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Abstract. We present a 3D capsule module for processing point clouds
that is equivariant to 3D rotations and translations, as well as invariant
to permutations of the input points. The operator receives a sparse set
of local reference frames, computed from an input point cloud and estab-
lishes end-to-end transformation equivariance through a novel dynamic
routing procedure on quaternions. Further, we theoretically connect dy-
namic routing between capsules to the well-known Weiszfeld algorithm,
a scheme for solving iterative re-weighted least squares (IRLS) problems
with provable convergence properties. It is shown that such group dy-
namic routing can be interpreted as robust IRLS rotation averaging on
capsule votes, where information is routed based on the final inlier scores.
Based on our operator, we build a capsule network that disentangles ge-
ometry from pose, paving the way for more informative descriptors and
a structured latent space. Our architecture allows joint object classifica-
tion and orientation estimation without explicit supervision of rotations.
We validate our algorithm empirically on common benchmark datasets.
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1 Introduction

It is now well understood that in order to learn a compact and informative
representation of the input data, one needs to respect the symmetries in the
problem domain [17,73]. Arguably, one of the primary reasons for the success of
2D convolutional neural networks (CNN) is the translation-invariance of the 2D
convolution acting on the image grid [29,36]. Recent trends aim to transfer this
success into the 3D domain in order to support many applications such as shape
retrieval, shape manipulation, pose estimation, 3D object modeling and detec-
tion, etc. There, the data is naturally represented as sets of 3D points [55,57].
Unfortunately, an extension of CNN architectures to 3D point clouds is non-
trivial due to two reasons: 1) point clouds are irregular and unorganized, 2) the
group of transformations that we are interested in is more complex as 3D data is
often observed under arbitrary non-commutative SO(3) rotations. As a result,
learning appropriate embeddings requires 3D point-networks to be equivariant
to these transformations, while also being invariant to point permutations.
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Fig. 1. (a) Our network operates on local reference frames (LRF) of an input point
cloud (i). A hierarchy of quaternion equivariant capsule modules (QEC) then pools the
LRFs to a set of latent capsules (ii, iii) disentangling the activations from poses. We can
use activations in classification and the capsule (quaternion) with the highest activation
in absolute (canonical) pose estimation without needing the supervision of rotations.
(b) Our siamese variant can also solve for the relative object pose by aligning the
capsules of two shapes with different point samplings. Our network directly consumes
point sets and LRFs. Meshes are included only to ease understanding.

In order to fill this gap, we present a quaternion equivariant point capsule net-
work that is suitable for processing point clouds and is equivariant to SO(3) rota-
tions, compactly parameterized by quaternions, while also preserving translation
and permutation invariance. Inspired by the local group equivariance [40,17], we
efficiently cover SO(3) by restricting ourselves to a sparse set of local reference
frames (LRFs) that collectively determine the object orientation. The proposed
quaternion equivariant capsule (QEC) module deduces equivariant latent repre-
sentations by robustly combining those LRFs using the proposed Weiszfeld dy-
namic routing with inlier scores as activations, so as to route information from
one layer to the next. Hence, our latent features specify to local orientations and
activations, disentangling orientation from evidence of object existence. Such ex-
plicit and factored storage of 3D information is unique to our work and allows
us to perform rotation estimation jointly with object classification. Our final
architecture is a hierarchy of QEC modules, where LRFs are routed from lower
level to higher level capsules as shown in Fig. 1. We use classification error as
the only training cue and adapt a Siamese version for regression of the relative
rotations. We neither explicitly supervise the network with pose annotations nor
train by augmenting rotations. In summary, our contributions are:

1. We propose a novel, fully SO(3)-equivariant capsule module that produces
invariant latent representations while explicitly decoupling the orientation
into capsules. Notably, equivariance results have not been previously achieved
for SO(3) capsule networks.

2. We connect dynamic routing between capsules [60] and generalized Weiszfeld
iterations [4]. Based on this connection, we theoretically argue for the con-
vergence of the included rotation estimation on votes and extend our under-
standing of dynamic routing approaches.

3. We propose a capsule network that is tailored for simultaneous classification
and orientation estimation of 3D point clouds. We experimentally demon-
strate the capabilities of our network on classification and orientation esti-
mation on ModelNet10 and ModelNet40 3D shape data.
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2 Related Work

Deep learning on point sets. The capability to process raw, unordered point
clouds within a neural network is introduced by the prosperous PointNet [55]
thanks to the point-wise convolutions and the permutation invariant pooling
functions. Many works have extended PointNet primarily to increase the lo-
cal receptive field size [57,42,62,71]. Point-clouds are generally thought of as
sets. This makes any permutation-invariant network that can operate on sets
an amenable choice for processing points [81,58]. Unfortunately, common neural
network operators in this category are solely equivariant to permutations and
translations but to no other groups.

Equivariance in neural networks. Early attempts to achieve invariant data
representations usually involved data augmentation techniques to accomplish
tolerance to input transformations [49,56,55]. Motivated by the difficulty asso-
ciated with augmentation efforts and acknowledging the importance of theoreti-
cally equivariant or invariant representations, the recent years have witnessed a
leap in theory and practice of equivariant neural networks [6,37].

While laying out the fundamentals of the group convolution, G-CNNs [18]
guaranteed equivariance with respect to finite symmetry groups. Similarly, Steer-
able CNNs [21] and its extension to 3D voxels [75] considered discrete symmetries
only. Other works opted for designing filters as a linear combination of harmonic
basis functions, leading to frequency domain filters [76,74]. Apart from suffering
from the dense coverage of the group using group convolution, filters living in
the frequency space are less interpretable and less expressive than their spatial
counterparts, as the basis does not span the full space of spatial filters.

Achieving equivariance in 3D is possible by simply generalizing the ideas of
the 2D domain to 3D by voxelizing 3D data. However, methods using dense
grids [16,21] suffer from increased storage costs, eventually rendering the imple-
mentations infeasible. An extensive line of work generalizes the harmonic basis
filters to SO(3) by using e.g. , a spherical harmonic basis instead of circular har-
monics [19,25,22]. In addition to the same downsides as their 2D counterparts,
these approaches have in common that they require their input to be projected
to the unit sphere [33], which poses additional problems for unstructured point
clouds. A related line of research are methods which define a regular structure
on the sphere to propose equivariant convolution operators [44,13].

To learn a rotation equivariant representation of a 3D shape, one can either
act on the input data or on the network. In the former case, one either presents
augmented data to the network [55,49] or ensures rotation-invariance in the
input [23,24,34]. In the latter case one can enforce equivariance in the bottleneck
so as to achieve an invariant latent representation of the input [50,66,63]. Further,
equivariant networks for discrete sets of views [27] and cross-domain views [26]
have been proposed. Here, we aim for a different way of embedding equivariance
in the network by means of an explicit latent rotation parametrization in addition
to the invariant feature.

Vector �eld networks [47] followed by the 3D Tensor Field Networks (TFN) [66]
are closest to our work. Based upon a geometric algebra framework, the authors
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did achieve localized �lters that are equivariant to rotations, translations and
permutations. Moreover, they are able to cover the continuous groups. However,
TFN are designed for physics applications, are memory consuming and a typi-
cal implementation is neither likely to handle the datasets we consider nor can
provide orientations in an explicit manner.

Capsule networks. The idea of capsule networks was �rst mentioned by Hin-
ton et al. [30], before Sabouret al. [60] proposed thedynamic routing by
agreement, which started the recent line of work investigating the topic. Since
then, routing by agreement has been connected to several well-known concepts,
e.g. the EM algorithm [59], clustering with KL divergence regularization [68] and
equivariance [40]. They have been extended to autoencoders [38] and GANs [32].
Further, capsule networks have been applied for speci�c kinds of input data, e.g.
graphs [78], 3D point clouds [83,64] or medical images [1].

3 Preliminaries and Technical Background

We now provide the necessary background required for the grasp of the equiv-
ariance of point clouds under the action of quaternions.

3.1 Equivariance

De�nition 1 (Equivariant Map) For a G-space acting onX , the map � :
G � X 7! X is said to be equivariant if its domain and co-domain are acted on
by the same symmetry group [18,20]:

� (g1 � x ) = g2 � � (x) (1)

where g1 2 G and g2 2 G. Equivalently � (T(g1) x) = T(g2) � (x), where T(�) is
a linear representation of the groupG. Note that T(�) does not have to commute.
It su�ces for T(�) to be a homomorphism:T(g1 � g2) = T(g1) � T(g2). In this
paper we use a stricter form of equivariance and considerg2 = g1.

De�nition 2 (Equivariant Network) An architecture or network is said to
be equivariant if all of its layers are equivariant maps. Due to the transitivity
of the equivariance, stacking up equivariant layers will result in globally equiv-
ariant networks e.g. , rotating the input will produce output vectors which are
transformed by the same rotation [40,37].

3.2 The Quaternion Group H1

The choice of 4-vector quaternions as representation forSO(3) has multiple mo-
tivations: (1) All 3-vector formulations su�er from in�nitely many singularities
as angle goes to 0, whereas quaternions avoid those, (2) 3-vectors also su�er from
in�nitely many redundancies (the norm can grow inde�nitely). Quaternions have
a single redundancy:q = � q that is in practice easy to enforce [9], (3) Computing
the actual `manifold mean' on the Lie algebra requires iterative techniques with
subsequent updates on the tangent space. Such iterations are computationally
and numerically harmful for a di�erentiable GPU implementation.
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De�nition 3 (Quaternion) A quaternion q is an element of Hamilton alge-
bra H1, extending the complex numbers with three imaginary unitsi , j , k in the
form: q = q11 + q2i + q3j + q4k = ( q1; q2; q3; q4)T , with (q1; q2; q3; q4)T 2 R4

and i 2 = j 2 = k2 = ijk = � 1. q1 2 R denotes the scalar part andv =
(q2; q3; q4)T 2 R3, the vector part. The conjugate �q of the quaternion q is given

by �q := q1 � q2i � q3j � q4k. A unit quaternion q 2 H1 with 1 != kqk := q � �q and
q� 1 = �q , gives a compact and numerically stable parametrization to represent
orientation of objects on the unit sphereS3, avoiding gimbal lock and singu-
larities [15]. Identifying antipodal points q and � q with the same element, the
unit quaternions form a double covering group ofSO(3). H1 is closed under the
non-commutative multiplication or the Hamilton product:

(p 2 H1) � (r 2 H1) = [ p1r 1 � vp � v r ; p1v r + r 1vp + vp � v r ]: (2)

De�nition 4 (Linear Representation of H1) We follow [12] and use the par-
allelizable nature of unit quaternions (d 2 f 1; 2; 4; 8g where d is the dimension
of the ambient space) to de�neT : H1 7! R4� 4 as:

T (q) ,

2

6
6
4

q1 � q2 � q3 � q4

q2 q1 � q4 q3

q3 q4 q1 � q2

q4 � q3 q2 q1

3

7
7
5:

To be concise we will use capital letters to refer to the matrix representation
of quaternions e.g.Q � T(q), G � T(g). Note that T(�), the injective homo-
morphism to the orthonormal matrix ring, by construction satis�es the condition
in Dfn. 1 [65]: det(Q) = 1 ; Q> = Q � 1; kQk = kQ i; :k = kQ :;i k = 1 and Q � q1I
is skew symmetric: Q + Q> = 2q1I . It is easy to verify these properties. T
linearizes the Hamilton product or the group composition:g � q , T(g)q , Gq .

3.3 3D Point Clouds

De�nition 5 (Point Cloud) We de�ne a 3D surface to be a di�erentiable 2-
manifold embedded in the ambient 3D Euclidean space:M 2 2 R3 and a point
cloud to be a discrete subset sampled onM 2: X 2 f x i 2 M 2 \ R3g.

De�nition 6 (Local Geometry) For a smooth point cloud f x i g 2 M 2 �
RN � 3, a local reference frame (LRF) is de�ned as an ordered basis of the tan-
gent space atx, Tx M , consisting of orthonormal vectors: L (x) = [ @1; @2; @3 �
@1 � @2]. Usually the �rst component is de�ned to be the surface normal@1 ,
n 2 S 2 : knk = 1 and the second one is picked according to a heuristic.

Note that recent trends, e.g. as in Cohenet al. [17], acknowledge the ambiguity
and either employ a gauge(tangent frame) equivariant design or propagate the
determination of a certain direction until the last layer [54]. Here, we will assume
that @2 can be uniquely and repeatably computed, a reasonable assumption for
the point sets we consider [52]. For the cases where this does not hold, we will
rely on the robustness of the iterative routing procedures in our network. We
will explain our method of choice in Sec. 6 and visualize LRFs of an airplane
object in Fig. 1.
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4 SO(3)-Equivariant Dynamic Routing

Disentangling orientation from representations requires guaranteed equivariances
and invariances. Yet, the original capsule networks of Sabouret al. [60] cannot
achieve equivariance to general groups. To this end, Lenssenet al. [40] proposed
a dynamic routing procedure that guarantees equivariance and invariance under
SO(2) actions, by applying a manifold-mean and the geodesic distance as routing
operators. We will extend this idea to the non-abelianSO(3) and design cap-
sule networks that sparsely operate on a set of LRFs computed via [53] on local
neighborhoods of points. TheSO(3) elements are paremeterized by quaternions
similar to [82]. In the following, we begin by introducing our novel equivariant
dynamic routing procedure, the main building block of our architecture. We
show the connection to the well known Weiszfeld algorithm, broadening the un-
derstanding of dynamic routing by embedding it into traditional computer vision
methodology. Then, we present an example of how to stack those layers via a
simple aggregation, resulting in anSO(3)-equivariant 3D capsule network that
yields invariant representations (or activations) as well as equivariant orienta-
tions (latent capsules).

4.1 Equivariant Quaternion Mean

To construct equivariant layers on the group of rotations, we are required to de-
�ne a left-equivariant averaging operator A that is invariant under permutations
of the group elements, as well as a distance metric� that remains unchanged
under the action of the group [40]. For these, we make the following choices:

De�nition 7 (Geodesic Distance) The Riemannian (geodesic) distance on
the manifold of rotations lead to the following geodesic distance� (�) � dquat (�):

d(q1; q2) � dquat (q1; q2) = 2 cos� 1(jhq1; q2ij ) (3)

De�nition 8 (Quaternion Mean � (�)) For a set of Q rotations S = f q i g
and associated weightsw = f wi g, the weighted mean operatorA (S; w) : H1

n �
Rn 7! H1

n is de�ned through the following maximization procedure [48]:

�q = arg max
q2 S3

q> Mq (4)

where M 2 R4� 4 is de�ned as: M ,
QP

i =1
wi q i q>

i .

The average quaternion �q is the eigenvector ofM corresponding to the maxi-
mum eigenvalue. This operation lends itself to both analytic [46] and automatic
di�erentiation [39]. The following properties allow A(S; w) to be used to build
an equivariant dynamic routing:

Theorem 1 Quaternions, the employed meanA(S; w) and geodesic distance
� (�) enjoy the following properties:
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Algorithm 1: Quaternion Equivariant Dynamic Routing

1 input : Input points f x 1 ; :::; x K g 2 RK � 3 , input capsules (LRFs)
Q = f q1 ; : : : ; qL g 2 H1

L , with L = N c � K , N c is the number of
capsules per point, activations � = ( � 1 ; : : : ; � L )T , trainable
transformations T = f t i;j gi;j 2 H1

L � M

2 output: Updated frames Q̂ = f q̂1 ; : : : ; q̂M g 2 H1
M , updated activations

�̂ = ( �̂ 1 ; : : : ; �̂ M )T

3 for All primary (input) capsules i do
4 for All latent (output) capsules j do
5 v i;j  q i � t i;j // compute votes

6 for All latent (output) capsules j do
7 q̂ j  A

�
f v 1;j : : : v K;j g; �

�
// initialize output capsules

8 for k iterations do
9 for All primary (input) capsules i do

10 wi;j  � i � sigmoid
�

� � (q̂ j ; v i;j )
�

// the current weight

11 q̂ j  A
�
f v 1;j : : : v L;j g; w :;j

�
// see Eq (4)

12 �̂ j  sigmoid
�

� 1
K

LP

1
� (q̂ j ; v i;j )

�
// recompute activations

1. A (g � S; w) is left-equivariant: A (g � S; w) = g � A (S; w).
2. Operator A is invariant under permutations:

A (f q1; : : : ; qQ g; w) = A(f q� (1) ; : : : ; q� (Q) g; w � ): (5)

3. The transformations g 2 H1 preserve the geodesic distance� (�) given in Dfn. 7.

Proof. The proofs are given in the supplementary material.

We also note that the above mean is closed form, di�erentiable and can be com-
puted in a batch-wise fashion. We are now ready to construct thedynamic routing
(DR) by agreement that is equivariant to SO(3) actions, thanks to Thm. 1.

4.2 Equivariant Weiszfeld Dynamic Routing

Our routing procedure extends previous work [60,40] for quaternion valued input.
The core idea is toroute from the primary capsulesthat constitute the input LRF
set to the latent capsulesby an iterative clustering of votes v i;j . At each step,
we assign the weighted group mean of votes to the respective output capsules.
The weights w  � (x ; y ) are inversely propotional to the distance between the
vote quaternions and the new quaternion (cluster center). See Alg. 1 for details.
In the following, we analyze our variant of routing as an interesting case of the
a�ne, Riemannian Weiszfeld algorithm [4,3].

Lemma 1. For � (x ; y ) = � (x ; y )q� 2 the equivariant routing procedure given
in Alg. 1 is a variant of the a�ne subspace Wieszfeld algorithm [4,3] that is a
robust algorithm for computing theL q geometric median.
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Fig. 2. Our quaternion equivariant capsule (QEC) layer for processing local patches:
Our input is a 3D point set X on which we query local neighborhoods f x i g with
precomputed LRFs f q i g. Essentially, we learn the parameters of a fully connected
network that continuously maps the canonicalized local point set to transformations
t i , which are used to compute hypotheses (votes) from input capsules. By a special
dynamic routing procedure that uses the activations determined in a previous layer,
we arrive at latent capsules that are composed of a set of orientations q̂ i and new
activations �̂ i . Thanks to the decoupling of local reference frames, �̂ i is invariant
and orientations q̂ i are equivariant to input rotations. All the operations and hence
the entire QE-network are equivariant achieving a guaranteed disentanglement of the
rotation parameters. Hat symbol (q̂) refers to 'estimated'.

Proof (Proof Sketch). The proof follows from the de�nition of Weiszfeld itera-
tion [3] and the mean and distance operators de�ned in Sec. 4.1. We �rst show
that computing the weighted mean is equivalent to solving the normal equa-
tions in the iteratively reweighted least squares (IRLS) scheme [14]. Then, the
inner-most loop corresponds to the IRLS or Weiszfeld iterations. We provide the
detailed proof in supplementary material.

Note that, in practice one is quite free to choose the weighting function� (�)
as long as it is inversely proportional to the geodesic distance and concave [2].
The original dynamic routing can also be formulated as a clustering procedure
with a KL divergence regularization. This holistic view paves the way to better
routing algorithms [68]. Our perspective is akin yet more geometric due to the
group structure of the parameter space. Thanks to the connection to Weiszfeld
algorithm, the convergence behavior of our dynamic routing can be directly
analyzed within the theoretical framework presented by [3,4].

Theorem 2 Under mild assumptions provided in the appendix, the sequence of
the DR-iterates generated by the inner-most loop almost surely converges to a
critical point.

Proof (Proof Sketch). Proof, given in the appendix, is a direct consequence
of Lemma 1 and directly exploits the connection to the Weiszfeld algorithm.

In summary, the provided theorems show that our dynamic routing by agreement
is in fact a variant of robust IRLS rotation averaging on the predicted votes,
where re�ned inlier scores for combinations of input/output capsules are used
to route information from one layer to the next.
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Algorithm 2: Quaternion Equivariant Capsule Module

1 input : Input points of one patch f x 1 ; :::; x K g 2 RK � 3 , input capsules
(LRFs) Q = f q1 ; : : : ; qL g 2 H1

L , with L = N c � K , N c is the number
of capsules per point, activations � = ( � 1 ; : : : ; � L )T

2 output: Updated frames Q̂ = f q̂1 ; : : : ; q̂M g 2 H1
M , updated activations

�̂ = ( �̂ 1 ; : : : ; �̂ M )T

3 for Each input channel nc of all the primary capsules channelsN c do
4 � (nc)  A (Q(nc)) // Input quaternion average, see Eq (4)
5 for Each point x i of this patch do
6 x 0

i  � (nc) � 1 � x i // Rotate to a canonical orientation

7 f x 0
i g 2 RK � N c � 3 // Points in multiple( N c) canonical frames

8 for Each point x 0
i of this patch do

9 t  t (x 0
i ) // Transform kernel, t(�) : RN c � 3 ! RN c � M � 4

10 T � f t i g 2 H1
K � N c

i � M  f t g 2 H1
L � M

11 (Q̂; �̂ )  DynamicRouting( X; Q; � ; T ) // See Alg. 1

5 Equivariant Capsule Network Architecture

In the following, we describe how we leverage the novel dynamic routing algo-
rithm to build a capsule network for point cloud processing that is equivariant
under SO(3) actions on the input. The essential ingredient of our architecture,
the quaternion equivariant capsule (QEC) modulethat implements a capsule
layer with dynamic routing, is described in Sec. 5.1, before using it as building
block in the full architecture, as described in Sec. 5.2.

5.1 QEC Module

The main module of our architecture, the QEC module, is outlined in Fig. 2.
We also provide the corresponding pseudocode in Alg. 2.

Input. The input to the module is a local patch of points with coordinates x i �
RK � 3, rotations (LRFs) attached to these points, parametrized as quaternions
q i � H1

K � N c

and activations � i � RK � N c
. We also useq i to denote the input

capsules.N c is the number of input capsule channels per point and it is equal
to the number of output capsules (M ) from the last layer.

Trainable transformations. Recalling the original capsule networks of Sabour
et al. [60], the trainable transformations t , which are applied to the input ro-
tations to compute the votes, lie in a grid kernel in the 2D image domain.
Therefore, the procedure can learn to produce well-aligned votes if and only if
the learned patterns in t match those in input capsule sets (agreement on evi-
dence of object existence). Since our input points in the local receptive �eld lie
in continuous R3, training a discrete set of pose transformationst i;j based on
discrete local coordinates is not possible. Instead, we use a similar approach as



10 Y. Zhao et al.

Fig. 3. Our entire capsule-network architecture. We hierarchically send all the local
patches to our QEC-module as shown in Fig. 2. At each level the points are pooled in
order to increase the receptive �eld, gradually reducing the LRFs into a single capsule
per class. We use classi�cation and orientation estimation (in the siamese case) as
supervision cues to train the transform-kernels t (�).

Lenssenet al. [40] and employ a continuous kernelt(�) : RN c � 3 ! RM � N c � 4

that is de�ned on the continuous RN c � 3, instead of only a discrete set of po-
sitions. The network is shared over all points to compute the transformations
t i;j = ( t(x0

1); :::; t(x0
K )) i;j � RK � M � N c � 4, which are used to calculate the votes

for dynamic routing with v i;j = q i � t i;j . The network t(�) consists of fully-
connected layers that regresses the transformations, similar to common oper-
ators for continuous convolutions [61,70,28], just with quaternion output. The
kernel is able to learn pose patterns in the 3D space, which align the result-
ing votes if certain pose sets are present. Note thatt(�) predicts quaternions by
unit-normalizing the regressed output: t i;j � H1

K � M � N c

. Although Rieman-
nian layers [7] or spherical predictions [43] can improve the performance, the
simple strategy works reasonably for our case.

In order for the kernel to be invariant, it needs to be aligned using an equiv-
ariant initial orientation candidate [40]. Given points x i and rotations q i , we
compute the mean � i in a channel-wise manner like that of the initial candi-
dates: � i � H1

N c

. These candidates are used to bring the kernels in canonical
orientations by inversely rotating the input points: x0

i = ( � i
� 1 � x i ) � RK � N c � 3.

Computing the output. After computing the votes, we utilize the input ac-
tivation � i as initialization weights and iteratively re�ne the output capsule
rotations (robust rotation estimation on votes) q̂ i and activations ^� i (�nal inlier
scores) by our Weiszfeld routing by agreement as shown in Alg. 1.

5.2 Network Architecture

For processing point clouds, we use multiple QEC modules in a hierarchical
architecture as shown in Fig. 3. In the �rst layer, the input primary capsules
are represented by LRFs computed with FLARE algorithm [53]. Therefore, the
number of input capsule channelsN c in the �rst layer is equal to 1 and activations
are uniform. The output of a former layer is propagated to the input of the latter,
creating the hierarchy.

In order to gradually increase the receptive �eld, we stack QEC modules
creating a deep hierarchy, where each layer reduces the number of points and
increases the receptive �eld. In our experiments, we use a two level architecture,
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