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Abstract. How to economically cluster large-scale multi-view images is
a long-standing problem in computer vision. To tackle this challenge, we
introduce a novel approach named Highly-economized Scalable Im-
age Clustering (HSIC) that radically surpasses conventional image
clustering methods via binary compression. We intuitively unify the bi-
nary representation learning and efficient binary cluster structure learn-
ing into a joint framework. In particular, common binary representations
are learned by exploiting both sharable and individual information across
multiple views to capture their underlying correlations. Meanwhile, clus-
ter assignment with robust binary centroids is also performed via effective
discrete optimization under ℓ21-norm constraint. By this means, heavy
continuous-valued Euclidean distance computations can be successfully
reduced by efficient binary XOR operations during the clustering pro-
cedure. To our best knowledge, HSIC is the first binary clustering work
specifically designed for scalable multi-view image clustering. Extensive
experimental results on four large-scale image datasets show that HSIC
consistently outperforms the state-of-the-art approaches, whilst signifi-
cantly reducing computational time and memory footprint.

Keywords: Large-scale image clustering · binary code learning · binary
clustering · multi-view features

1 Introduction

Image clustering is a commonly used unsupervised analytical technique for prac-
tical computer vision applications [17]. The aim of image clustering is to discov-
er the natural and interpretable structure of image representations, so as to
group images that are similar to each other into the same cluster. Based on
the number of sources where images are collected or number of features how
images are described, existing clustering methods can be divided into single-
view image clustering (SVIC) [1, 16, 32, 36] and multi-view6 image clustering

∗ indicates equal contributions; † indicates the corresponding author.
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Despite ‘multi-view’ can refer to multiple features, domains or modalities, in this paper, we solely
focus on the clustering problem for images with multiple features (e.g., LBP, HOG and GIST).
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Fig. 1: The pipeline of HSIC. Common binary representation learning and discrete
cluster structure learning are jointly and efficiently solved by alternating optimization.

(MVIC) [3, 4, 22, 47, 48]. Recently, MVIC [3, 48, 51] has been evoking more and
more attention due to the flexibility of extracting multiple heterogeneous features
from a single image. Compared to SVIC, MVIC has access to more characteris-
tics and structural information of the data, and the features from diverse views
can potentially complement each other and produce more effective clustering
performance.

Existing MVIC methods can be roughly divided into three groups: multi-
view spectral clustering [19, 30, 31], multi-view matrix factorization [4, 22, 37],
and multi-view subspace clustering [13,45,49]. Multi-view spectral clustering [47]
constructs multiple similarity graphs to achieve a common or similar eigenvec-
tor matrix on all views, and then generates consensus data partitions, which
hinge crucially on the single-view spectral clustering [29]. Due to the straight-
forward interpretability of matrix factorization [20], multi-view matrix factoriza-
tion methods [4, 22] integrate information from multiple views towards a com-
patible common consensus, or decompose the heterogeneous features into speci-
fied centroid and cluster indicator matrices. Different from the above strategies,
multi-view subspace clustering [13] employs the complementary properties across
multiple views to uncover the common latent subspace and quantify the genuine
similarities. Some other kernel-based MVIC methods [10,42] exploit a linear or a
non-linear kernel on each view. Note that SVIC (e.g., k-means [16] and spectral
clustering [29]) can also be leveraged to deal with multi-view clustering problem.
A common practice for them is to perform clustering on either any single-view
feature or simply concatenated multiple features [47, 48].

Although SVIC and MVIC methods have achieved much progress on small-
and middle-scale data, both of them will become intractable (because of un-
affordable computation and memory overhead) when dealing with large-scale
data with high dimensionality, which is a typical case in the era of ‘big data’.
As pointed out in [15, 41], we argue that real-valued features are the essential
bottleneck restricting the scalability of existing clustering methods. To address
this issue, inspired by the recent advances on compact binary coding (a.k.a.
hashing) [5, 23, 24, 27, 34, 39, 40, 43], we aim to develop a feasible binary cluster-
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ing technique for large-scale MVIC. Specifically, we transform the original real-
valued Euclidean space to the low-dimensional binary Hamming space, based
on which an efficient clustering solution can then be devised. In this way, time-
consuming Euclidean distance measures (typically of O(Nd) complexity, where
N and d respectively indicate the data size and dimension) for real-valued data
can be substantially eliminated by the extremely fast XOR operations (of O(1)
complexity) for compact binary codes. Note that the proposed method is al-
so potentially promising in practical use cases where computation and memory
resources are limited (e.g., on wearable or mobile devices).

As shown in Fig. 1, we particularly develop a Highly-economized Scalable Im-

age Clustering (HSIC) framework for efficient large-scale MVIC. HSIC jointly
learns the effective common binary representations and robust discrete clus-
ter structures. The former can maximally preserve both sharable and view-
specific/individual information across multiple views; the latter can significantly
promote the computational efficiency and robustness of clustering. The joint
learning strategy is superior to separately learning each objective by facilitating
the collaboration between both objectives. An efficient alternating optimization
algorithm is developed to address the joint discrete optimization problem. The
main contributions of this work include:

1) To the best of our knowledge, HSIC is the pioneering work with large-
scale MVIC capability, where common binary representations and robust binary
cluster structures can be obtained in a unified learning framework.

2) HSIC captures both sharable and view-specific information from multiple
views to fully exploit the complementation and individuality of heterogeneous
image features. The sparsity-induced ℓ21-norm is imposed on the clustering mod-
el to further alleviate its sensitivity against outliers and noise.

3) Extensive experimental results on four image datasets clearly show that
HSIC can reduce the memory footprint and computational time up to 951 and
69.35 times respectively over the classical k -means algorithm, whilst consistently
outperform the state-of-the-art approaches.

Notably, two works [15,41] in the literature are most relevant to ours. [15] in-
troduced a two-step binary k-means approach, in which clustering is performed
on the binary codes obtained by Iterative Quantization (ITQ) [14], and [41] in-
tegrated binary structural SVM and k-means. Our HSIC fundamentally differs
from them in the following aspects: 1) [15] and [41] are SVIC methods, while
HSIC is specially designed for MVIC; 2) [15] divides the clustering task into two
unconnected procedures, which completely eliminate the important tie between
the binary coding and cluster structure learning. Meanwhile, the binary codes
learned by [41] are too weak to achieve satisfactory results because of lacking ad-
equate representative capability. More importantly, both methods cannot make
full use of the complementary properties of multiple views for scalable MVIC,
which is also shown in [50].

In the next section, we will introduce the detailed framework of our HSIC
and then elaborate on the alternating optimization algorithm. The analysis in
terms of computational complexity and memory load will also be presented.
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2 Highly-economized Scalable Image Clustering

Suppose we have a set of multi-view image features X = {X1, · · · ,Xm} from
m views, where Xv = [xv

1, · · · ,x
v
N ] ∈ ℜdv×N is the accumulated feature matrix

from the v-th view. dv and N denote the dimensionality and the number of
data points in Xv, respectively. xv

i ∈ ℜdv×1 is the i-th feature vector from the
v-th view. The main objective of unsupervised MVIC is to partition X into c
groups, where c is the number of clusters. In this work, to address the large-scale
MVIC problem, our HSIC aims to perform binary clustering in the much lower-
dimensional Hamming space. Particularly, we perform multi-view compression
(i.e., project multi-view features onto the common Hamming space) by learning
the compatible common binary representation via the complimentary char-
acteristics of multiple views. Meanwhile, robust binary cluster structures
are formulated in the learned Hamming space for efficient clustering.

As a preprocessing step, we first normalize the features from each view as
zero-centered vectors. Inspired by [26, 40], in this work, each feature vector is
encoded by the simple nonlinear RBF kernel mapping, i.e., ψ(xv

i ) = [exp(−‖xv
i −

av
1‖

2/γ), · · · , exp(−‖xv
i −av

l ‖
2/γ)]⊤, where γ is the pre-defined kernel width, and

ψ(xv
i ) ∈ ℜl×1 denotes an l-dimensional nonlinear embedding for the i-th feature

from the v-th view. Similar to [25,26,40], {av
i }

l
i=1 are randomly selected l anchor

points from Xv (l = 1000 is used for each view in this work). Subsequently, we
will introduce how to learn the common binary representation and robust binary
cluster structure respectively, and finally end up with a joint learning objective.

1) Common Binary Representation Learning. We consider a family of
K hashing functions to be learned in HSIC, which quantize each ψ(xv

i ) into
a binary representation bvi = [bvi1, · · · , b

v
iK ]T ∈ {−1, 1}K×1. To eliminate the

semantic gaps between different views, HSIC generates the common binary rep-
resentation by combining multi-view features. Specifically, HSIC simultaneous-
ly projects features from multiple views onto a common Hamming space, i.e.,
bi = sgn

(

(P v)⊤ψ(xv
i )
)

, where bi is the common binary code of the i-th features
from different views (i.e., xv

i , ∀v = 1, ...,m), sgn(·) is an element-wise sign func-
tion, P v = [pv

1, · · · ,p
v
K ] ∈ ℜl×K is the mapping matrix for the v-th view and

pv
i is the projection vector for the i-th hashing function. As such, we construct

the learning function by minimizing the following quantization loss:

min
P v,bi

m
∑

v=1

N
∑

i=1

‖bi − (P v)⊤ψ(xv
i )‖

2
F . (1)

Since different views describe the same subject from different perspectives, the
projection {P v}mv=1 should capture the shared information that maximizes the
similarities of multiple views, as well as the view-specific/individual information
that distinguishes individual characteristics between different views. To this end,
we decompose each projection into the combination of sharable and individual
projections, i.e., P v = [PS ,P

v
I ]. Specifically, PS ∈ ℜl×KS is the shared projec-

tion across multiple views, while P v
I ∈ ℜl×KI is the individual projection for the

v-th view, where K = KS+KI . Therefore, HSIC collectively learns the common
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binary representation from multiple views using

min
P v,B,αv

m
∑

v=1

(αv)r
(

‖B − (P v)⊤ψ(Xv)‖2F + λ1‖P
v‖2F

)

,

s.t.
∑

v

α
v = 1,αv > 0,B = [Bs;BI ] ∈ {−1, 1}K×N ,P v = [Ps,P

v
I ], (2)

where B = [b1, · · · , bN ], α = [α1, · · · , αm] ∈ ℜm weighs the importance of different
views, r > 1 is a constant managing the weight distributions, and λ1 is a regularization
parameter. The second term is a regularizer to control the parameter scales.

Moreover, from the information-theoretic point of view, the information provided
by each bit of the binary codes needs to be maximized [2]. Based on this point and
motivated by [14,44], we adopt an additional regularizer for the binary codes B using
maximum entropy principle, i.e., max var[B] = var[sgn

(

(P v)⊤ψ(xv
i )
)

]. This addi-
tional regularization on B can ensure the balanced partition and reduce the redundancy

of the binary codes. Here we replace the sign function by its signed magnitude, and
formulate the relaxed regularization as follows

max
∑

k

E[‖(pv
i )

⊤ψ(xv
i )‖

2] =
1

N
tr
(

(P v)⊤ψ(Xv)ψ(Xv)⊤P v
)

= g(P v). (3)

Finally, we combine problems (2) and (3) together and reformulate the overall
common binary representation learning problem as the following

min
P v,B

m
∑

v=1

(αv)r
(

‖B − (P v)⊤ψ(Xv)‖2F + λ1‖P
v‖2F − λ2g(P

v)
)

s.t.
∑

v

αv = 1, αv > 0,B = [Bs;BI ] ∈ {−1, 1}K×N ,P v = [Ps,P
v
I ], (4)

where λ2 is a weighting parameter.
2) Robust Binary Cluster Structure Learning. For binary clustering, HSIC di-
rectly factorizes the learned binary representation B into the binary clustering cen-
troids Q and discrete clustering indicators F using

min
Q,F

‖B −QF ‖21, s.t. Q1 = 0,Q ∈ {−1, 1}K×c,F ∈ {0, 1}c×N ,
∑

j

fji = 1, (5)

where ‖A‖21 =
∑

i ‖a
i‖2, and ai is the i-th row of matrix A. The first constraint

of (5) ensures the balanced property on the clustering centroids as with the binary
codes. Note that the ℓ21-norm imposed on the loss function can also be replaced by the
F -norm, i.e., ‖B −QF ‖2F . However, the F -norm based loss function can amplify the
errors induced from noise and outliers. Therefore, to achieve more stable and robust
clustering performance, we employ the sparsity-induced ℓ21-norm. It is also observed
in [12] that the ℓ21-norm not only preserves the rotation invariance within each feature,
but also controls the reconstruction error, which significantly mitigates the negative
influence of the representation outliers.
3) Joint Objective Function. To preserve the semantic interconnection between the
learned binary codes and the robust cluster structures, we incorporate the common
binary representation learning and the discrete cluster structure constructing into a
joint learning framework. In this way, the unified framework can interactively enhance
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Algorithm 1: Highly-economized Scalable Image Clustering (HSIC)

Input : Multi-view features {Xv}mv=1 ∈ ℜdv×N , m ≥ 3; code length K;
number of centroids c; maximum iterations κ and t; λ1, λ2 and λ3.

Output: Binary representation B, cluster centroid Q and cluster indicator F .
Initial. : Randomly select l anchor points from each view to calculate the

kernelized feature embedding ψ(Xv) ∈ ℜl×N , and normalize them to
have zero-centered mean.

repeat
PS-Step: Update PS by Eqn.(8);
P v

I -Step: Update P v
I by Eqn. (9), ∀v = 1, · · · ,m;

B-Step: Update B by Eqn. (12);
repeat

Q-Step: Iteratively update Q by Eqn. (14);
F -Step: Update F by Eqn. (16);

until convergence or reach κ iterations;
α-Step: Update α by Eqn. (18);

until convergence or reach t iterations;

the qualities of the learned binary representation and cluster structures. Hence, we
have the following joint objective function:

min
P v,B,Q,F ,αv

m
∑

v=1

(αv)r
(

‖B − (P v)⊤ψ(Xv)‖2F + λ1‖P
v‖2F − λ2g(P

v)
)

+ λ3‖B −QF ‖21,

s.t.
∑

v

α
v = 1,αv > 0,B = [Bs;BI ] ∈ {−1, 1}K×N ,P v = [Ps,P

v
I ],

Q1 = 0,Q ∈ {−1, 1}K×c,F ∈ {0, 1}c×N ,
∑

j

fji = 1, (6)

where λ1, λ2 and λ3 are trade-off parameters to balance the effects of different terms.
To optimize the difficult discrete programming problem, a newly-derived alternating
optimization algorithm is developed as shown in the next section.

2.1 Optimization

The solution to problem (6) is non-trivial as it involves a mixed binary integer program
with three discrete constraints, which lead to an NP-hard problem. In the following,
we introduce an alternating optimization algorithm to iteratively update each variable
while fixing others, i.e., update Ps → P v

I → B → Q → F → α in each iteration.

Due to the intractable ℓ21-norm loss function, we first rewrite the last term in (6)
as λ3tr

(

U⊤DU
)

, where U = B −QF , and D ∈ ℜK×K is a diagonal matrix, the i-th
diagonal element of which is defined as dii = 1/2‖ui‖, where ui is the i-th row of U .

1) Ps-Step: When fixing other variables, we update the sharable projection by

min
Ps

m
∑

v=1

(αv)r
(

‖Bs − P
⊤

s ψ(X
v)‖2F + λ1‖Ps‖

2
F −

λ2

N
tr
(

P
⊤

s ψ(X
v)ψ⊤(Xv)Ps

))

. (7)
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For notational convenience, we rewrite ψ(Xv)ψ⊤(Xv) as X̃. Taking derivation of L
with respect to Ps and let ∂L

∂Ps
= 0, we can obtain the closed-form solution of Ps, i.e.,

Ps = (A+ λ1

m
∑

v=1

(αv)rI)−1
TB

⊤, (8)

where A = (1− λ2

N
)
∑m

v=1(α
v)rX̃ and T =

∑m

v=1(α
v)rψ(Xv).

2) P v
I -Step: Similarly, when fixing other parameters, the optimal solution of the v-th

individual projection matrix can be determined by solving

min
P v

I

‖BI − (P v
I )

⊤ψ(Xv)‖2F + λ1‖P
v
I ‖

2
F −

λ2

N
tr
(

P
v
I X̃(P v

I )
⊤
)

, (9)

and its closed-form solution can be obtained by P v
I = Wψ(Xv)B⊤, where W =

(

(1− λ2

N
)X̃ + λ1I

)−1

can be calculated beforehand.

3) B-Step: Problem (6) w.r.t. B can be rewritten as:

min
B

m
∑

v=1

(αv)r
(

‖B − (P v)⊤ψ(Xv)‖2F
)

+ λ3tr
(

U
⊤
DU

)

, s.t. B ∈ {−1, 1}K×N . (10)

Since B only has ‘1’ and ‘-1’ entries and D is a diagonal matrix, both tr(BB⊤) =
tr(B⊤B) = KN and tr

(

B⊤DB
)

= N ∗ tr(D) are constant terms w.r.t. B. Based on
this and with some further algebraic computations, (10) can be reformulated as

min
B

−2tr
[

B⊤
(
∑m

v=1(α
v)r
(

(P v)⊤ψ(Xv)
)

+ λ3QF
)]

+ const, s.t. B ∈ {−1, 1}K×N , (11)

where ‘const ’ denotes the constant terms. This problem has a closed-form solution:

B = sgn

(

m
∑

v=1

(αv)r
(

(P v)⊤ψ(Xv)
)

+ λ3QF

)

. (12)

4) Q-Step: First, we degenerate (6) into the following computationally feasible prob-
lem (by removing some irrelevant parameters and discarding the first constraint):

min
Q,F

tr
(

U
⊤
DU

)

+ ν‖Q⊤1‖2F , s.t. Q ∈ {−1, 1}K×c, F ∈ {0, 1}c×N ,
∑

j

fji = 1. (13)

With sufficiently large ν > 0, problems (6) and (13) will be equivalent. Then, by fixing
the variable F , problem (13) becomes

min
Q

L(Q) = −2tr(B⊤
DQF ) + ν‖Q⊤1‖2F + const, s.t. Q ∈ {−1, 1}K×c. (14)

Inspired by the efficient discrete optimization algorithm in [35, 38], we develop an
adaptive discrete proximal linearized optimization algorithm, which iteratively updates
Q in the (p+1)-th iteration by Qp+1 = sgn(Qp − 1

η
∇L(Qp)), where ∇L(Q) is the

gradient of L(Q), 1
η
is the learning step size and η ∈ (C, 2C), where C is the Lipschitz

constant. Intuitively, for the very special sgn(·) function, if the step size 1/η is too
small/large, the solution of Q will get stuck in a bad local minimum or diverge. To this
end, a proper η is adaptively determined by enlarging or reducing based on the changing
values of L(Q) between adjacent iterations, which can accelerate its convergence.
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5) F -Step: Similarly, when fixing Q, the problem w.r.t. F turns into

min
fi

N
∑

i=1

dii‖bi −Qfi‖21, s.t. fi ∈ {0, 1}c×1,
∑

j

fji = 1. (15)

We can divide the above problem into N subproblems, and independently optimize
the cluster indicator in a column-wise fashion. That is, one column of F (i.e., fi) is
computed at each time. Specifically, we solve the subproblems in an exhaustive search
manner, similar to the conventional k-means algorithm. Regarding the i-th column fi,
the optimal solution of its j-th entry can be efficiently obtained by

fji =

{

1, j = argmin
k
H(dii ∗ bi, q℘),

0, otherwise,
(16)

where q℘ is the ℘-th vector of Q, and H(·, ·) denotes the Hamming distance metric.
Note that computing the Hamming distance is remarkably faster than the Euclidean
distance, so the assigned vector fi will efficiently constitute the matrix F .
6) α-Step: Let hv = ‖B − (P v)⊤ φ(Xv)‖2F + λ1‖P

v||2F − λ2g(P
v), then problem (6)

w.r.t. α can be rewritten as

min
αv

m
∑

v=1

(αv)rhv, s.t.
∑

v

αv = 1, αv > 0. (17)

The Lagrange function of (17) is minL(αv, ζ) =
∑m

v=1(α
v)rhv−ζ(

∑m

v=1 α
v−1), where

ζ is the Lagrange multiplier. Taking the partial derivatives w.r.t. αv and ζ, respectively,
we can get



















∂L

∂αv
= r(αv)r−1hv − ζ,

∂L

∂ζ
=

m
∑

v=1

αv − 1.
(18)

Following [47], by setting ∇αv,ζL = 0, the optimal solution of αv is (hv)
1

1−r

∑
v
(hv)

1
1−r

.

To obtain the locally optimal solution of problem (6), we update the above six
variables iteratively until convergence. To deal with the out-of-example problem in
image clustering, HSIC needs to generate the binary code for a new query image x̂

from the v-th view (i.e., x̂v) by bv = sgn
(

(P v)⊤ψ(x̂v)
)

, and then assigns it to the
j-th cluster decided by j = argminkH(bv, qk) in the fast Hamming space. For multi-
view clustering, the common binary code of x̂ is b = sgn

(
∑m

v=1(α
v)r(P v)⊤ψ(x̂v)

)

.
Then the optimal cluster assignment of x̂ is determined by the solution of F . The full
learning procedure of HSIC is illustrated in Algorithm 1.

2.2 Complexity and Memory Load Analysis

1) The major computation burden of HSIC lies in the compressive binary represen-
tation learning and robust discrete cluster structures learning. The computational
complexities of calculating PS and P v

I are O(KSlN) and O(m(KI lN)), respective-
ly. Computing B consumes O(KlN). Similar to [15], constructing the discrete cluster
structures needs O(N) on bit-wise operators for κ iterations, where the distance com-
putation requires only O(1) per time. The total computational complexity of HSIC is
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O(t((KS + mKI + K)lN + κN)), where t and κ are empirically set to 10 in all the
experiments. In general, the computational complexity of optimizing HSIC is linear to
the number of samples, i.e., O(N). 2) For memory cost in HSIC, it is unavoidable to
store the mapping matrices Ps and P v

I , demanding O(lKS) and O(lKI) memory costs,
respectively. Notably, the learned binary representation and discrete cluster centroids
only need the bit-wise memory load O(K(N + c)), which is much less than that of
k-means requiring O(d(N + c)) real-valued numerical storage footprint.

3 Experimental Evaluation

In this section, we conducted multi-view image clustering experiments on four scalable
image datasets to evaluate the effectiveness of HSIC with four frequently-used perfor-
mance measures. All the experiments are implemented based on Matlab 2013a using a
standard Windows PC with an Intel 3.4 GHz CPU.

3.1 Experimental Settings

Datasets and Features: We perform experiments on four image datasets, including
ILSVRC2012 1K [11], Cifar-10 [18], YouTube Faces (YTBF) [46] and NUS-
WIDE [9]. Specifically, we randomly select 10 classes from ILSVRC2012 1K with 1, 300
images per class, denoted as ImageNet-10, for middle-scale multi-view clustering study.
Cifar-10 contains 60, 000 tiny color images in 10 classes, with 6, 000 images per class.
A subset of YTBF contains 182, 881 face images from 89 different people (> 1, 200
for each one). Similar to [38], we collect the subset of NUS-WIDE including the 21
most frequent concepts, resulting in 195, 834 images with at least 3, 091 images per
category. Because some images in NUS-WIDE were labeled by multiple concepts, we
only select one of the most representative labels as their true categories for simplicity.
Multiple features are extracted on all datasets. Specifically, for ImageNet-10, Cifar-10
and YTBF, we use three different types of features, i.e., 1450-d LBP, 1024-d GIST,
and 1152-d HOG. For NUS-WIDE, five publicly available features are employed for
experiments, i.e., 64-d color Histogram (CH), 225-d color moments (CM), 144-d color
correlation (CORR), 73-d edge distribution (EDH) and 128-d wavelet texture (WT).

Metrics and Parameters: We adopt four widely-used evaluation measures [28]
for clustering, including clustering accuracy (ACC), normalized mutual information
(NMI), purity, and F-score. In addition, both computational time and memory foot-
print are compared to show the efficiency of HSIC. To fairly compare different methods,
we run the provided codes with default or fine-tuned parameter settings according to
the original papers. For binary clustering methods, 128-bit code length is used for all
datasets. For hyper-parameters λ1,

λ2

N
, and λ3 of HSIC, we first employ the grid search

strategy on ImageNet-10 to find the best values (i.e., 10−3, 10−3, and 10−5, respective-
ly), which are then directly adopted on other datasets for simplicity. We empirically
set r and δ = KS

K
(i.e., the ratio of shared binary codes) as 5 and 0.2 respectively in all

experiments. The multi-view clustering results are denoted as ‘MulView’. We report
the averaged clustering results with 10 times randomly initialization for each method.

We conduct the following experiments from three perspectives. Firstly , we verify
various characteristics of HSIC on the middle-scale dataset, i.e., ImageNet-10. Here we
compare HSIC with both SVIC and MVIC methods (including real-valued and binary
ones). Secondly , three large-scale datasets are exploited to evaluate HSIC on the
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Table 1: Performance comparisons on ImageNet-10. The bold black and blue numbers
indicate the best single-view and multi-view clustering results, respectively.

Metric ACC NMI Purity F-Score
Feature LBP GIST HOG MulView LBP GIST HOG MulView LBP GIST HOG MulView LBP GIST HOG MulView

S
in
g
le
-v
ie
w

A
lg
.

k-means 0.2265 0.3085 0.2492 0.3073 0.1120 0.1853 0.1134 0.1803 0.2361 0.3098 0.2439 0.3133 0.1628 0.1970 0.1363 0.1996
k-Medoids 0.1925 0.2634 0.2268 0.2605 0.0755 0.1721 0.1298 0.1461 0.1988 0.2852 0.2329 0.2690 0.1110 0.1973 0.1836 0.1874
Ak-kmeans 0.2159 0.2988 0.2515 0.3113 0.1000 0.1541 0.1279 0.1966 0.2255 0.2805 0.2761 0.3254 0.1662 0.1827 0.1870 0.2122
Nyström 0.2234 0.2459 0.2544 0.2950 0.0936 0.1222 0.1317 0.1719 0.2181 0.2585 0.2741 0.3320 0.1490 0.1749 0.1639 0.2050
NMF 0.2178 0.2540 0.2509 0.2737 0.1076 0.1353 0.1434 0.1610 0.2178 0.2614 0.2705 0.2887 0.1571 0.1798 0.1609 0.1854
LSC-K 0.2585 0.3192 0.2529 0.3284 0.1356 0.1806 0.1254 0.2215 0.2260 0.2660 0.2797 0.3447 0.1748 0.1748 0.1625 0.2301

M
u
lt
i-
v
ie
w

A
lg
.

AMGL 0.2093 0.2843 0.2516 0.2822 0.1131 0.1301 0.1368 0.2110 0.2149 0.3090 0.2796 0.2902 0.1311 0.1571 0.2021 0.2305
MVKM 0.2321 0.2882 0.2535 0.3058 0.1181 0.1612 0.1372 0.1881 0.2115 0.3091 0.2538 0.3082 0.1461 0.1730 0.1861 0.2161
MLAN 0.2109 0.2197 0.2127 0.3182 0.1173 0.1255 0.1152 0.1648 0.2117 0.2258 0.2168 0.3248 0.1403 0.1614 0.1813 0.1813
MultiNMF 0.2113 0.2639 0.2574 0.2632 0.0986 0.1732 0.1605 0.1708 0.2202 0.2735 0.2855 0.2905 0.1531 0.1789 0.1802 0.1906
OMVC 0.2062 0.2706 0.2544 0.2739 0.1196 0.1613 0.1222 0.1744 0.1925 0.2611 0.2592 0.2637 0.1333 0.1739 0.1761 0.1885
MVSC 0.2248 0.2629 0.2732 0.3191 0.1293 0.1593 0.1294 0.2097 0.2132 0.3126 0.2828 0.3393 0.1481 0.1909 0.1911 0.2180

B
in
a
ry

A
lg
. ITQ+bk-means [15] 0.1861 0.2923 0.2562 0.3101 0.0604 0.1746 0.1200 0.2304 0.1879 0.2842 0.2644 0.3168 0.1214 0.1954 0.1643 0.2032

CKM [40] 0.1712 0.2382 0.1906 0.2794 0.0394 0.1352 0.0738 0.1823 0.1784 0.2556 0.1962 0.2844 0.1107 0.1687 0.1389 0.1990
HSIC-TS 0.1829 0.3030 0.2523 0.3568 0.1367 0.1672 0.1013 0.2376 0.1935 0.3247 0.2577 0.3665 0.1194 0.1945 0.1525 0.2309
HSIC-F 0.1951 0.2923 0.2516 0.3749 0.1289 0.1592 0.1015 0.2411 0.2062 0.3165 0.2625 0.3795 0.1252 0.1832 0.1566 0.2321
HSIC(ours) 0.2275 0.3128 0.2597 0.3865 0.1396 0.1692 0.1219 0.2515 0.2131 0.3253 0.2723 0.3905 0.1353 0.1929 0.1739 0.2530

For all single-view methods, features from all views are simply concatenated to obtain the ‘MulView’ results.

Table 2: Time costs (in seconds) of different methods on ImageNet-10.

Alg.
k-means Ak-kmeans Nyström LSC-K AMGL MLAN OMVC CKM HSIC-TS HSIC (ours)

Time Speedup Tim. Speedup Tim. Speedup Tim. Speedup Tim. Speedup Tim. Speedup Tim. Speedup Tim. Speedup Tim. Speedup Tim. Speedup

LBP 69 1× 16 4.31× 15 4.60× 211 0.33× 1693 0.04× 1431 0.05× 696 0.10× 17 4.06× 18 3.83 × 4 17.25 ×
GIST 43 1× 11 3.91× 11 3.91× 226 0.19× 1730 0.03× 1557 0.03× 616 0.07× 11 3.91× 16 2.69 × 4 10.75 ×
HOG 82 1× 11 7.46× 12 6.83× 331 0.25× 1862 0.04× 2226 0.04× 643 0.13× 18 4.56× 16 5.13 × 3 27.33 ×

MulView 201 1× 21 9.57× 19 10.58× 503 0.40× 3820 0.05× 3336 0.06× 1109 0.18× 27 7.44× 20 10.05 × 5 40.20 ×

challenging large-scale MVIC problem. Remark: Based on the results on ImageNet-
10 (see Table 2), the real-valued MVIC methods only obtain comparable results to
k-means, but they are very time-consuming. Moreover, when applying those MVIC
methods (e.g.,AMGL and MLAN) to larger datasets, we encounter the ‘out-of-memory’
error. Therefore, the real-valued MVIC methods are not compared on the three large-
scale datasets. Thirdly , some empirical analyses of our HSIC are also provided.

3.2 Experiments on the Middle-Scale ImageNet-10

We compare HSIC to several state-of-the-art clustering methods including SVIC meth-
ods (i.e., k-means [16], k-Medoids [33], Approximate kernel k-means [8], Nyström [6],
NMF [20], LSC-K [7]), MVIC methods, (i.e., AMGL [31], MVKM [4], MLAN [30],
MultiNMF [22], OMVC [37], MVSC [21]) and two existing binary clustering methods
(i.e., ITQ+bk-means [15] and CKM [41]). Additionally, two variants of HSIC are also
compared to show its efficacy, i.e., HSIC with F -norm regularized binary clustering
(HSIC-F), and HSIC with two separate steps of binary code learning and discrete clus-
tering (HSIC-TS). Similar to [21,22], for all the SVIC methods, we simply concatenate
the feature vectors of all views for the ‘MulView’ clustering.

Table 1 demonstrates the performance of all clustering methods. From Table 1,
we can observe in most cases that our HSIC can achieve comparable SVIC results
but superior MVIC results in comparison with all the real-valued and binary cluster-
ing methods. This indicates the effectiveness of HSIC on the common representation
learning and robust cluster structures learning, especially for the MVIC cases. Further-
more, it is clear that HSIC is superior to HSIC-F and HSIC-ST, which demonstrates
the robustness and effectiveness of the joint learning framework.
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The computational costs are illustrated in Table 2. From its last three columns,
we can see that the binary clustering methods can reduce the computational time
compared with the real-valued ones such as k-means and LSC-K, due to the highly
efficient distance calculation in the Hamming space. Particularly, our HSIC is much
faster than the compared real-valued and binary clustering methods, which also proves
the superiority of the developed efficient optimization algorithm. Specifically, the speed-
up of our HSIC for MVIC is very clear by a margin of 40.20 times compared to k-means.
For memory footprint, k-means and our HSIC respectively require 361 MB and 2.73
MB, i.e., ≈ 132 times memory can be reduced using HSIC.

Why does HSIC Outperform the Real-Valued Methods? Table 1 clearly
shows that HSIC achieves competitive or superior clustering performance compared
to the real-valued clustering methods. The favorable performance mainly comes from:
1) HSIC greatly benefits from the proposed effective discrete optimization algorithm
such that the learned binary representations can eliminate some redundant and noisy
information in the original real-valued features. As can be seen in Fig. 2, the similarity
structures of the same clusters are enhanced in the coding space, meanwhile, some
disturbances from the original features are excluded to refine the learned representa-
tion. 2) For image clustering, binary features are more robust to local changes since
small variations caused by varying environments can be eliminated by quantized binary
codes. 3) HSIC is a unified interactive learning framework of the optimal binary codes
and clustering structures, which is shown to be better than those disjoint learning
approaches (e.g., LSC-K, NMF, MVSC, AMGL and MLAN).

3.3 Experiments on Large-Scale Datasets

To show the strong scalability of HSIC on the large-scale MVIC problem, we com-
pare HSIC with several state-of-the-art scalable clustering methods on three large-scale
multi-view datasets. The clustering performance is summarized in Table 3. Given these
results, we have the following observations: 1) Generally, MVIC performs better than
SVIC, which implies the necessity of incorporating complementary traits of multiple
features for image clustering. Particularly, our HSIC achieves competitive or better
SVIC results but consistent best MVIC performance. This mainly owes to the adap-
tive weights learning strategy and the exploiting of sharable and individual information
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Fig. 2: t-SNE visualization of randomly selected 5 classes from ImageNet-10. The two
rows show the real-valued features and 128-bit HSIC-based binary codes, respectively.
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Table 3: Performance comparisons on the three large-scale datasets. The bold black
and blue numbers indicate the best single-view and multi-view results, respectively.

Metric Alg. k-means k-mean++ k-Medoids Ak-kmeans LSC-K Nyström
ITQ+

bk-means
CKM HSIC-TS HSIC-F HSIC

C
if
a
r-
1
0

ACC

LBP 0.2185 0.2182 0.2171 0.2066 0.2550 0.2339 0.2322 0.2225 0.2440 0.2536 0.2681
GIST 0.2842 0.2845 0.2419 0.2847 0.3010 0.2592 0.2777 0.2521 0.3209 0.3456 0.3595
HOG 0.2661 0.2703 0.2456 0.2608 0.2838 0.2408 0.2481 0.2294 0.3178 0.3394 0.3389

MulView 0.2877 0.2882 0.2630 0.2879 0.3488 0.2747 0.2787 0.2703 0.3742 0.3809 0.3951

NMI

LBP 0.1044 0.1044 0.0862 0.1021 0.1303 0.0922 0.0963 0.1092 0.1105 0.1094 0.1220
GIST 0.1692 0.1691 0.1238 0.1692 0.1869 0.1226 0.1502 0.1184 0.2063 0.2134 0.2299
HOG 0.1634 0.1645 0.1328 0.1607 0.1668 0.1415 0.1570 0.1034 0.2053 0.2199 0.2170

MulView 0.1803 0.1805 0.1565 0.1808 0.2382 0.1511 0.1613 0.1499 0.2547 0.2596 0.2629

Purity

LBP 0.2401 0.2400 0.2339 0.2275 0.2768 0.2445 0.2490 0.2476 0.2526 0.2697 0.2837
GIST 0.3056 0.3052 0.2483 0.3054 0.3306 0.2626 0.2882 0.2649 0.3650 0.3651 0.3828
HOG 0.2943 0.2953 0.2561 0.2847 0.3039 0.2655 0.2756 0.2319 0.3199 0.3589 0.3481

MulView 0.3136 0.3138 0.2921 0.3148 0.3787 0.2975 0.2953 0.2846 0.3956 0.4045 0.4204

F-score

LBP 0.1677 0.1676 0.1703 0.1643 0.1692 0.1517 0.1685 0.1509 0.1717 0.1670 0.1721
GIST 0.1866 0.1866 0.1744 0.1867 0.2044 0.1654 0.1808 0.1606 0.2318 0.2318 0.2397
HOG 0.1887 0.1895 0.1808 0.1882 0.1878 0.1680 0.1769 0.1479 0.2221 0.2337 0.2383

MulView 0.1998 0.2001 0.2035 0.2001 0.2477 0.1793 0.1863 0.1807 0.2422 0.2564 0.2595

Y
o
u
T
u
b
e-
F
a
ce
s
(Y

T
B
F
)

ACC

LBP 0.5870 0.5994 0.5262 0.5584 0.6017 0.5647 0.5765 0.5319 0.5930 0.6208 0.6471
GIST 0.4081 0.4068 0.3584 0.2937 0.4638 0.4497 0.3547 0.3760 0.5432 0.6059 0.6121
HOG 0.5751 0.5821 0.4810 0.5542 0.5830 0.5642 0.5574 0.5584 0.5436 0.6133 0.6099

MulView 0.5927 0.6067 0.5290 0.5562 0.6099 0.6190 0.5852 0.5574 0.5974 0.6315 0.6547

NMI

LBP 0.7473 0.7460 0.6835 0.7251 0.7725 0.7515 0.6870 0.6222 0.7256 0.7478 0.7690
GIST 0.5528 0.5472 0.5062 0.4165 0.6237 0.6630 0.5146 0.5094 0.6889 0.7272 0.7436
HOG 0.7442 0.7375 0.6640 0.7206 0.7536 0.7193 0.6827 0.6805 0.6965 0.7342 0.7483

MulView 0.7492 0.7488 0.6774 0.7215 0.7515 0.7307 0.6921 0.6827 0.7579 0.7785 0.7899

Purity

LBP 0.6744 0.6760 0.6033 0.6155 0.6782 0.6697 0.6529 0.5695 0.6597 0.6600 0.6915
GIST 0.4641 0.4622 0.4315 0.3157 0.5366 0.5729 0.4405 0.4398 0.6099 0.6530 0.6766
HOG 0.6499 0.6481 0.5733 0.6218 0.6602 0.6602 0.6257 0.6369 0.6105 0.6606 0.6682

MulView 0.6712 0.6692 0.5969 0.6376 0.6687 0.6778 0.6642 0.6257 0.6615 0.6955 0.7023

F-score

LBP 0.4240 0.4378 0.4034 0.4412 0.5058 0.4375 0.4421 0.4105 0.4286 0.4982 0.5123
GIST 0.2567 0.2551 0.2310 0.1666 0.3390 0.3455 0.2308 0.2578 0.3367 0.4871 0.4914
HOG 0.4813 0.4572 0.3715 0.4464 0.4627 0.3990 0.4303 0.4663 0.3379 0.4960 0.5016

MulView 0.4886 0.4853 0.4236 0.4209 0.4650 0.4211 0.4650 0.4303 0.4517 0.5113 0.5425

N
U
S
-W

ID
E

ACC

CH 0.1321 0.1370 0.1433 0.1351 0.1253 0.1391 0.1193 0.1244 0.1243 0.1314 0.1282
CM 0.1334 0.1379 0.1305 0.1300 0.1297 0.1130 0.1123 0.1202 0.1346 0.1376 0.1360

CORR 0.1352 0.1358 0.1222 0.1301 0.1344 0.1277 0.1143 0.1161 0.1349 0.1253 0.1279
EDH 0.1402 0.1425 0.1382 0.1399 0.1266 0.1129 0.1180 0.1223 0.1343 0.1343 0.1396
WT 0.1145 0.1182 0.1176 0.1169 0.1110 0.1226 0.1240 0.1172 0.1242 0.1147 0.1293

MulView 0.1434 0.1458 0.1545 0.1499 0.1567 0.1452 0.1295 0.1296 0.1607 0.1639 0.1661

NMI

CH 0.0687 0.0675 0.0706 0.0682 0.0638 0.0684 0.0629 0.0613 0.0668 0.0662 0.0938
CM 0.0755 0.0687 0.0615 0.0747 0.0746 0.0656 0.0625 0.0580 0.0775 0.0870 0.0944

CORR 0.0701 0.0699 0.0639 0.0714 0.0691 0.0661 0.0655 0.0589 0.0784 0.0652 0.0882
EDH 0.0844 0.0877 0.0830 0.0900 0.0866 0.0707 0.0758 0.0731 0.0961 0.0872 0.0925
WT 0.0571 0.0593 0.0559 0.0558 0.0661 0.0711 0.0632 0.0645 0.0878 0.0652 0.0748

MulView 0.0944 0.0967 0.0823 0.0947 0.0980 0.0880 0.0773 0.0696 0.0937 0.0989 0.1032

Purity

CH 0.2459 0.2418 0.2498 0.2439 0.2432 0.2443 0.2422 0.2390 0.2437 0.2397 0.2589
CM 0.2453 0.2459 0.2284 0.2507 0.2516 0.2495 0.2433 0.2414 0.2601 0.2371 0.2515

CORR 0.2370 0.2341 0.2402 0.2413 0.2408 0.2387 0.2404 0.2344 0.2564 0.2337 0.2589
EDH 0.2388 0.2448 0.2365 0.2467 0.2393 0.2193 0.2354 0.2308 0.2451 0.2296 0.2587
WT 0.2256 0.2274 0.2235 0.2237 0.2297 0.2328 0.2273 0.2256 0.2339 0.2306 0.2393

MulView 0.2625 0.2634 0.2446 0.2711 0.2657 0.2546 0.2487 0.2413 0.2647 0.2653 0.2753

F-score

CH 0.1128 0.1134 0.1147 0.1095 0.0946 0.1031 0.0867 0.0882 0.0863 0.0901 0.1009
CM 0.1011 0.1128 0.0981 0.0956 0.0896 0.0867 0.0836 0.0879 0.0941 0.1095 0.1010

CORR 0.1005 0.1027 0.0954 0.0947 0.0945 0.0969 0.0854 0.0841 0.0985 0.0888 0.0965
EDH 0.1163 0.1150 0.1079 0.1149 0.0972 0.0865 0.0892 0.0899 0.0966 0.1130 0.1033
WT 0.0933 0.0949 0.0940 0.0975 0.0893 0.0914 0.0889 0.0892 0.0903 0.0912 0.1019

MulView 0.1106 0.1125 0.1105 0.1061 0.1071 0.1006 0.0905 0.0903 0.1076 0.1055 0.1216
For all single-view methods, features from all views are simply concatenated to obtain the ‘MulView’ results.

from heterogeneous features. 2) From the last three columns of Table 3, we can ob-
serve that HSIC and its variants tend to be better than the real-valued ones. This
shows that the binary codes learned by HISC are competitive to the real-valued ones.
3) When comparing to HSIC-TS and HSIC-F, HSIC in most cases achieves superior
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Table 4: Time costs (in seconds) on the three large-scale multi-view datasets.
Alg.

k-means k-means++ Ak-kmeans LSC-K Nyström ITQ+bk-means CKM HSIC-TS HSIC (ours)
Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup

C
if
a
r-
1
0 LBP 409 1× 294 1.39× 61 6.71× 112 3.65× 26 15.73× 24 17.04× 29 14.10× 29 14.10× 10 40.90×

GIST 305 1× 334 0.91× 56 5.44× 834 0.37× 28 10.89× 23 13.26× 28 10.89× 30 10.17× 10 30.50×
HOG 412 1× 266 1.55× 58 7.10× 913 0.45× 32 12.87× 27 15.26× 30 13.73× 25 16.48× 10 41.20×

MulView 977 1× 791 1.23× 77 12.69× 1877 0.52× 58 16.85× 48 20.35× 46 21.24× 34 28.74× 17 57.47×

Y
T
B
F

LBP 2344 1× 1974 1.18× 533 4.40× 3546 0.66× 766 3.06× 90 26.04× 141 16.62× 97 24.17× 40 58.60×
GIST 2299 1× 1705 1.34× 515 4.46× 3796 0.61× 828 2.78× 107 21.49× 153 15.03× 98 23.46× 36 63.86×
HOG 3329 1× 1508 2.21× 523 6.37× 4042 0.83× 870 3.83× 104 32.01× 197 16.90× 105 31.71× 48 69.35×

MulView 5879 1× 4250 1.38× 539 10.91× 12546 0.47× 998 5.89× 110 53.45× 309 19.03× 162 36.29× 139 42.30×

N
U
S
-W

ID
E

CH 1027 1× 852 1.21× 464 2.21× 1693 0.61× 327 3.14× 91 11.29× 83 12.37× 85 12.08× 34 30.21×
CM 1206 1× 937 1.29× 464 2.60× 1987 0.61× 352 3.43× 82 14.71× 93 12.97× 89 13.55× 35 34.46×

CORR 1101 1× 876 1.26× 467 2.36× 1854 0.59× 382 2.88× 83 13.27× 83 13.26× 89 12.37× 35 31.46×
EDH 1000 1× 829 1.21× 454 2.21× 1825 0.55× 371 2.70× 99 10.10× 91 10.99× 98 10.20× 34 29.41×
WT 1206 1× 784 1.54× 491 2.46× 1984 0.61× 427 2.82× 82 14.71× 99 12.18× 81 14.89× 34 35.47×

MulView 1711 1× 1147 1.49× 479 3.57× 8978 0.19× 485 3.53× 105 16.30× 142 12.05× 112 15.28× 81 21.12×

Table 5: Memory footprint of ‘MulView’ k-means and HSIC on the three large-scale
datasets. ‘Reduction’ denotes the times of memory reduction against k-means.

Datasets
Memory w.r.t. k-means Memory w.r.t. HSIC (ours)

Data
(Real-valued features)

Centroids Reduction
Data

(128-bit binary codes)
Centroids Projection Reduction

Cifar-10 (60,000 images) 1.62GB 0.28MB 1× 0.92MB 0.15×10−3MB 2.53MB 481×
YTBF (182,881 images) 4.94GB 2.46MB 1× 2.79MB 1.36×10−3MB 2.53MB 951×

NUS-WIDE (195,834 images) 961MB 0.10MB 1× 2.99MB 0.32×10−3MB 2.53MB 174×

performance. This further reflects the advantages of the unified learning strategy and
robust binary cluster structure construction.

The comparisons of running time and memory footprint are illustrated in Tables 4
and 5, respectively. From Table 4, we can observe that our HSIC is the fastest method
in most cases. Table 5 shows that HSIC significantly reduces the memory load for
large-scale MVIC compared to k-means. The memory cost of HSIC is similar to other
binary clustering methods but clearly less than the real-valued methods. Moreover, as
shown in Tables 4 and 5, for MVIC on NUS-WIDE with 5 views, HSIC can cluster near
one million (195, 834 × 5) features in 81 seconds using only 5.52 MB memory, while
k-means needs about 29 minutes with 961 MB memory. Thus, HSIC can effectively
address large-scale MVIC with much less computational time and memory footprint.

3.4 Empirical Analysis

Component Analysis: We evaluate the effectiveness of different components of HSIC
in Fig. 3. Specifically, in addition to ‘HSIC-TS’ and ‘HSIC-F’, we have ‘HSIC-U’ by
removing the balanced and independence constraints on binary codes and clustering
centroids. HSIC-‘view’ and ITQ-‘view’ respectively refer to the SVIC results obtained
using HSIC and ITQ+bk-means on the ‘view’-specific features. From Fig. 3, we can
observe that each component contributes essentially to the enhanced performance, and
lacking any component will deteriorate the performance.

Effect of Code Length: We show our performance changes with the increasing
code lengths in Fig. 3. In general, longer codes may provide more information for higher
clustering performance. Specifically, both ITQ and HSIC based methods tend to achieve
improved performance with increasing numbers of bits. Moreover, HSIC-based methods
are superior to the baseline k-means when the code length is larger than 32. The best
clustering results are established by HSIC w.r.t. different code lengths, because HSIC
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Fig. 3: Performance of different clustering methods vs. code lengths on Cifar-10.
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Fig. 4: Performance of different clustering methods vs. numbers of clusters on Cifar-10.

can effectively coordinate the importance of different views and mine the semantic
correlations between them.

Effect of Number of Clusters: All the above experiments are evaluated based on
the ground-truth cluster numbers. However, if the number of clusters is unknown, how
will the performance change with different cluster numbers? To this end, we perform
experiments on Cifar-10 to evaluate the stabilities of different methods w.r.t. number
of clusters. Fig. 4 illustrates the performance changes by varying the cluster numbers
from 5 to 40 with an interval of 5. Interestingly, the performance (i.e., ACC, NMI and
F-score) of HSIC-based methods increases when the cluster number increases from 5
to 10, but then sharply drops using more than 10 clusters. This suggests that 10 is the
optimal number of clusters. Notably, ‘purity’ can not trade off the precise clustering
evaluation against the number of clusters [28]. Importantly, the clustering performance
of HSIC in most cases is better than all the compared methods, and HSIC-based
methods hold the first three best results. This shows that HSIC is adaptive to different
cluster numbers and can be potentially used to predict the ‘optimal’ number of clusters.

4 Conclusion

In this paper, we proposed a highly-economized multi-view clustering framework, dubbed
HSIC, to jointly learn the compressive binary representations and robust discrete clus-
ter structures. Specifically, HSIC collaboratively integrated the heterogeneous features
into the common binary codes, where the sharable and individual information of mul-
tiple views were exploited. Meanwhile, a robust cluster structure learning model was
developed to improve the clustering performance. Moreover, an effective alternating op-
timization algorithm was introduced to guarantee the high-quality discrete solutions.
Extensive experiments on large-scale multi-view datasets demonstrate the superiori-
ty of HSIC over the state-of-the-art methods in terms of clustering performance with
significantly reduced computational time and memory footprint.
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