the inpainting results by these four
methods. It can be observed that, for both U-Net and Shift-Net the guidance
loss is helpful in suppressing artifacts and preserving salient structure.

In the second group, we evaluate the effect of tradeoff parameter λg. Note
that the guidance loss is introduced for both recovering the semantic structure
of missing region and guiding the shift of encoder feature. Thus, proper tradeoff
parameter λg should be chosen. Fig. 9 shows the results by setting different λg

values. When λg is small (e.g., = 0.001), the decoder feature may not serve as
a suitable guidance to guarantee the correct shift of the encoder feature. From
Fig. 9(d), some artifacts can still be observed. When λg becomes too large (e.g.,
≥ 0.1), the constraint will be too excessive, and artifacts may also be introduced
(see Fig. 9(a)(b)). Thus, we empirically set λg = 0.01 in our experiments.

5.2 Effect of shift operation at different layers

The shift operation can be deployed to different layer, e.g., (L− l)-th, of the de-
coder. When l is smaller, the feature map size goes larger, and more computation
time is required to perform the shift operation. When l is larger, the feature map
size becomes smaller, but more detailed information may lost in the correspond-
ing encoder layer.Thus, proper l should be chosen for better tradeoff between
computation time and inpainting performance. Fig. 10 shows the results of Shift-
Net by adding the shift-connection layer to each of the (L−4)-th, (L−3)-th, and
(L − 2)-th layers, respectively. When the shift-connection layer is added to the
(L − 2)-th layer, Shift-Net generally works well in producing visually pleasing
results, but it takes more time, i.e., ∼ 400 ms per image (See Fig. 10(d)). When
the shift-connection layer is added to the (L − 4)-th layer, Shift-Net becomes
very efficient (i.e., ∼ 40 ms per image) but tends to generate the result with less
textures and coarse details (See Fig. 10(b)). By performing the shift operation
in (L − 3)-th layer, better tradeoff between efficiency (i.e., ∼ 80 ms per image)
and performance can be obtained by Shift-Net (See Fig. 10(c)).
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(a) ground-truth (b) L− 4 (c) L− 3 (d) L− 2

Fig. 10. The effect of performing shift operation on different layers L− l.

(a) (b) (c) (d) (e)

Fig. 11. Given (a) the input, (b), (c) and (d) are respectively the results when the 1st,
2nd, 3rd parts of weights in (L− l + 1)-th layer are zeroed. (e) is the result of Ours.

5.3 Effect of the shifted feature

The (L− l + 1)-th layer of Shift-Net takes ΦL−l(I), Φl(I) and Φshift
L−l as inputs.

To analyze their effect, Fig. 11 shows the results of Shift-Net by zeroing out the
weight of each slice in (L−l+1)-th layer. When we abandon ΦL−l(I), the central
part fails to restore any structures (See Fig. 11(b)).When we ignore Φl(I), the
general structure can be restored (See (Fig. 11(c)) but its quality is inferior to

the final result in Fig. 11(e). Finally, when we discard the shift feature Φshift
L−l ,

the result becomes totally a mixture of structures (See Fig. 11(d)). Thus, we

conclude that Φshift
L−l acts as a refinement and enhancement role in recovering

clear and fine details in our Shift-Net.

6 Conclusion

This paper proposes a novel Shift-Net for image completion that exhibits fast
speed with promising fine details via deep feature rearrangement. The guidance
loss is introduced to enhance the explicit relation between the encoded feature in
known region and decoded feature in missing region. By exploiting such relation,
the shift operation can be efficiently performed and is effective in improving
inpainting performance. Experiments show that our Shift-Net performs favorably
in comparison to the state-of-the-art methods, and is effective in generating
sharp, fine-detailed and photo-realistic images. In future, more studies will be
given to extend the shift-connection to other low level vision tasks.
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