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Abstract. Objects are made of parts, each with distinct geometry,
physics, functionality, and affordances. Developing such a distributed,
physical, interpretable representation of objects will facilitate intelligent
agents to better explore and interact with the world. In this paper, we
study physical primitive decomposition—understanding an object through
its components, each with physical and geometric attributes. As anno-
tated data for object parts and physics are rare, we propose a novel
formulation that learns physical primitives by explaining both an object’s
appearance and its behaviors in physical events. Our model performs well
on block towers and tools in both synthetic and real scenarios; we also
demonstrate that visual and physical observations often provide comple-
mentary signals. We further present ablation and behavioral studies to
better understand our model and contrast it with human performance.

1 Introduction

Humans use a hammer by holding its handle and striking its head, not vice
versa. In this simple action, people demonstrate their understanding of functional
parts [33,39]: a tool, or any object, can be decomposed into primitive-based
components, each with distinct physics, functionality, and affordances [17].

How to build a machine of such competency? In this paper, we tackle the
problem of physical primitive decomposition (PPD)—explaining the shape and
the physics of an object with a few shape primitives with physical parameters.
Given the hammer in Figure 1, our goal is to build a model that recovers its two
major components: a tall, wooden cylinder for its handle, and a smaller, metal
cylinder for its head.

For this task, we need a physical, part-based object shape representation that
models both object geometry and physics. Ground-truth annotations for such
representations are however challenging to obtain: large-scale shape repositories
like ShapeNet [8] often have limited annotations on object parts, let alone physics.
This is mostly due to two reasons. First, annotating object parts and physics is
labor-intensive and requires strong domain expertise, neither of which can be
offered by current crowdsourcing platforms. Second, there exist intrinsic ambiguity
in the ground truth: it is impossible to precisely label underlying physical object
properties like densities from only images or videos.

Let’s think more about what these representations are for. We want our
object representation to faithfully encode its geometry; therefore, it should be
able to explain our visual observation of the object’s appearance. Further, as
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Fig.1. A hammer (left) and its physical primitive decomposition (right).

the representation models object physics, it should be effective in explaining the
object’s behaviors in various physical events.

Inspired by this, we propose a novel formulation that learns a part-based
object representation from both visual observations and physical interactions.
Starting with a single image and a voxelized shape, the model recovers the
geometric primitives and infers their physical properties from texture. The
physical representation inferred this way is of course rather uncertain; it therefore
only serves as the model’s prior of this physical shape. Observing object behaviors
in physical events offers crucial additional information, as objects with different
physical properties behave differently in physical events. This is used by the
model in conjunction with the prior to produce its final prediction.

We evaluate our system for physical primitive decomposition in three scenarios.
First, we generate a dataset of synthetic block towers, where each block has
distinct geometry and physics. Our model is able to successfully reconstruct the
physical primitives by making use of both appearance and motion cues. Second,
we evaluate the system on a set of synthetic tools, demonstrating its applicability
to daily-life shapes. Third, we build a new dataset of real block towers in dynamic
scenes, and evaluate the model’s generalization power to real videos.

We further present ablation studies to understand how each source of infor-
mation contributes to the final performance. We also conduct human behavioral
experiments to contrast the performance of the model with humans. In a ‘which
block is heavier’ experiment, our model performs comparably to humans.

Our contributions in this paper are three-fold. First, we propose the problem
of physical primitive decomposition—Ilearning a compact, disentangled object
representation in terms of physical primitives. Second, we present a novel learning
paradigm that learns to characterize shapes in physical primitives to explain
both their geometry and physics. Third, we demonstrate that our system can
achieve good performance on both synthetic and real data.

2 Related Work

Primitive-Based 3D Representations.. Early attempts on modeling 3D
shapes with primitives include decomposing them into blocks [34], generalized
cylinders [6], and geons [5]. This idea has been constantly revisited throughout
the development of computer vision [11,13,2]. To name a few, Gupta et al. [11]
modeled scenes as qualitative blocks, and van den Hengel et al. [13] as Lego
blocks. More recently, Tulsaini et al. [40] combined the new and the old—using
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Fig. 2. Primitive decomposition (a) and physical primitive decomposition (b). Both
tasks attempt to convert an object into a set of primitives yet with different purposes:
the former problem targets at shape reconstruction, while the latter one aims to recover
both geometric and physical properties.

deep convolutional network to generate primitives of a given 3D shape; later,
Zou et al. proposed 3D-PRNN [53], enhancing the flexibility of the system by
leveraging modern advancement in recurrent generative models [41].

Primitive-based representations have profound impact that goes far beyond

the field of computer vision. Scientists have employed this representation for
user-interactive design [16] and for teaching robots to grasp objects [29]. In the
field of computer graphics, the idea of modeling shapes as primitives or parts
has also been extensively explored [50,47,27,19, 21, 2]. Researchers have used
the part-based representation for single-image shape reconstruction [15], shape
completion [37], and probabilistic shape synthesis [14, 25].
Physical Shape and Scene Modeling. Beyond object geometry, there have
been growing interests in modeling physical object properties and scene dynamics.
The computer vision community has put major efforts in building rich and sizable
databases. ShapeNet-Sem [36] is a collection of object shapes with material and
physics annotations within the web-scale shape repository ShapeNet [8]. Material
in Context Database (MINC) [4] is a gigantic dataset of materials in the wild,
associating patches in real-world images with 23 materials.

Research on physical object modeling dates back to the study of “functional
parts” [33,39,17]. The field of learning object physics and scene dynamics has
prospered in the past few years [23, 1,18, 3,48, 30, 32, 7, 38, 20, 26]. Among them,
there are a few papers that explicitly build physical object representations [30,
43, 45,44, 49]. Though they also focus on understanding object physics [43,45],
functionality [51,46], and affordances [22, 10, 52], these approaches usually assume
a homogeneous object with simple geometry. In our paper, we model an object
using physical primitives for richer expressiveness and higher precision.

3 Physical Primitive Decomposition

3.1 Problem Statement

Both primitive decomposition and physical primitive decomposition attempt to
approximate an object with primitives. We highlight their difference in Figure 2.
Primitive Decomposition. As formulated in Tulsaini et al. [40] and Zou et

al. [53], primitive decomposition aims to decompose an object O into a set of
simple transformed primitives x = {x}} so that these primitives can accurately
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(a) Above: Aluminum and Wood; (b) Above: Wood and Iron;
Below: Iron and Wood. Below: Two Coppers.

Fig. 3. Challenges of inferring physical parameters from visual and physical observations:
objects with different physical parameters might have (a) similar visual appearance or
(b) similar physics trajectory.

approximate its geometry shape. This task can be seen as to minimize

Lo(x) = Ds(S(Y k), S(0)), (1)

where S(-) denotes the geometry shape (i.e. point cloud), and Dg(+, ) denotes
the distance metric between shapes (i.e. earth-mover’s distance [35]).

Physical Primitive Decomposition. In order to understand the functionality
of object parts, we require the decomposed primitives z = {x;} to also approx-
imate the physical behavior of object O. To this end, we extend the previous
objective function with an additional physics term:

L() = Y Pr(Ty(Y ). T(O)), )

peP

where 7,(-) denotes the trajectory after physics interaction p, Dr(,-) denotes the
distance metric between trajectories (i.e. mean squared error), and P denotes a
predefined set of physics interactions. Therefore, the task of physical primitive
decomposition is to minimize an overall objective function constraining both
geometry and physics: £(z) = Lg(z) + w - Lp(z), where w is a weighting factor.

3.2 Primitive-Based Representation

We design a structured primitive-based object representation, which describes an
object by listing all of its primitives with different attributes. For each primitive

zg, we record its size ¥3 = (84, Sy, S5), position in 3D space 2 = (pu, Py, P2),

rotation in quaternion form ¥ = (qu,qs, gy, q:). Apart from these geometry
information, we also track its physical properties: density :c]k).

In our object representation, the shape parameters, x%, xf and ka, are vectors
of continuous real values, whereas the density parameter x],? is a discrete value.
We discretize the density values into Np = 100 slots, so that estimating density
becomes a Np-way classification. Discretization helps to deal with multi-modal
density values. Figure 3a shows that two parts with similar visual appearance
may have very different physical parameters. In such cases, regression with an Lo
loss will encourage the model to predict the mean value of possible densities; in
contrast, discretization allows it to give high probabilities to every possible density.

We then figure out which candidate value is optimal from the trajectories.
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Fig. 4. Overview of our PPD model.
4 Approach

In this section, we discuss our approach to the problem of physical primitive
decomposition (PPD). We present an overview of our framework in Figure 4.

4.1 Overview

Inferring physical parameters from solely visual or physical observation is highly
challenging. This is because two objects with different physical parameters might
have similar visual appearance (Figure 3a) or have similar physics trajectories
(Figure 3b). Therefore, our model takes both types of observations as input:

1. Visual Observation. We take a voxelized shape and an image as our input
because they can provide us with valuable visual information. Voxels help us
recover object geometry, and images contain texture information of object
materials. Note that, even with voxels as input, it is still highly nontrivial to
infer geometric parameters: the model needs to learn to segment 3D parts
within the object — an unsolved problem by itself [40].

2. Physics Observation. In order to explain the physical behavior of an object,
we also need to observe its response after some physics interactions. In this
work, we choose to use 3D object trajectories rather than RGB (or RGB-D)
videos. Its abstractness enables the model to transfer better from synthetic
to real data, because synthetic and real videos can be starkly different; in
contrast, it’s easy to generate synthetic 3D trajectories that look realistic.

Specifically, our network takes a voxel V', an image I, and Nt object trajectories
T = {T} as input. V is a 3D binary voxelized grid, I is a single RGB image, and
T consists of several object trajectories T}, each of which records the response
to one specific physics interaction. Trajectory T} is a sequence of 3D object pose
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(x> Py> P2y GQw» G5 @y, 4= ), Where (pg, py, p.) denotes the object’s center position
and quaternion (g, gz, ¢y, g-) denotes its rotation at each time step.

After receiving the inputs, our network encodes voxel, image and trajectory
with separate encoders, and sequentially predicts primitives using a recurrent
primitive generator. For each primitive, the network predicts its geometry shape
(i.e. scale, translation and rotation) and physical property (i.e. density). More
details of our model can be found in the supplementary material.

Voxel Encoder. For input voxel V', we employ a 3D volumetric convolutional
network to encode the 3D shape information into a voxel feature fy .

Image Encoder. For input image I, we pass it into the ResNet-18 [12] encoder
to obtain an image feature f;. We refer the readers to He et al. [12] for details.

Trajectory Encoder. For input trajectories T', we encode each trajectory Ty
into a low-dimensional feature vector hy with a separate bi-directional recurrent
neural network. Specifically, we feed the trajectory sequence, T}, and also the
same trajectory sequence in reverse order, T;°V°™°, into two encoding RNNs, to
obtain two final hidden states: h;” = encode; (T)) and hj~ = encodey, (TFeVere).
We take [h;”; hj~] as the feature vector hy. Finally, we concatenate the features
of each trajectory, {hx | K =1,2,..., N1}, and project it into a low-dimensional
trajectory feature fr with a fully-connected layer.

Primitive Generator. We concatenate the voxel feature fy, image feature
fi and trajectory feature fr together as f = [fv; f1; fr], and map it to a low-
dimensional feature f using a fully-connected layer. We predict the set of physical
primitives {z}} sequentially by a recurrent generator.

At each time step k, we feed the previous generated primitive z_; and the
feature vector f in as input, and we receive one hidden vector hy as output. Then,
we compute the new primitive z = (2P, 2%, 2T, 2}) as

xP = softmax(Wp x hy +bp), % = sigmoid(Ws x hy, + bs) x Cs,
Wgr X hi, + br (3)
max(||Wr X hg + br|2,€)’
where Cg and Cr are scaling factors, and € = 107'2 is a small constant for
numerical stability. Equation 3 guarantees that x% is in the range of [0, Cs], x;g is
in the range of [~Cr, Cr], and ||zF||2 is 1 (if ignoring €), which ensures that z;,
will always be a valid primitive. In our experiments, we set Cs = C't = 0.5, since
we normalize all objects so that they can fit in unit cubes. Also note that, IE is
an (Np + 2)-dimensional vector, where the first N dimensions indicate different
density values and the last two indicate the “start token” and “end token”.

ac;g = tanh(WT X hy + bT) x Cr, x? =

Sampling and Simulating with the Physics Engine. During testing time,
we treat the predicted x],g as a multinomial distribution, and we sample multiple
possible predictions from it. For each sample, we use its physical parameters to
simulate the trajectory with a physics engine. Finally, we select the one whose
simulated trajectory is closest to the observed trajectory.

An alternative way to incorporate physics engine is to directly optimize our
model over it. As most physics engines are not differentiable, we employ REIN-
FORCE [42] for optimization. Empirically, we observe that this reinforcement
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learning based method performs worse than sampling-based methods, possible
due to the large variance of the approximate gradient signals.

Simulating with a physics engine requires we know the force during testing.
Such an assumption is essential to ensure the problem is well-posed: without
knowing the force, we can only infer the relative part density, but not the actual
values. Note that in many real-world applications such as robot manipulation,
the external force is indeed available.

4.2 Loss Functions

Let z = (z1,22,...,2,) and & = (&1, 22, ..., &) be the predicted and ground-
truth physical primitives, respectively. Our loss function consists of two terms,
geometry loss Lg and physics loss Lp:

Lo(z,2) = (ws- laf — 2Rl +wr - llzg =23 | +wr - l2f — &), (@)

k
Lo(x, &) ==Y > &(i) - logz} (i), (5)
k 7

where ws, wr and wg are weighting factors, which are set to 1’s because z°

,zT and
2R are of the same magnitude (10~!) in our datasets. Integrating Equation 4 and
Equation 5, we define the overall loss function as £(z, %) = Lg(z, ) +w-Lp(z, T),
where w is set to ensure that L5 and Lp are of the same magnitude.

Part Associations. In our formulation, object parts (physical primitives) follow
a pre-defined order (e.g., from bottom to top), and our model is encouraged to

learn to predict the primitives in the same order.

5 Experiments

We evaluate our PPD model on three diverse settings: synthetic block towers
where blocks are of various materials and shapes; synthetic tools with more
complex geometry shapes; and real videos of block towers to demonstrate our
transferability to real-world scenario.

5.1 Decomposing Block Towers

We start with decomposing block towers (stacks of blocks).

Block Towers. We build the block towers by stacking variable number of blocks
(2-5 in our experiments) together. We first sample the size of each block and then
compute the center position of blocks from bottom to top. For the k' block, we
denote the size as (wg, hk, di ), and its center (xg, yx, 2) is sampled and computed
by z ~ N (zp—1, wk—1/4), yp ~ N (Yr—1,hx—1/4), and zp = zp_1 + (dp—1+dy)/2,
where N (u, o) is a normal distribution with mean p and standard deviation o.
We illustrate some constructed block towers in Figure 5. We perform the exact
voxelization with grid size of 32x32x32 by binvox, a 3D mesh voxelizer [31].
Materials. In our experiments, we use five different materials, and follow their
real-world densities with minor modifications. The materials and the ranges of
their densities are listed in Table 1. For each block in the block towers, we first
assign it to one of the five materials, and then uniformly sample its density from
possible values of its material. We generate 8 configurations for each block tower.
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Fig. 5. Sample objects in our block towers dataset (left) and qualitative results of our
model with different combinations of observations as input (right).

Material Wood Brick Stone Ceramic Metal
Density [1,10] [11,20] [21, 30] [31, 60] [21,35] U [71,100]

Table 1. Materials and their real-world density values (unit: x10? - kg/m?). Objects
made of similar materials (different types of metals) may have different physical proper-
ties, while different materials (i.e., stone and metal) may have same physical properties.

Textures. We obtain the textures for materials by cropping the center portion
of images from the MINC dataset [4]. We show sample images rendered with
material textures in Figure 5. Since we render the textures only with respect to
the material, the images rendered do not provide any information about density.
Physics Interactions. We place the block towers at the origin and perform
four physics interactions to obtain the object trajectories (N7 = 4). In detail, we
exert a force with the magnitude of 10° on the block tower from four pre-defined
positions {(+1, —1,£1)}. We simulate each physics interaction for 256 time steps
using the Bullet Physics Engine [9]. To ensure simulation accuracy, we set the
time step for simulation to 1/300s.

Metrics. We evaluate the performance of shape reconstruction by the F; score
between the prediction and ground truth: each primitive in prediction is labeled as
a true positive if its intersection over union (IoU) with a ground-truth primitive is
greater than 0.5. For physics estimation, we employ two types of metrics, i) density
measures: top-k accuracy (k € {1,5,10}) and root-mean-square error (RMSE) and
ii) trajectory measure: mean-absolute error (MAE) between simulated trajectory
(using predicted the physical parameters) and ground-truth trajectory.
Methods. We evaluate our model with different combinations of observations
as input: i) texture only (i.e., no trajectory, by setting fr = 0), ii) physics only
(i.e., no image, by setting f; = 0), iii) both texture and physics but without the
voxelized shape, iv) both texture and physics but with replacing the 3D trajectory
with a raw depth video, v) full data in our original setup (image, voxels, and
trajectory). We also compare our model with several baselines: i) predicting the
most frequent density in the training set (Frequent), ii) nearest neighbor retrieval
from the training set (Nearest), and iii) knowing the ground-truth material and
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Observations Density Trajectory

Methods Accurac

Texture Physics Y RMSE MAE

Top1 Top 5 Top 10

Frequent — - 2.0 9.7 13.4 254 74.4
Nearest — + 1.9 7.9 12.4 41.1 91.0
Oracle + - 6.9 35.7 72.0 18.5 51.3
PPD (no trajectory) + - 7.2 35.2 69.5 19.0 51.7
PPD (no image) — + 7.1 31.0 50.8 16.7 36.4
PPD (no voxels) + + 15.9 56.3 82.4 10.3 29.9
PPD (RGB-D) + + 11.6 50.5 79.5 12.8 30.2
PPD (full) + + 16.1 56.4 82.5 9.9 21.0
PPD (full)+Sample + + 18.2 59.7 84.0 8.8 13.9

Table 2. Quantitative results of physical parameter estimation on block towers. Com-
bining appearance with physics does help our model to achieve better estimation on
physical parameters, and our model performs significantly better than all other baselines.

guessing within its density value range (Oracle). While all these baselines assume
perfect shape reconstruction, our model learns to decompose the shape.

Results. For the shape reconstruction, our model achieves 97.5 in terms of F1
score. For the physics estimation, we present quantitative results of our model
with different observations as input in Table 2. We compare our model with an
oracle that infers material properties from appearance while assuming ground-
truth reconstruction. It gives upper-bound performance of methods that rely on
only appearance cues. Experiments suggest that appearance alone is not sufficient
for density estimation. From Table 2, we observe that combining appearance with
physics performs well on physical parameter estimation, which is because the
object trajectories can provide crucial additional information about the density
distribution (i.e. moment of inertia). Also, all input modalities and sampling
contribute to the model’s final performance.

We have also implemented
a physics engine—based sampling
baseline: sampling the shape and Sample Phys.+Shape 142.2 87.1 70.8 58.7
physical parameters for each prim- Sample Phys. 89.7 60.1 38.7 22.7
itive, using a physics engine for FPPD (ours) 21.0 15.1 13.9 13.2
simulation, and selecting the one Table 3. Comparison between our model and a
whose trajectory is closest to the physics engine based sampling baseline
observation. We also compare with a stronger baseline where we only sample
physics, assuming ground-truth shape is known. Table 3 shows our model works
better and is more efficient: the neural nets have learned an informative prior
that greatly reduces the need of sampling at test time.

1x 8x 64x bHl2x

5.2 Decomposing Tools

We then demonstrate the practical applicability of our model by decomposing
synthetic real-world tools.
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Observations Density Trajectory

Methods Accurac

Texture Physics Y RMSE MAE

Top1 Top 5 Top 10

Frequent - — 2.5 10.2 13.6 25.9 348.2
Nearest — + 2.9 8.3 12.4 25.8 329.7
Oracle + - 74 35.2 72.0 19.1 185.8
PPD (no trajectory) + - 7.7 36.4 71.1 16.8 206.8
PPD (no image) — + 15.0 56.3 80.2 5.9 143.6
PPD (full) + + 35.7 85.2 95.8 2.6 103.6
PPD (full)+Sample + + 38.3 85.0 96.1 2.5 74.4

Table 4. Quantitative results of physical parameter estimation on tools. Combining
visual appearance with physics observations helps our model to perform much better on
physical parameter estimation, and compared to all other baselines, our model performs
significantly better on this dataset.

Tools. Because of the absence of tool data in the ShapeNet Core [8] dataset, we
download the tools from 3D Warehouse* * * and manually remove all unrelated
models. In total, there are 204 valid tools, and we use Blender to remesh and
clean up these tools to fix the issues with missing faces and normals. Following
Chang et al. [8], we perform PCA on the point clouds and align models by their
PCA axes. Sample tools in our dataset are shown in Figure 6.

Primitives. Similar to Zou et al. [53], we first use the energy-based optimization
to fit the primitives from the point clouds, and then, we assign each vertex to its
nearest primitive and refine each primitive with the minimum oriented bounding
box of vertices assigned to it.

Other Setups. We make use of the same set of materials and densities as in
Table 1 and the same textures for materials as described in Section 5.1. Sample
images rendered with textures are shown in Figure 6. As for physics interactions,
we follow the same scenario configurations as in Section 5.1.

Training Details. Because the size of synthetic tools dataset is rather limited,
we first pre-train our PPD model on the block towers and then finetune it on the
synthetic tools. For the block towers used for pre-training, we fix the number of
blocks to 2 and introduce small random noises and rotations to each block to fill
the gap between block towers and synthetic tools.

Results. For the shape reconstruction, our model achieves 85.9 in terms of F1
score. For the physics estimation, we present quantitative results in Table 4. The
shape reconstruction is not as good as that of the block towers dataset because the
synthetic tools are more complicated, and the orientations might introduce some
ambiguity (there might exist multiple bounding boxes with different rotations for
the same part of object). The physics estimation performance is better since the
number of primitives in our synthetic tools dataset is very small (<2 in general).
We also show some qualitative results in Figure 6.

*** https://3dwarehouse.sketchup.com
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Fig. 6. Sample objects in synthetic tools dataset (left) and qualitative results of our
model with different combinations of observations as input (right).

5.3 Decomposing Real Objects

We look into real objects to evaluate the generalization ability of our model.
Real-World Block Towers. We purchase totally ten sets of blocks with different
materials (i.e. pine, steel, aluminum and copper) from Amazon, and construct a
dataset of real-world block towers. Our dataset contains 16 block towers with
different configurations: 8 with two blocks, 4 with three blocks, and another 4
with four blocks.

Physics Interaction. The scenario is set up as follows: the block tower is placed
at a specific position on the desk, and we use a copper ball (hang by a pendulum)
to hit it. In Figure 7, we show some objects and their trajectories in our dataset.
Video to 3D Trajectory. On real-world data, the appearance of every frame
in RGB video is used to extract a 3D trajectory. A major challenge is how to
convert RGB videos into 3D trajectories. We employ the following approach:

1. Tracking 2D Keypoints. For each frame, we first detect the 2D positions
of object corners. For simplicity, we mark the object corners using red stickers
and use a simple color filter to determine the corner positions. Then, we find
the correspondence between the corner points from consecutive frames by
solving the minimum-distance matching between two sets of points. After
aligning the corner points in different frames, we obtain the 2D trajectories
of these keypoints.

2. Reconstructing 3D Poses. We annotate the 3D position for each corner
point. Then, for each frame, we have 2D locations of keypoints and their
corresponding 3D locations. Finally, we reconstruct the 3D object pose in
each frame by solving the Perspective-n-Point between 2D and 3D locations
using Levenberg-Marquardt algorithm [24, 28].

Training Details. We build a virtual physics environment, similar to our real-
world setup, in the Bullet Physics Engine [9]. We employ it to simulate physics
interactions and generate a dataset of synthetic block towers to train our model.
Results. We show some qualitative results of our model with different observa-
tions as input in Figure 8. In the real-world setup, with only texture or physics
information, our model cannot effectively predict the physical parameters because
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(a) Frame i1 (b) Frame iz (c) Frame i3 (d) Frame i4 (e) Frame i5 (f) Frame ig
Fig. 7. Objects and their physics trajectories in six sampled frames from our real-world
block towers dataset. As in the last two rows, objects with similar visual appearances
may have distinct physical properties that we can only distinguish from their behaviors
in physical events.
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Fig. 8. Qualitative results (on real-world block towers) of our model with different
combinations of observations as input.

images and object trajectories are much noisier than those in synthetic dataset,
while combining them together indeed helps it to predict much more accurate
results. In terms of quantitative evaluation, our model (with both observations
as input) achieves an RMSE value of 18.7 over the whole dataset and 10.1 over
the block towers with two blocks (the RMSE value of random guessing is 40.8).

6 Analysis

To better understand our model, we present several analysis. The first three are
conducted on synthetic block towers and the last one is on our real dataset.

Learning Speed with Different Supervisions. We show the learning curves
of our PPD model with different supervision in Figure 9. Model supervised by
physics observation reaches the same level of performance of model with texture
supervision using much fewer training steps (500K vs. 2M). Supervised by both
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Fig. 9. Learning curves with different observations as input. Our model learns much
better and faster when both texture and physics supervisions are available.
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Fig. 10. Confusion matrices of physical parameter estimation. The information provided
by two types of observations are different: (a) with texture as input, our model tends
to guess within the material’s possible density values (see Table 1); (b) with physics as
input, our model only makes errors between close values.

observations, our PPD model preserves the learning speed of the model with
only physics supervision, and further improves its performance.

Preference over Possible Values. We illustrate the confusion matrices of
physical parameter estimation in Figure 10. Although our PPD model performs
similarly either with only texture as input or with physics as input, its preferences
over all possible values turn out to be quite different. With texture as input (in
Figure 10a), it tends to guess within the possible values of the corresponding
material (see Table 1), while with physics as input (in Figure 10b), it only makes
errors between very close values. Therefore, the information provided by two
types of inputs is orthogonal to each other (in Figure 10c).

Impact of Primitive Numbers. As demonstrated in Table 5, the number
of blocks has nearly no influence on the model with texture as input. With
physics interactions as input, the model performs much better on fewer blocks,
and its performance degrades when the number of blocks starts increasing. The
degradation is probably because the physical response of any rigid body is fully
characterized by a few object properties (i.e., total mass, center of mass, and
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10 Ml Human B Model Bl Truth
1
1 2 3 4 5 6 7 8
Fig. 11. Human’s, model’s and ground-truth predictions on “which block is heavier”.
Our model performs comparable to humans, and its response is correlated with humans.

Ratio of Mass

Observation 2 blocks 3 blocks 4 blocks 5 blocks Overall

Texture 18.2 18.5 18.8 19.7 19.1
Physics 3.6 7.9 15.8 20.0 14.7
Texture + Physics 2.3 4.9 7.8 10.9 8.0

Table 5. Quantitative results (RMSE’s) on block towers (with different block numbers):
(a) with texture as input, our model performs comparably on different block numbers;
(b) with physics as input, our model performs much better on fewer blocks.

moment of inertia), which provides us with limited constraints on the density
distribution of an object when the number of primitives is relatively large.

Human Studies. We select the block towers with two blocks from our real
dataset, and study the problem of “which block is heavier” upon them. The
human studies are conducted on the Amazon Mechanical Turk. For each block
tower, we provide 25 annotators with an image and a video of physics interaction,
and ask them to estimate the ratio of mass between the upper and the lower
block. Instead of directly predicting a real value, we require the annotators to
make a choice on a log scale, i.e., from {2F | k = 0,£1,...,4+4}. Results of
average human’s predictions, model’s predictions and the truths are shown in
Figure 11. Our model performs comparably to humans, and its response is also
highly correlated with humans: the Pearson’s coefficient of “Human vs. Model”,
“Human wvs. Truth” and “Model vs. Truth” is 0.69, 0.71 and 0.90, respectively.

7 Conclusion

In this paper, we have formulated and studied the problem of physical primitive
decomposition (PPD), which is to approximate an object with a set of primitives,
explaining its geometry and physics. To this end, we proposed a novel formulation
that takes both visual and physics observations as input. We evaluated our model
on several different setups: synthetic block towers, synthetic tools and real-world
objects. Our model achieved good performance on both synthetic and real data.
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