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Abstract. Edge detection is among the most fundamental vision prob-
lems for its role in perceptual grouping and its wide applications. Recent
advances in representation learning have led to considerable improve-
ments in this area. Many state of the art edge detection models are
learned with fully convolutional networks (FCNs). However, FCN-based
edge learning tends to be vulnerable to misaligned labels due to the deli-
cate structure of edges. While such problem was considered in evaluation
benchmarks, similar issue has not been explicitly addressed in general
edge learning. In this paper, we show that label misalignment can cause
considerably degraded edge learning quality, and address this issue by
proposing a simultaneous edge alignment and learning framework. To
this end, we formulate a probabilistic model where edge alignment is
treated as latent variable optimization, and is learned end-to-end during
network training. Experiments show several applications of this work, in-
cluding improved edge detection with state of the art performance, and
automatic refinement of noisy annotations.

1 Introduction

Over the past decades, edge detection played a significant role in computer vi-
sion. Early edge detection methods often formulate the task as a low-level or
mid-level grouping problem where Gestalt laws and perceptual grouping play
considerable roles in algorithm design [23,7,44,16]. Latter works start to consid-
er learning edges in a data-driven way, by looking into the statistics of features
near boundaries [25,34,12,39,1,2,31,13]. More recently, advances in deep repre-
sentation learning [26,43,18] have further led to significant improvements on edge
detection, pushing the boundaries of state of the art performance [49,20,3,24,50]
to new levels. The associated tasks also expended from the conventional binary
edge detection problems to the recent more challenging category-aware edge de-
tection problems [38,17,4,22,52]. As a result of such advancement, a wide variety
of other vision problems have enjoyed the benefits of reliable edge detectors.
Examples of these applications include, but are not limited to (semantic) seg-
mentation [1,51,9,4,5], object proposal generation [53,4,50], object detection [29],
depth estimation [32,19], and 3D vision [33,21,42], etc.
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Fig. 1. Examples of edges predicted by different methods on SBD (a-d) and Cityscapes
(e-h). “CASENet” indicates the original CASENet from [52]. “SEAL” indicates the
proposed framework trained with CASENet backbone. Best viewed in color.

With the strong representation abilities of deep networks and the dense la-
beling nature of edge detection, many state of the art edge detectors are based
on FCNs. Despite the underlying resemblance to other dense labeling tasks,
edge learning problems face some typical challenges and issues. First, in light of
the highly imbalanced amounts of positive samples (edge pixels) and negative
samples (non-edge pixels), using reweighted losses where positive samples are
weighted higher has become a predominant choice in recent deep edge learning
frameworks [49,24,22,30,52]. While such a strategy to some extent renders better
learning behaviors®, it also induces thicker detected edges as well as more false
positives. An example of this issue is illustrated in Fig. 1(c¢) and Fig. 1(g), where
the edge mapspredicted by CASENet [52] contains thick object boundaries. A
direct consequence is that many local details are missing, which is not favored
for other potential applications using edge detectors.

Another challenging issue for edge learning is the training label noise caused
by inevitable misalignment during annotation. Unlike segmentation, edge learn-
ing is generally more vulnerable to such noise due to the fact that edge structures
by nature are much more delicate than regions. Even slight misalignment can lead
to significant proportion of mismatches between ground truth and prediction. In
order to predict sharp edges, a model should learn to distinguish the few true
edge pixels while suppressing edge responses near them. This already presents
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Fig. 2. Evolution of edge alignment during training (progression from left to right).
Blue color indicates the aligned edge labels learned by SEAL, while red color indicates
the original human annotation. Overlapping pixels between the aligned edge labels and
the original annotation are color-coded to be blue. Note how the aligned edge labels
gradually tightens around the airplane as training progresses. Best viewed in color.

a considerable challenge to the model as non-edge pixels near edges are likely
to be hard negatives with similar features, while the presence of misalignment
further causes significant confusion by continuously sending false positives dur-
ing training. The problem is further aggravated under reweighted losses, where
predicting more false positives near the edge is be an effective way to decrease
the loss due to the significant higher weights of positive samples.

Unfortunately, completely eliminating misalignment during annotation is al-
most impossible given the limit of human precision and the diminishing gain of
annotation quality from additional efforts as a result. For datasets such as C-
ityscapes [11] where high quality labels are generated by professional annotators,
misalignment can still be frequently observed. For datasets with crowdsourcing
annotations where quality control presents another challenge, the issue can be-
come even more severe. Our proposed solution is an end-to-end framework to-
wards Simultaneous Edge Alignment and Learning (SEAL). In particular, we
formulate the problem with a probabilistic model, treating edge labels as latent
variables to be jointly learned during training. We show that the optimization of
latent edge labels can be transformed into a bipartite graph min-cost assignment
problem, and present an end-to-end learning framework towards model training.
Fig. 2 shows some examples where the model gradually learns how to align noisy
edge labels to more accurate positions along with edge learning.

Contrary to the widely believed intuition that reweighted loss benefits edge
learning problems, an interesting and counter-intuitive observation made in this
paper is that (regular) sigmoid cross-entropy loss works surprisingly well under
the proposed framework despite the extremely imbalanced distribution. The un-
derlying reason is that edge alignment significantly reduces the training confusion
by increasing the purity of positive edge samples. Without edge alignment, on
the other hand, the presence of label noise together with imbalanced distribution
makes the model more difficult to correctly learn positive classes. As a result of
the increased label quality and the benefit of better negative suppression using
unweighted loss, our proposed framework produces state of the art detection
performance with high quality sharp edges (see Fig. 1(d) and Fig. 1(h)).
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2 Related work

2.1 Boundary map correspondence

Our work is partly motivated by the early work of boundary evaluation using
precision-recall and F-measure [34]. To address misalignment between prediction
and human ground truth, [34] proposed to compute a one-to-one correspondence
for the subset of matchable edge pixels from both domains by solving a min-cost
assignment problem. However, [34] only considers the alignment between fixed
boundary maps, while our work addresses a more complicated learning problem
where edge alignment becomes part of the optimization with learnable inputs.

2.2 Mask refinement via energy minimization

Yang et al. [50] proposed to use dense-CRF to refine object mask and contour.
Despite the similar goal, our method differs from [50] in that: 1. The refinement
framework in [50] is a separate preprocessing step, while our work jointly learns
refinement with the model in an end-to-end fashion. 2. The CRF model in [50]
only utilizes low-level features, while our model considers both low-level and
high-level information via a deep network. 3. The refinement framework in [50]
is segmentation-based, while our framework directly targets edge refinement.

2.3 Object contour and mask learning

A series of works [40,8,37] seek to learn object contours/masks in a supervised
fashion. Deep active contour [40] uses learned CNN features to steer contour
evolution given the input of an initialized contour. Polygon-RNN [8] introduced
a semi-automatic approach for object mask annotation, by learning to extract
polygons given input bounding boxes. DeepMask [37] proposed an object pro-
posal generation method to output class-agnostic segmentation masks. These
methods require accurate ground truth for contour/mask learning, while this
work only assumes noisy ground truths and seek to refine them automatically.

2.4 Noisy label learning

Our work can be broadly viewed as a structured noisy label learning framework
where we leverage abundant structural priors to correct label noise. Existing
noisy label learning literatures have proposed directed graphical models [4§],
conditional random fields (CRF) [45], neural networks [46,47], robust losses [35]
and knowledge graph [27] to model and correct image-level noisy labels. Alter-
natively, our work considers pixel-level labels instead of image-level ones.

2.5 Virtual evidence in Bayesian networks

Our work also shares similarity with virtual evidence [36,6,28], where the uncer-
tainty of an observation is modeled by a distribution rather than a single value.
In our problem, noisy labels can be regarded as uncertain observations which
give conditional prior distributions over different configurations of aligned labels.



Simultaneous Edge Alignment and Learning 5

3 A probabilistic view towards edge learning

In many classification problems, training of the models can be formulated as
maximizing the following likelihood function with respect to the parameters:

max L(W) = P(y[x; W), (1)

where y, x and W indicate respectively training labels, observed inputs and
model parameters. Depending on how the conditional probability is parameter-
ized, the above likelihood function may correspond to different types of models.
For example, a generalized linear model function leads to the well known lo-
gistic regression. If the parameterization is formed as a layered representation,
the model may turn into CNNs or multilayer perceptrons. One may observe that
many traditional supervised edge learning models can also be regarded as special
cases under the above probabilistic framework. Here, we are mostly concerned
with edge detection using fully convolutional neural networks. In this case, the
variable y indicates the set of edge prediction configurations at every pixel, while
x and W denote the input image and the network parameters, respectively.

4 Simultaneous edge alignment and learning

To introduce the ability of correcting edge labels during training, we consider
the following model. Instead of treating the observed annotation y as the fitting
target, we assume there is an underlying ground truth y that is more accurate
than y. Our goal is to treat y as a latent variable to be jointly estimated during
learning, which leads to the following likelihood maximization problem:

max £(y, W) = P(y,§Ix; W) = P(y[9) Py W), (2)
where ¥ indicates the underlying true ground truth. The former part P(y|¥y)
can be regarded as an edge prior probabilistic model of an annotator generating
labels given the observed ground truths, while the latter part P(y|x; W) is the
standard likelihood of the prediction model.

4.1 Multilabel edge learning

Consider the multilabel edge learning setting where one assumes that y does
not need to be mutually exclusive at each pixel. In other words, any pixel may
correspond to the edges of multiple classes. The likelihood can be decomposed
to a set of class-wise joint probabilities assuming the inter-class independence:

Ly, W) = [[ Py"I5") P3*[x; W), (3)
k

where y* € {0,1}"V indicates the set of binary labels corresponding to the k-th
class. A typical multilabel edge learning example which alsoassumes inter-class
independence is CASENet [52]. In addition, binary edge detection methods such
as HED [49] can be viewed as special cases of multilabel edge learning.
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4.2 Edge prior model

Solving Eq. (2) is not easy given the additional huge search space of y. Fortu-
nately, there is some prior knowledge one could leverage to effectively regularize
y. One of the most important prior is that ¥* should not be too different from
y*. In addition, we assume that edge pixels in y* is generated from those in y*
through an one-to-one assignment process, which indicates |y*| = |§*|. In other
words, let yg denote the label of class k at pixel q, and similarly for yﬁ, there
exists a set of one-to-one correspondences between edge pixels in y* and y*:

M(ykvyk) :{m(')|vu7v € {Q|yg = 1} : Qz(u) =1,
@fn(v) =1,u#v=m(u) #m(v)},

where each m(-) is associated with a finite set of pairs:

(4)

m(-) ~ Em = {(pP,)|Up, yq = 1,m(q) = p}. (5)

The edge prior therefore can be modeled as a product of Gaussian similarities
maximized over all possible correspondences:

o Ip —al?
Py ") e sup [T exp (-5
meMYF.55) (5 §)eBm 7 (6)
6
2
= exp ( - inf u)’
meM(y*.,g%) 20

(P,9)EEM

where ¢ is the bandwidth that controls the sensitivity to misalignment. The mis-
alignment is quantified by measuring the lowest possible sum of squared distances
between pairwise pixels, which is determined by the tightest correspondence.

4.3 Network likelihood model

We now consider the likelihood of the prediction model, where we assume that
the class-wise joint probability can be decomposed to a set of pixel-wise proba-
bilities modeled by bernoulli distributions with binary configurations:

P s W) = TT P s W) = Tl W (1 = ha(pbs W)

where p is the pixel location index, and hy is the hypothesis function indicating
the probability of the k-th class. We consider the prediction model as FCNs with
k sigmoid outputs. As a result, the hypothesis function in Eq. (7) becomes the
sigmoid function, which will be denoted as o(-) in the rest part of this section.

4.4 Learning
Taking Eq. (6) and (7) into Eq. (3), and taking log of the likelihood, we have:
. B . Ip— qal’
log L(y, W) _zk: { — inf Z 257

meM(y*,g*) (P,Q)EEm (8)

+ >[5 log o (plxs W) + (1 — g log(1 — o (plx; W) },

P
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where the second part is the widely used sigmoid cross-entropy loss. Accordingly,
learning the model requires solving the constrained optimization:

min — log L(y, W)
W 9)
st [9%] = |y*], vk

Given a training set, we take an alternative optimization strategy where W is
updated with y fixed, and vice versa. When y is fixed, the optimization becomes:

H\%;n z Z — [gﬁ log ox (plx; W) + (1 — g}ﬁ) log(1 — ok (p|x; W))], (10)

which is the typical network training with the aligned edge labels and can be
solved with standard gradient descent. When W is fixed, the optimization can
be modeled as a constrained discrete optimization problem for each class:

o Ip— al”
min inf Z ——
yh o meMyE.h) (P,Q)€Em 20
Ak K (11)
= > |gplogor(p) + (1 — gp) log(1 — o (p))
P

st |95 = Iy

where o(p) denotes o(p|x; W) for short. Solving the above optimization is seem-
ingly difficult, since one would need to enumerate all possible configurations of
v* satisfying |§*| = |y*| and evaluate the associated cost. It turns out, however,
that the above optimization can be elegantly transformed to a bipartite graph
assignment problem with available solvers. We first have the following definition:

Definition 1. Let Y = {y||y| = |y|}, a mapping space M is the space consisting
all possible one-to-one mappings:
M = {m|m € M(y.¥),y € Y}

Definition 2. A label realization is a function which maps a correspondence to
the corresponding label given :

fiYXxM—Y
fL(Yam) = y

Lemma 1. The mapping f1.(-) is surjective.

Remark: Lemma 1 shows that a certain label configuration y may correspond
to multiple underlying mappings. This is obviously true since there could be
multiple ways in which pixels in y are assigned to the y.
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Lemma 2. Under the constraint |y| = |y|, if:

§" = argmin— " [gplogo(p) + (1 - ) log(1 — o(p)|

m” = arg min Z [log(l —o(p)) — log a(p)]

mEM (b Q)€ B
then fr(y,m*) =y".

Proof: Suppose in the beginning all pixels in y are 0. The corresponding loss
therefore is:

Cn(0) == log(1 - o(p))

Flipping yp to 1 will accordingly introduce a cost log(1 — o(p)) — logo(p) at
pixel p. As a result, we have:

Cnv@) =Cn(©)+ > [log(1~a(p)) ~loga(p)]
pe{p|ip=1}
In addition, Lemma 1 states that the mapping fr(-) is surjective, which incites
that the mapping search space M exactly covers Y. Thus the top optimization
problem in Lemma 2 can be transformed into the bottom problem.
Lemma 2 motivates us to reformulate the optimization in Eq. (11) by alter-
natively looking to the following problem:

min E [7\|p — qH2 + log(1 — o(p)) — log U(p)] (12)
meM 202
(P,9)EEM

Eq. (12) is a typical minimum cost bipartite assignment problem which can
be solved by standard solvers, where the cost of each assignment pair (p,q)
is associated with the weight of a bipartite graphos edge. Following [34], we
formulate a sparse assignment problem and use the Goldbergos CSA package,
which is the best known algorithms for min-cost sparse assignment [15,10]. Upon
obtaining the mapping, one can recover y through label realization.

However, solving Eq. (12) assumes an underlying relaxation where the search
space contains m which may not follow the infimum requirement in Eq. (11).
In other words, it may be possible that the minimization problem in Eq. (12)
is an approximation to Eq. (11). The following theorem, however, proves the
optimality of Eq. (12):

Theorem 1. Given a solver that minimizes Eq. (12), the solution is also a
minimizer of the problem in Fq. (11).

Proof: We use contradiction to prove Theorem 1. Suppose there exists a solution
of (12) where:

Ilp—al’

fL(y7m*) =Yy, m’ # argmin 202

k ok
mEMIY®YY) (p,q)€Em
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There must exist another mapping m’ which satisfies:

2 2
fyny =y, Y a5 el
(P,a)EE,,/ 7 (P,a)EE,,» 7
Since fr(y,m') = fr(y,m*) =y, substituting m’ to (12) leads to an even lower
cost, which contradicts to the assumption that m* is the minimizer of (12).

In practice, we follow the mini-batch SGD optimization, where y of each im-
age and W are both updated once in every batch. To begin with, y is initialized
as y for every image in the first batch. Basically, the optimization can be written
as a loss layer in a network, and is fully compatible with end-to-end training.

4.5 Inference

We now consider the inference problem given a trained model. Ideally, the infer-
ence problem of the model trained by Eq. (2) would be the following:

§* = argmax P(y[3)P(§]x; W) (13)

y

However, in cases where y is not available during testing. we can alternatively
look into the second part of (2) which is the model learned under y:

¥ = argmax P(y|x; W) (14)
y

Both cases can find real applications. In particular, (14) corresponds to gener-
al edge prediction, whereas (13) corresponds to refining noisy edge labels in a
dataset. In the latter case, y is available and the inferred y is used to output the
refined label. In the experiment, we will show examples of both applications.

5 Biased Gaussian kernel and Markov prior

The task of SEAL turns out not easy, as it tends to generate artifacts upon having
cluttered background. A major reason causing this failure is the fragmented
aligned labels, as shown in Fig. 3(a). This is not surprising since we assume an
isotropic Gaussian kernel, where labels tend to break and shift along the edges
towards easy locations. In light of this issue, we assume that the edge prior follows
a biased Gaussian (B.G.), with the long axis of the kernel perpendicular to local
boundary tangent. Accordingly, such model encourages alignment perpendicular
to edge tangents while suppressing shifts along them.

Another direction is to consider the Markov properties of edges. Good edge
labels should be relatively continuous, and nearby alignment vectors should be
similar. Taking these into consideration, we can model the edge prior as:

P(ylg)ox sup ] exp(-mgqEqmg) [ exp(—Allmg—my[?)
mEMI) (p.q)e B (uv)EEm,
veN (a)

(15)
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(a) Isotropic Gaussian (b) B.G.+MRF (c) Ilustration

Fig. 3. Examples of edge alignment using different priors and graphical illustration.

where A controls the strength of the smoothness. N'(q) is the neighborhood of q
defined by the geodesic distance along the edge. mq =p —q, and my =u—v.
An example of the improved alignment and a graphical illustration are shown in
Fig. 3(b) and Fig. 3(c). In addition, the precision matrix X is defined as:

cos(0q)? sin(0q)? sin(204) sin(204)
D — 202 + 202 402 T 4x02
a4 7 | sin(20q) sin(204) sin(0q)? cos(0q)
402 T 402 202 + 207

where 0 is the angle between edge tangent and the positive x-axis, and o,
corresponds to the kernel bandwidth perpendicular to the edge tangent. With
the new prior, the alignment optimization becomes the following problem:

rglell{l/l C(m) = CUnary(m) + CPair(m)

= Y [mdSamq +log((1 ~ o(p)/o(p))]
(p,a)€EEm (16)

+A Z Z IImq—mv||2

(P,A)EEm (u,V)EEM,
vEN(q)

Note that Theorem 1 still holds for (16). However, solving (16) becomes more
difficult as pairwise dependencies are included. As a result, standard assignment
solvers can not be directly applied, and we alternatively decouple Cpy;, as:

Crair(m,m') = > > mg—myf? (17)
(P, a)EEm (W,V)EE, /,
veN (a)

and take the iterated conditional mode like iterative approximation where the
alignment of neighboring pixels are taken from the alignment in previous round:

Initialize: m® = argmin Cupary(m)
meM

Assign: m(Hl) = arg min CUnaTy(m) + CPai'r(ma m(t))

meM
Update: Cpair(m, m®) = Cpair (m, m )

where the Assign and Update steps are repeated multiple times. The algorithm
converges very fast in practice. Usually two or even one Assign is sufficient.
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6 Experimental results

In this section, we comprehensively test the performance of SEAL on category-
ware semantic edge detection, where the detector not only needs to localize
object edges, but also classify to a predefined set of semantic classes.

6.1 Backbone network

In order to guarantee fair comparison across different methods, a fixed backbone
network is needed for controlled evaluation. We choose CASENet [52] since it is
the current state of the art on our task. For additional implementation details
such as choice of hyperparameters, please refer to the supplementary material.

6.2 Evaluation benchmarks

We follow [17] to evaluate edges with class-wise precision recall curves. However,
the benchmarks of our work differ from [17] by imposing considerably stricter
rules. In particular: 1. We consider non-suppressed edges inside an object as false
positives, while [17] ignores these pixels. 2. We accumulate false positives on any
image, while the benchmark code from [17] only accumulates false positives of
a certain class on images containing that class. Our benchmark can also be
regarded as a multiclass extension of the BSDS benchmark [34].

Both [17] and [34] by default thin the prediction before matching. We propose
to match the raw predictions with unthinned ground truths whose width is
kept the same as training labels. The benchmark therefore also considers the
local quality of predictions. We refer to this mode as “Raw” and the previous
conventional mode as “Thin”. Similar to [34], both settings use maximum F-
Measure (MF) at optimal dataset scale (ODS) to evaluate the performance.

Another difference between the problem settings of our work and [17] is that
we consider edges between any two instances as positive, even though the in-
stances may belong to the same class. This differs from [17] where such edges
are ignored. Our motivation on making such changes is two fold: 1. We believe
instance-sensitive edges are important and it makes better sense to distinguish
these locations. 2. The instance-sensitive setting may better benefit other poten-
tial applications where instances need to be distinguished.

6.3 Experiment on the SBD dataset

The Semantic Boundary Dataset (SBD) [17] contains 11355 images from the
trainval set of PASCAL VOC2011 [14], with 8498 images divided as training
set and 2857 images as test set. The dataset contains both category-level and

instance-level semantic segmentation annotations, with semantic classes defined
following the 20 class definitions in PASCAL VOC.

Parameter analysis We set 0, = 1 and 0y > 0, to favor alignment perpendic-
ular to edge tangents. Details on the validation of o, and A are in supplementary.
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Table 1. Results on the SBD test set. MF scores are measured by %.

Metric ‘Method ‘aero‘bike‘bird‘boat bottle‘ bus ‘ car table‘ dog hcrse‘mbike‘person plzmt‘sheep‘ sofa train‘ tv ‘mean
CASENet |83.6[75.3|82.3/63.1| 70.5 [83.5[76.5(82.6 | 56.8 |76.3|47.5|80.8({80.9 | 75.6 | 80.7 |54.1| 77.7 [52.3|77.9|68.0( 72.3
MF |CASENet-S |84.5|76.5|83.7|65.3| 71.3 |83.9|78.3|84.5|58.8|76.8|50.8 |81.9|82.3| 77.2 | 82.7 |55.9| 78.1 |54.0|79.5|69.4|73.8
(Thin) |CASENet-C|83.9|71.1|82.5|62.6| 71.0 |82.2|76.8|83.4|56.5|76.9/49.2|81.0|81.1 | 75.4 | 81.4 |54.0 |78.5|53.3|77.1|67.0| 72.2
SEAL 84.5|76.5|83.7|64.9 | 71.7 | 83.8|78.1|85.0/58.8|76.6 |50.9(82.4| 82.2 | 77.1 | 83.0 | 55.1 | 78.4 |54.4|79.3 |69.6| 73.8
CASENet |71.8]60.2|72.6]49.5| 59.3 | 73.3[65.2{70.851.9|64.9[41.2|67.9(72.5 | 64.1 | 71.2 | 44.0 | 71.7 [45.7|65.4 | 55.8| 62.0
CASENet-S | 75.865.0 | 78.4|56.2 | 64.7 | 76.4|71.8|75.2|55.2 |68.7 72.8|77.0 | 68.1 | 76.5 |47.1| 75.5|49.0|70.2|60.6| 66.5
CASENet-C|80.4|67.1|79.9|57.9| 65.9 | 77.6|72.6|79.2|53.5|72.7|45.5|76.7| 79.4 | 71.2 | 78.3 |50.8| 77.6 | 50.7 | 71.6 | 61.6| 68.5
SEAL 81.1/69.6/81.7/60.6| 68.0 |80.5|75.1|80.7|57.0|73.1|48.1|78.2(80.3 | 72.1 | 79.8 | 50.0 | 78.2|51.8|74.6|65.0| 70.3

cat ‘chair ‘ cow

MF
(Raw)

Table 2. Results on the SBD test set (re-annotated). MF scores are measured by %.

Metric |[Method aero | bike | bird |boat |bottle| bus | car | cat |chair| cow |table| dog |horse|mbike|person|plant|sheep| sofa |train| tv |mean
MF |CASENet |74.5|59.7|73.4|48.0| 67.1 |78.6|67.3|76.2|47.5|69.7|36.2|75.7| 72.7 | 61.3 | 74.8 |42.6 | 71.8 |48.9|71.7 63.6
(Thin) |CASENet-S |75.9|62.4 |75.5|52.0| 66.7 |79.7|71.0|79.0{50.1|70.0 | 39.8 | 77.2| 74.5 | 65.0 | 77.0 |47.3| 72.7 |51.5|72.9 65.9

CASENet-C|78.4/60.9 | 74.949.7 | 64.4 | 75.8|67.2|77.1|48.2|71.2|40.9|76.1|72.9 | 64.5 | 75.9 |51.4| 71.3 |51.6 | 68.6 | 55.4| 64.8

SEAL 78.0]65.8|76.6/52.4| 68.6 |80.0|70.4|79.4| 50.0 |72.8{41.4|78.1|75.0| 65.5 | 78.5 | 49.4 | 73.3|52.2|73.9|58.1| 67.0
MF |CASENet [65.8]51.5[65.0|43.1| 57.5 |68.1|58.2|66.0|45.459.8|32.964.2|65.8 | 52.6 | 65.7 |40.9 | 65.0 |42.9|61.4 |47.8| 56.0
(Raw) |CASENet-S |68.9|55.8|70.9|47.4| 62.0 |71.5|64.7|71.2|48.0 |64.8|37.3|69.1| 68.9 | 58.2 | 70.2 |44.3 | 68.7 |46.1|65.8|52.5| 60.3
CASENet-C|75.4|57.7|73.0 | 48.7 | 62.1 |72.2|64.4|74.3|46.8 |68.8|38.8|73.4| 71.4 | 62.2 | 72.1 |50.3| 69.8 |48.4|66.1|53.0| 62.4
SEAL 75.3160.5|75.1|51.2| 65.4 |76.1|67.9|75.9|49.7|69.5|39.9|74.8|72.7| 62.1 | 74.2 | 48.4 | 72.3|49.3|70.6|56.7| 64.4

Results on SBD test set We compare SEAL with CASENet, CASENet
trained with regular sigmoid cross-entropy loss (CASENet-S), and CASENet-
S trained on labels refined by dense-CRF following [50] (CASENet-C), with the
results visualized in Fig. 5 and quantified in Table 1. Results show that SEAL is
on par with CASENet-S under “Thin” setting, while significantly outperforms
all other baselines when edge sharpness is taken into account.

Results on re-annotated SBD test set A closer analysis shows that SEAL
actually outperforms CASENet-S considerably under the “Thin” setting. The
original SBD labels turns out to be noisy, which can influence the validity of
evaluation. We re-annotated more than 1000 images on SBD test set using La-
belMe [41], and report evaluation using these high-quality labels in Table 2.
Results indicates that SEAL outperforms CASENet-S in both settings.

Results of SBD GT refinement We output the o=
SEAL aligned labels and compare against both dense- o8 ]
CRF and original annotation. We match the aligned ¢°* /

labels with re-annotated labels by varying the tol-

erance threshold and generating F-Measure scores.
Fig. 4 shows that SEAL indeed can improve the label

quality, while dense-CRF performs even worse than S immpisme ot
original labels. In fact, the result of CASENet-C also
indicates the decreased model performance. Fig. 4. MF vs. tolerance.

Non-Instance-insensitive (non-IS) mode We al-

i - i - Table 3. Non-IS Its.
SO t'raln/ e'zvaluate under non-IS mode, with the eval 2R ‘%Net‘ CNSt{IS‘ CesuLtS.
uation using re-annotated SBD labels. Table 3 shows = [63.6] 664 | 647 |66.9

that the scores have high correlation with IS mode. Raw [56.1] 606 | 62.1 [64.6
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Table 4. Results on SBD test following the same benchmark and ground truths as [52].

Method‘ aero ‘ bike ‘ bird ‘boat‘bottle‘ bus ‘ car ‘ cat ‘chair‘ cow ‘table‘ dog ‘horse‘mbike‘person‘plant‘sheep‘ sofa ‘train‘ tv ‘mezm
[52] |83.3]76.0]80.7(63.4| 69.2 [81.3|74.9|83.2|54.3|74.8]46.4|80.3|80.2| 76.6 | 80.8 |53.3|77.2 |50.1|75.9|66.8| 71.4
SEAL |84.9|78.6|84.6|66.2| 71.3 |83.0|76.5|87.2|57.6|77.5/53.0|83.5|82.2 | 78.3 | 85.1 |58.7|78.9|53.1|77.7|69.7| 74.4

Table 5. Results on the Cityscapes dataset. MF scores are measured by %.

Metric |Method road |sidewalk|building| wall |fence| pole | t-light|t-sign| veg |terrain| sky |person|rider| car |[truck| bus [train|motor| bike |mean
CASENet [86.2| 74.9 74.5 |47.6|46.5|72.8| 70.0 | 73.3 |79.3| 57.0 |86.5| 80.4 |66.8|88.3|49.3 |64.6|47.8| 55.8 |71.9| 68.1
CASENet-S|87.6| 77.1 75.9 |48.7|46.2|75.5| 71.4 | 75.3 |80.6| 59.7 |86.8| 81.4 |68.1(89.2]50.7|68.0|42.5| 54.6 |72.7|69.1
SEAL 87.6| 77.5 75.9 |47.6]46.3|75.5| 71.2 |75.4(80.9| 60.1 |87.4| 81.5 |68.9/88.9|50.2|67.8|44.1| 52.7 |73.0|/69.1
CASENet |66.8| 64.6 66.8 [39.4]40.6 |71.7{ 64.2 | 65.1 71.1| 50.2 [80.3| 73.1 [58.6|77.0(42.0[53.2|39.1| 46.1 |62.2| 59.6
CASENet-S|79.2| 70.8 70.4 |42.5|42.4|73.9| 66.7 | 68.2 |74.6| 54.6 |82.5| 75.7 |61.5|82.7|46.0|59.7|39.1| 47.0 |64.8|63.3
SEAL 84.4| 73.5 72.7 |43.4|43.2|76.1| 68.5 | 69.8 |77.2| 57.5 |85.3| 77.6 |63.6|84.9|48.6|61.9|41.2| 49.0 |66.7|65.5

MF
(Thin)

MF
(Raw)

bottle bus car cat chair

person plant sheep sofa train

Fig.5. Qualitative comparison among ground truth, CASENet, CASENet-S,
CASENet-C, and SEAL (ordering from left to right). Best viewed in color.

Comparison with state of the art Although proposing different evaluation
criteria, we still follow [52] by training SEAL with instance-insensitive labels and
evaluating with the same benchmark and ground truths. Results in Table 4 show
that this work outperforms previous state of the art by a significant margin.

6.4 Experiment on the Cityscapes dataset

Results on validation set The Cityscapes dataset contains 2975 training
images and 500 images as validation set. Following [52], we train SEAL on the
training set and test on the validation set, with the results visualized in Fig. 6 and
quantified in Table 5. Again, SEAL overall outperforms all comparing baselines.

Alignment visualization We show that misalignment can still be found on
Cityscapes. Fig. 7 shows misaligned labels and the corrections made by SEAL.
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building = wall traffic gt traffic sgn
person rider car truck bus train

vegetation
motorcycle

bike

Fig. 6. Qualitative comparison among ground truth, CASENet, CASENet-S, and
SEAL (ordering from left to right in the figure). Best viewed in color.

Fig. 7. Edge alignment on Cityscapes. Color coding follows Fig. 2. Best viewed in color.

7 Concluding remarks

In this paper, we proposed SEAL: an end-to-end learning framework for joint
edge alignment and learning. Our work considers a novel pixel-level noisy label
learning problem, levering structured priors to address an open issue in edge
learning. Extensive experiments demonstrate that the proposed framework is
able to correct noisy labels and generate sharp edges with better quality.
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