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Abstract. This document supplements our paper Quaternion Equiv-
ariant Capsule Networks for 3D Point Clouds by providing proofs
regarding the dynamic routing, architectural details, discussions on the
technical fronts as well as computational aspects, additional experiments
and visual insights.

1 Proof of Proposition 1

Before presenting the proof we recall the three individual statements contained
in Prop. 1:
1. A(goS,w) is left-equivariant: A(go S, w) = go A(S,w).
2. Operator A is invariant under permutations: A({Q,(1),---,do(Q)}, Wo) =
A{di,...,q0},w).

3. The transformations g € H; preserve the geodesic distance (-).
Proof. We will prove the propositions in order.

1. We start by transforming each element and replace q; by (goq;) of the cost
defined in Eq. 4 of the main paper:

q'Mqg=q" ( ZQ: wiQiQ?)Q (s1)
= qT(zQ:wi(goqi)(goqi)T)q (S2)

i=1
= qT(iwquiq:GT)q (S3)

—q' (GMlGT Fot GMQGT)q

:qTG(MlGT+--'+MQGT)q (54)
—a"G(M; + - +Mg)GTq (S5)
=q'GMG 'q (S6)
= p " Mp, (S7)
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where M; = w;q;q; and p = G'q. From orthogonallity of G it follows
p=G!q = gop=qand hence go A(S,w) = A(go S, w).

2. The proof follows trivially from the permutation invariance of the symmetric
summation operator over the outer products in Eq .

3. It is sufficient to show that |q{ qz| = [(goqi) (g0 q2)| for any g € H;:

l(goai)' (goas)| = |a{ G' Gaqy (S8)
= |q{ Iqa| (S9)
= \(hTCIﬂa (S]-O)

where g o q = Gq. The result is a direct consequence of the orthonormality
of G.

2 Proof of Lemma 1

We will begin by recalling some preliminary definitions and results that aid us
to construct the connection between the dynamic routing and the Weiszfeld
algorithm.

Definition 1 (Affine Subspace) A d-dimensional affine subspace of RN is
obtained by a translation of a d-dimensional linear subspace V.C RN such that
the origin is included in S:

d+1 d+1
S:{Zaixi| Zaizl}. (S11)
i=1 i=1
Simplest choices for S involve points, lines and planes of the Euclidean space.

Definition 2 (Orthogonal Projection onto an Affine Subspace) An orthog-
onal projection of a point x € RN onto an affine subspace explained by the pair
(A, c) is defined as:

I1;(x) = projg(x) = ¢+ A(x — c). (512)

c denotes the translation to make origin inclusive and A is a projection matriz
typically defined via the orthonormal bases of the subspace.

Definition 3 (Distance to Affine Subspaces) Distance from a given point
x to a set of affine subspaces {S1,S2 ... Sk} can be written as [3]:

k
Cx) = D d(x,5) = D [x = projs, ()| (513)

Lemma S1. Given that all the antipodal counterparts are mapped to the north-
ern hemisphere, we will now think of the unit quaternion or versor as the unit
normal of a four dimensional hyperplane h, passing through the origin:

hi(x) = q] X+ gq == 0. (S14)
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qq s an added term to compensate for the shift. When qq4 = 0 the origin is
incident to the hyperplane. With this perspective, quaternion q; forms an affine
subspace with d = 4, for which the projection operator takes the form:

projs,(p) = (I— aiq; )p (S15)

Proof. We consider Eq (S15) for the case where ¢ =0 and A = (I —qq"). The
former follows from the fact that our subspaces by construction pass through
the origin. Thus, we only need to show that the matrix A = I — qq' is an
orthogonal projection matrix onto the affine subspace spanned by q. To this end,
it is sufficient to validate that A is symmetric and idempotent: ATA = AA =
A? = A. Note that by construction q'q is a symmetric matrix and hence A
itself. Using this property and the unit-ness of the quaternion, we arrive at the
proof:

ATA=(I-qq") (I-qq") (S16)
=(I-qq")I-qq") (S17)
=I-2qq' +qq'qq’ (S18)
=1-2qq' +qq' (S19)
=I-qq' £A (520)

It is easy to verify that the projections are orthogonal to the quaternion that
defines the subspace by showing projs(q) " q = 0:

q'projs(q) =q'Aq=q'(I-qq')a=q'(q—aq'q)=q'(q—q) =0.
(S21)

Also note that this choice corresponds to tr(qq') = Z?;l a; = 1.

Lemma S2. The quaternion mean we suggest to use in the main paper [J] is
equivalent to the Euclidean Weiszfeld mean on the affine quaternion subspaces.

Proof. We now recall and summarize the L,-Weiszfeld Algorithm on affine sub-
spaces [3], which minimizes a g-norm variant of the cost defined in Eq (S13)):

k
Cylx) = D d(x. 50) = 3 x = projs, ()" (522)

Defining M; = I — A;, Alg. [[| summarizes the iterative procedure.

Note that when ¢ = 2, the algorithm reduces to the computation of a non-
weighted mean (w; = 1Vi), and a closed form solution exists for Eq and
is given by the normal equations:

x= (Sunt) ' (Sunte) (525)
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Algorithm 1: L, Weiszfeld Algorithm on Affine Subspaces [3].

1 input: An initial guess xo that does not lie any of the subspaces {S;},
Projection operators I1;, the norm parameter g

2 x' + xo

3 while not converged do

4 Compute the weights w' = {w!}:
wi = |[M;(x" —¢;)||*% Vi=1...k (S23)
5 Solve:
k
x™ = arg min waHMz(x — ci)H2 (S24)
x€RN 5T

For the case of our quaternionic subspaces ¢ = 0 and we seek the solution
that satisfies:

(zk;MZ)x: (;Zk;Mi)x: 0. (S26)

It is well known that the solution to this equation under the constraint ||x|| =1

k

lies in nullspace of M = % >~ M, and can be obtained by taking the singular vec-
i=1

tor of M that corresponds to the largest singular value. Since M; is idempotent,

the same result can also be obtained through the eigendecomposition:

q* = arg IE?X qMq (S27)
qc

which gives us the unweighted Quaternion mean [4].

3 Proof of Theorem 1

Once the Lemma 1 is proven, we only need to apply the direct convergence results
from the literature. Consider a set of points Y = {y;1...yx} where K > 2 and
vi € Hj. Due to the compactness, we can speak of a ball B(o, p) encapsulating
all y;. We also define the D = {x € H; | C;(x) < C,4(0)}, the region where the
loss decreases.

We first state the assumptions that permit our theoretical result. These as-
sumptions are required by the works that establish the convergence of such
Weiszfeld algorithms [1I2] :

H1. y; ... yx should not lie on a single geodesic of the quaternion manifold.
H2. D is bounded and compact. The topological structure of SO(3) imposes a
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Fig. S1. Our siamese architecture used in the estimation of relative poses. We use
a shared network to process two distinct point clouds (X,Y) to arrive at the latent
representations (Cx,ax) and (Cy,ay) respectively. We then look for the highest
activated capsules in both point sets and compute the rotation from the corresponding
capsules. Thanks to the rotations disentangled into capsules, this final step simplifies
to a relative quaternion calculation.

bounded convexity radius of p < 7/2.

H3. The minimizer in Eq is continuous.

H4. The weighting function o(-) is concave and differentiable.

HS5. Initial quaternion (in our network chosen randomly) does not belong to any
of the subspaces.

Note that H5 is not a strict requirement as there are multiple ways to circum-
vent (simplest being a re-initialization). Under these assumptions, the sequence
produced by Eq will converge to a critical point unless x’ = y; for any
t and ¢ [2]. For ¢ = 1, this critical point is on one of the subspaces specified
in Eq and thus is a geometric median. a

Note that due to the assumption H2, we cannot converge from any given
point. For randomly initialized networks this is indeed a problem and does not
guarantee practical convergence. Yet, in our experiments we have not observed
any issue with the convergence of our dynamic routing. As our result is one of
the few ones related to the analysis of DR, we still find this to be an important
first step.

For different choices of ¢ : 1 < ¢ < 2, the weights take different forms. In fact,
this IRLS type of algorithm is shown to converge for a larger class of weighting
choices as long as the aforementioned conditions are met. That is why in practice
we use a simple sigmoid function.

4 Further Discussions

On convergence, runtime and complexity. Note that while the conver-
gence basin is known, to the best of our knowledge, a convergence rate for a
Weiszfeld algorithm in affine subspaces is not established. From the literature
of robust minimization via Riemannian gradient descent (this is essentially the
corresponding particle optimizer), we conjecture that such a rate depends upon
the choice of the convex regime (in this case 1 < ¢ < 2) and is at best linear
— though we did not prove this conjecture. In practice we run the Weiszfeld
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Fig.S2. (a) Confusion matrix on ModelNet10 for classification. (b) Distribution of
initial poses per class.

iteration only 3 times, similar to the original dynamic routing. This is at least
sufficient to converge to a point good enough for the network to explain the data
at hand.

QEC module summarized in the Alg. 2 of the main paper can be dissected
into three main steps: (i) canonicalization of the local oriented point set, (ii) the
t-kernel and (iii) dynamic routing. Overall the total computational complexity
reads O(L+ KCypp+Cpr) where Cyrp and Cpg are the computational costs
of the MLP and the DR respectively:

Cpr=LM+ M(K +k(2L)+ L) = M(K +2(k+1)L)
Cuyrp = 64N, + 4MNZ. (S28)

Note that Eq depicts the complexity of a single QEC module. In our
architecture we use a stack of those each of which cause an added increase in
the complexity proportional to the number of points downsampled.

Our weighted quaternion average relies upon a differentiable SVD. While
not increasing the theoretical computational complexity, when done naively, this
operation can cause significant increase in runtime. Hence, we compute the SVD
using CUDA kernels in a batch-wise manner. This batch-wise SVD makes it
possible to average a large amount of quaternions with high efficiency. Note that
we omit the computational aspects of LRF calculation as we consider it to be
an input to our system and different LRF's exhibit different costs.

We have further conducted a runtime analysis in the 3D Shape Classification
experiment on an Nvidia GeForce RTX 2080 Ti with the network configuration
mentioned in Sec. 5.2 of the main paper. During training, each batch (where
batch size b = 8) takes 0.226s and 1939M of GPU memory. During inference,
processing each instance takes 0.036s and consumes 1107M of GPU memory.

Note that the use of LRFs helps us to restrict the rotation group to certain
elements and thus we can use networks with significantly less parameters (as
low as 0.44M) compared to others as shown in Tab. 1 of the main paper. Num-
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ber of parameters in our network depends upon the number of classes, e.g. for
ModelNet10 we have 0.047M parameters.

Quaternion ambiguity. Quaternions of the northern and southern hemi-
spheres represent the same exact rotation, hence one of them is redundant. By
mapping one hemisphere to the other, we sacrifice the closeness of the manifold.
This could slightly distort the behavior of the linearization operator around
the Ecuador. However, the rest of the operations such as geodesic distances re-
spect such antipodality, as we consider the Quaternionic manifold and not the
sphere. When the subset of operations we develop and the nature of local refer-
ence frames are concerned, we did not find this transformation to cause serious
shortcomings.

Performance on different shapes with same orientation. The NR/NR
scenario in Tab. 1 of the main paper involves classification on different shapes
within a category without rotation, e.g. chairs with different shapes. In adden-
dum, we now provide in Fig. an additional insight into the pose distribution
for all canonicalized objects within a class. To do so, we rotate the horizontal
standard basis vector e, = [1,0,0] using the predict quaternion (the most ac-
tivated output capsule) and plot the resulting point on a unit sphere as shown
in Fig. A qualitative observation reveals that for all five non-symmetric
classes, the poses of all the instances within a class would form a cluster. This
roughly holds across all classes and indicates that the relative pose information
is consistent within the classes. On the other hand, objects with symmetries
form multiple clusters.

5 Our Siamese Architecture

For estimation of the relative pose with supervision, we benefit from a Siamese
variation of our network. In this case, latent capsule representations of two point
sets X and Y jointly contribute to the pose regression as shown in Fig.

We show additional results from the computation of local reference frames
and the multi-channel capsules deduced from our network in Fig.

6 Additional Details on Evaluations

Details on the evaluation protocol. For Modelnet40 dataset used in Tab.
1, we stick to the official split with 9,843 shapes for training and 2,468 different
shapes for testing. For rotation estimation in Tab. 2, we again used the official
Modelenet10 dataset split with 3991 for training and 908 shapes for testing.
3D point clouds (10K points) are randomly sampled from the mesh surfaces of
each shape [5l6]. The objects in training and testing dataset are different, but
they are from the same categories so that they can be oriented meaningfully.
During training, we did not augment the dataset with random rotations. All the
shapes are trained with single orientation (well-aligned). We call this trained with
NR. During testing, we randomly generate multiple arbitrary SO(3) rotations
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(@) Input Point Cloud (b) Initial LRFs (c) LRFs Prior to QE-Network-1 (d) Multi-channel LRFs Prior to QE-Network-2

Fig. S3. Additional intermediate results on car (first row) and chair (second row)
objects. This figure supplements Fig. 1(a) of the main paper.

for each shape and evaluate the average performance for all the rotations. This
is called test with AR. This protocol is used in both our algorithms and the
baselines.

Confusion of classification in ModelNet. To provide additional insight
into how our activation features perform, we now report the confusion matrix
in the task of classification on the all the objects of ModelNet10. Unique to
our algorithm, the classification and rotation estimation reinforces one another.
As seen from Fig. on the right, the first five categories that exhibit less
rotational symmetry has the higher classification accuracy than their rotationally
symmetric counterparts.

Distribution of errors reported in Tab. 2. We now provide more details on
the errors attained by our algorithm as well as the state of the art. To this end,
we report, in Fig. the histogram of errors that fall within quantized ranges
of orientation errors. It is noticeable that our Siamese architecture behaves best
in terms of estimating the objects rotation. For completeness, we also included
the results of the variants presented in our ablation studies: Ours-2kLRF, Ours-
1kLRF. They evaluate the model on the re-calculated LRFs in order to show
the robustness towards to various point densities. We have also modified IT-
Net and PointNetLK only to predict rotation because the original works predict
both rotations and translations. Finally, note here that we do not use data
augmentation for training our networks (see AR), while both for PointNetLK
and for IT-Net we do use augmentation.
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Fig. S5. Cumulative error histograms of rotation estimation on ModelNet10. Each row
(< 6°) of this extended table shows the percentage of shapes that have rotation error
less than 6. The colors of the bars correspond to the rows they reside in. The higher
the errors are contained in the first bins (light blue) the better. Vice versa, the more
the errors are clustered toward the 60° the worse the performance of the method.
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