
DeepFit: 3D Surface Fitting via Neural Network
Weighted Least Squares

Yizhak Ben-Shabat[0000−0001−7547−7493] and Stephen
Gould[0000−0001−8929−7899]

Australian National University, Australian Centre for Robotic Vision
{yizhak.benshabat,stephen.gould}@anu.edu.au

Abstract. We propose a surface fitting method for unstructured 3D
point clouds. This method, called DeepFit, incorporates a neural net-
work to learn point-wise weights for weighted least squares polynomial
surface fitting. The learned weights act as a soft selection for the neigh-
borhood of surface points thus avoiding the scale selection required of
previous methods. To train the network we propose a novel surface con-
sistency loss that improves point weight estimation. The method enables
extracting normal vectors and other geometrical properties, such as prin-
cipal curvatures, the latter were not presented as ground truth during
training. We achieve state-of-the-art results on a benchmark normal and
curvature estimation dataset, demonstrate robustness to noise, outliers
and density variations, and show its application on noise removal.

Keywords: Normal estimation, surface fitting, least squares, unstruc-
tured 3D point clouds, 3D point cloud deep learning

1 Introduction

Commodity 3D sensors are rapidly becoming an integral component of au-
tonomous systems. These sensors, e.g., RGB-D cameras or LiDAR, provide a
3D point cloud representing the geometry of the scanned objects and surround-
ings. This raw representation, however, is challenging to process since it lacks
connectivity information or structure, and is often incomplete, noisy and contains
point density variations. In particular, processing it by means of convolutional
neural networks (CNNs)—highly effective for images—is problematic because
CNNs require structured, grid-like data as input.

When available, additional local geometric information, such as the surface
normal and principal curvatures at each point, induces a partial local structure
and improves performance of different tasks for interpreting the scene, such as
over-segmentation [1], classification [19] and surface reconstruction [9].

Estimating the normals and curvatures from a raw point cloud with no addi-
tional information is a challenging task due to difficulties associated with sam-
pling density, noise, outliers, and detail level. The common approach is to specify
a neighborhood around a point and then fit a local basic geometric surface (e.g., a

2 Y. Ben-Shabat, S. Gould

Point cloud
Query point 𝑞𝑞𝑖𝑖

k
ne

ar
es

t n
ei

gh
bo

ur
s 𝑥𝑥1 𝑦𝑦1 𝑧𝑧1

𝑥𝑥2 𝑦𝑦2 𝑧𝑧2

𝑥𝑥𝑘𝑘 𝑦𝑦𝑘𝑘 𝑧𝑧𝑘𝑘

PointNet

Global
feature

Concatenate

Global
feature

Local features

Local features

mlp 𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑘𝑘

Point-wise
weights

Point-wise weight estimation

Fit n-Jet

𝛽𝛽 = (𝑀𝑀𝑇𝑇𝑊𝑊𝑊𝑊)−1
𝑀𝑀𝑇𝑇𝑊𝑊𝑊𝑊

Compute Vandermonde matrix (M), and height function vector (B)

𝑊𝑊

Normal vector

Principal
curvatures

𝑀𝑀,𝐵𝐵Max pool

(512, 256, 128, 1)
𝑆𝑆𝑖𝑖

Fig. 1: DeepFit pipeline for normal and principal curvature estimation. For each
point in a given point cloud, we compute a global and local representation and
estimate a point-wise weight. Then, we fit an n-jet by solving a weighted least
squares problem.

plane) to the points in this neighborhood. The normal at the point under consid-
eration is estimated from the fitted geometric surface. The chosen size (or scale)
of the neighborhood introduces an unavoidable trade-off between robustness to
noise and accuracy of fine details. A large neighborhood over-smooths sharp cor-
ners and small details but is otherwise robust to noise. A small neighborhood, on
the other hand, may reproduce the normals more accurately around small details
but is more sensitive to noise. Evidently, a robust, scale-independent, data-driven
surface fitting approach should improve normal estimation performance.

We propose a surface fitting method for unstructured 3D point clouds. It
features a neural network for point-wise weight prediction for weighted least
squares fitting of polynomial surfaces. This approach removes the multi-scale re-
quirement entirely and significantly increases robustness to different noise levels,
outliers, and varying levels of detail. Moreover, the approach enables extracting
normal vectors and additional geometric properties without the need for retrain-
ing or additional ground truth information. The main contribution of this paper
is a method for per-point weight estimation for weighted least squares robust sur-
face fitting that enables scale-free normal estimation, and unsupervised principal
curvature and geometric properties estimation using deep neural networks.

2 Background and Related Work

2.1 Deep learning for unstructured 3D point clouds

The point cloud representation of a 3D scene is challenging for deep learning
methods because it is both unstructured and unordered. In addition, the number
of points in the point cloud varies for different scenes. Several methods have been
proposed to overcome these challenges. Voxel-based methods embed the point
cloud into a voxel grid but suffer from several accuracy-complexity tradeoffs [15].

DeepFit 3

The PointNet approach [18,19] applies a symmetric, order-insensitive, function
on a high-dimensional representation of individual points. The Kd-Network [13]
imposes a kd-tree structure on the points and uses it to learn shared weights for
nodes in the tree. The recently proposed 3D modified fisher vectors (3DmFV) [2]
represents the points by their deviation from a Gaussian Mixture Model (GMM)
whose Gaussians are uniformly positioned on a coarse grid.

In this paper we use a PoinNet architecture for estimating point-wise weights
for weighted least squares surface fitting. We chose PointNet since it operates
directly on the point cloud, does not require preprocessing, representation con-
version or structure, and contains a relatively low number of parameters.

2.2 Normal Vector and Principal Curvature Estimation

A classic method for estimating normals uses principal component analysis
(PCA) [10]. Here a neighborhood of points within some fixed scale is chosen
and PCA regression is used to estimate a tangent plane. Variants that fit local
spherical surfaces [8] or Jets [6] (truncated Taylor expansion) have also been
proposed. Further detail on Jet fitting is given in Section 2.3. To be robust to
noise, these methods usually choose a large-scale neighborhood, leading them to
smooth sharp features and fail to estimate normals near 3D edges. Computing
the optimal neighborhood size can decrease the estimation error [17] but requires
the (usually unknown) noise standard deviation value and a costly iterative pro-
cess to estimate the local curvature and additional density parameters.

A few deep learning approaches have been proposed to estimate normal vec-
tors from unstructured point clouds. Boulch and Marlet proposed to transform
local point cloud patches into a 2D Hough space accumulator by randomly se-
lecting point triplets and voting for that plane’s normal. Then, the normal is
estimated from the accumulator by designing explicit criteria [4] for bin selec-
tion or, more recently, by training a 2D CNN [5] to estimate it continuously as
a regression problem. This method does not fully utilize available 3D informa-
tion since it loses information during the transformation stage. Another method,
named PCPNet [9], uses a PointNet [18] architecture over local neighborhoods at
multiple scales. It achieves good normal estimation performance and has been ex-
tended to estimating principal curvatures. However, it processes the multi-scale
point clouds jointly and requires selecting a predefined set of scales. A more
recent work, Nesti-Net [3] tries to predict the appropriate scale using a mixture
of experts network and a local representation for different scales. It achieves
high accuracy but suffers from high computation time due to the multiple scale
computations. Nesti-Net shares PCPNet’s drawback of requiring a predefined
set of scales. A contemporary work [14] uses an iterative plane fitting approach
which tries to predict all normals of a local neighborhood and iteratively adjusts
the point weights to best fit the plane. The problem of estimating principal cur-
vatures and principal directions is closely related to normal estimation. Meyer
et. al. [16] proposed a Voronoi-averaging finite element method for curvature
estimation in arbitrary triangle meshes. Similarly, Rusinkiewicz [20] proposed a
finite-differences approach for estimating curvatures on irregular triangle meshes.

4 Y. Ben-Shabat, S. Gould

Kamberov and Kamberova [11] proposed to use a general orientability constraint
that quantifies the confidence in estimating principal curvatures as well as other
geometrical quantities on 3D point clouds directly. Recently, PCPNet [9] pro-
posed to train a network to regress the principal curvatures simultaneously with
the normal vector.

In this paper we propose a novel approach for normal estimation by learning
to fit an n-order Jet while predicting informative points’ weights. Our approach
removes the need of predefined scales and optimal scale selection since the in-
formative points are extracted at any given scale. Our method generalizes the
contemporary method proposed by Lenssen et. al. [14], avoids the iterative pro-
cess, and enables the computation of additional geometric properties such as
principal curvatures and principal directions.

2.3 Jet fitting using least squares and weighted least squares

We now provide background and mathematical notation for truncated Taylor
expansion surface fitting using least-squares (LS) and weighted least-squares
(WLS). We refer the interested reader to Cazals and Pouget [6] for further detail.

Any regular embedded smooth surface can be locally written as the graph
of a bi-variate “height function” with respect to any z-direction that does not
belong to the tangent space [21]. We adopt the naming convention of Cazals and
Pouget [6] and refer to the truncated Taylor expansion as a degree n jet or n-jet
for short. An n-jet of the height function over a surface is given by:

f(x, y) = Jβ,n(x, y) =

n∑
k=0

k∑
j=0

βk−j,jx
k−jyj (1)

Here β is the jet coefficients vector that consists of Nn = (n+1)(n+2)/2 terms.
In this work we wish to fit a surface to a set of Np 3D points. For clar-

ity, we move to the matrix notation and specify the Vandermonde matrix M
as (1, xi, yi, ..., xiy

n−1
i , yni)i=1,...,Np

∈ RNp×Nn and the height function vector
B = (z1, z2, ...zNp)T ∈ RNp representing the sampled points. We require that ev-
ery point satisfy Eq. 1, yielding the system of linear equations:

Mβ = B (2)

When Nn > Np the system is over-determined and an exact solution may not
exist. Therefore we use an LS approximation that minimizes the sum of square
errors between the value of the jet and the height function over all points:

β = arg min
z∈RNn

‖Mz −B‖2 (3)

It is well known that the solution can be expressed in closed-form as:

β = (MTM)−1MTB (4)

DeepFit 5

Typically the sampled points include noise and outliers that heavily reduce the
fitting accuracy. To overcome this, the formulation given in Eq. 4 can be ex-
tended to a weighted least square problem. In this setting, some points have
more influence on the fitted model than others. Let W ∈ RNp×Np be a diagonal
weight matrix W = diag(w1, w2, ..., wNp

). Each element in the matrix’s diagonal
wi corresponds to the weight of that point.
The optimization problem becomes:

β = arg min
z∈RNn

∥∥∥W 1/2(Mz −B)
∥∥∥2

= arg min
z∈RNn

Np∑
i=1

wi

Nn∑
j=1

Mijzj −Bi

2

and its solution:
β = (MTWM)−1MTWB (5)

In this work, we choose to focus on n-jet fitting because any order n differen-
tial quantity can be computed from the n-jet. This is one of the main advantages
of our method. That is, our method is trained for estimating normal vectors but
is then able to estimate other differential quantities, e.g., principal curvatures,
depending on the jet order.

3 DeepFit

3.1 Learning point-wise weights

The full pipeline for our method is illustrated in Fig. 1. Given a 3D point cloud
S and a query point qi ∈ S we first extract a local subset of points Si using
k-nearest neighbors. We then use a neural network to estimate the weight of
each point in the neighborhood, which will subsequently be used for weighted
least squares surface fitting. Specifically, we feed Si into a PointNet [18] network,
which outputs a global point cloud representationG(Si). Additionally, we extract
local representations from an intermediate layer for each of the points pj ∈ Si
separately to give g(pj). These representations are then concatenated and fed
into a multi-layer perceptron h(·) followed by a sigmoid activation function. We
choose a sigmoid in order to limit the output values to be between 0 and 1.
The output of this network is a weight per point that is used to construct the
diagonal point-weight matrix, W = diag(wj) with

wj = sigmoid(h(G(Si), g(pij))) + ε (6)

For numerical stability, we add a constant small ε in order to avoid the degenerate
case of a zero or poorly conditioned matrix. This weight matrix is then used to
solve the WLS problem of Eq. 5 and approximate the n-jet coefficients β. All
parts of the network are differentiable and therefore it is trained end-to-end.

6 Y. Ben-Shabat, S. Gould

3.2 Geometric quantities estimation

Given the n-jet coefficients β several geometric quantities can be easily extracted:

Normal estimation. The estimated normal vector is given by:

Ni =
(−β1,−β2, 1)√
β2
1 + β2

2 + 1
(7)

Shape operator and principal curvatures. For the second order informa-
tion we compute the Weingarten map of the surface by multiplying the inverse
of the first fundamental form and the second fundamental form. Its eigenval-
ues are the principal curvatures (k1, k2), and its eigenvectors are the principal
directions. The computation is done in the tangent space associated with the
parametrization.

MWeingarten = − 1√
β2
1 + β2

2 + 1

[
1 + β2

1 β1β2
β1β2 1 + β2

2

]−1 [
2β3 β4
β4 2β5

]
(8)

Generally, the principal curvatures can be used as ground truth in training,
however, due to the eigenvalue decomposition, with the high probability of out-
putting two zero principal curvatures (planes) it suffers from numerical issues
when computing the gradients for backpropagation [7]. Therefore, we compute
the curvatures only at test time. Note that Monge basis and higher order Monge
coefficients can also be computed, similar to Cazals and Pouget [6].

3.3 Consistency loss

In order to learn point-wise weights, we introduce a local consistency loss Lcon.
This loss is composed of two terms, the weighted normal difference term and a
regularization term. The weighted normal difference term computes a weighted
average of the sine of the angle between the ground truth normal and the esti-
mated normal at every local neighborhood point. These normals are computed
analytically by converting the n-jet to the implicit surface form of F (x, y, z) = 0.
Therefore, for every query point qi and its local neighborhood Si we can compute
the normal at each neighboring point pj ∈ Si using:

Nj =
∇F
‖∇F‖

∣∣∣∣
pj

=
(−β ∂M∂x

T
, β ∂M∂y

T
, 1)

‖∇F‖

∣∣∣∣∣∣
pj

(9)

Here β is the coefficient vector for subset Si. Note that this formulation assumes
all points to lie on the surface, for points that are not on the surface, the normal
error will be large, therefore that points weight will be encouraged to be small.
This term can easily converge to an undesired local minimum by setting all
weights to zero. In order to avoid that, we add a regularization term which

DeepFit 7

computes the negative average log of all weights. In summary, the consistency
loss for a query point qi is then given by:

Lcon =
1

Nqi

− Nqi∑
j=1

log(wj) +

Nqi∑
j=1

wj |NGT ×Nj |

 (10)

In contrast to Lenssen et. al. [14], this formulation allows us to avoid solving
multiple linear systems iteratively for each point in the local neighborhood.

In total, to train the network, we sum several loss terms: The sine loss be-
tween the estimated unoriented normal and the ground truth normal at the query
point, the consistency loss, and PointNet’s transformation matrix regularization
terms Lreg =

∣∣I −AAT ∣∣.
Ltot = |NGT ×Ni|+ α1Lcon + α2Lreg (11)

Here, α1, and α2 are weighting factors, chosen empirically.

3.4 Implementation notes

In our experiments we report results using DeepFit with the following configu-
ration, unless otherwise stated. A four layer MLP with sizes 512, 256, 128, and
1; a neighborhood size of 256 points, and a 3-order jet. In order to avoid numer-
ical issues, simplify the notation, and reduce the linear algebra operations, we
perform the following pre-processing stages on every local point cloud:

1. Normalization: we translate the point cloud to position the query point in
the origin and scale the point cloud to fit a unit sphere.

2. Basis extraction: we perform principal component analysis (PCA) on the
point cloud. We then use the resulting three orthonormal eigenvectors as the
fitting basis so that the vector associated with the smallest eigenvalue is the
last vector of the basis.

3. Coordinate frame transformation: We perform a change of coordinates to
move the points into the coordinate system of the fitting basis.

4. Preconditioning: we precondition the Vandermonde matrix by performing
column scaling. Each monomial xki y

l
i is divided by hk+l. That is, M ′ =

MD−1 with D the diagonal matrix D = diag(1, h, h2, ..., hn). We use the
mean of the norm ‖(xi, yi)‖ as h. The new system is then M ′(Dβ) = B and
β = D−1(M ′TWM ′)−1M ′TWB.

Note that after the normal is estimated we apply the inverse transform to output
the result in the original coordinate frame.

4 Results

4.1 Dataset and training details

For training and testing we used the PCPNet shape dataset [9]. The training set
consists of eight shapes: four CAD objects (fandisk, boxunion, flower, cup) and

8 Y. Ben-Shabat, S. Gould

four high quality scans of figurines (bunny, armadillo, dragon and turtle). All
shapes are given as triangle meshes and densely sampled with 100k points. The
data is augmented by introducing i.i.d. Gaussian noise for each point’s spatial
location with a standard deviation of 0.012, 0.006, 0.00125 w.r.t the bounding
box size. This yields a set with 3.2M training examples. The test set consists of
22 shapes, including figurines, CAD objects, and analytic shapes. For evaluation
we use the same 5000 point subset per shape as in Guerrero et al. [9].

All variations of our method were trained using 32,768 (1024 samples, 32
shapes) random subsets of the 3.2M training samples at each epoch. We used a
batch size of 256, Adam optimizer and a learning rate of 10−3. The implemen-
tation was done in PyTorch and trained on a single Nvidia RTX 2080 GPU.

4.2 Normal estimation performance

We use the RMSE metric for comparing the proposed DeepFit to other deep
learning based methods [9,3,14] and classical geometric methods [10,6]. Addi-
tionally, we analyze robustness for two types of data corruption:

– Point density—applying two sampling regimes for point subset selection: gra-
dient, simulating effects of distance from the sensor, and stripes, simulating
local occlusions.

– Point perturbations–adding Gaussian noise to the points coordinates with
three levels of magnitude specified by σ, given as a percentage of the bound-
ing box.

For the geometric methods, we show results for three different scales: small,
medium and large, which correspond to 18, 112, 450 nearest neighbors. For the
deep learning based methods we show the results for the single-scale (ss) and
multi-scale (ms) versions.

Table 1 shows the unoriented normal RMSE results for the methods detailed
above. It can be seen that our method slightly outperforms all other methods
for low, medium and no noise augmentation and for gradient density augmenta-
tion. For high noise, and striped occlusion augmentation we are a close second
to the contemporary work of Lenssen et al. [14] which only estimates the normal
vectors while DeepFit also estimates other geometric properties, e.g., principal
curvatures. The results also show that all method’s performance deteriorate as
the noise level rises. In this context, both PCA and Jet perform well for specific
noise-scale pairs. In addition, for PCPNet, using a multiple scales only mildly im-
proves performance. Nesti-Net’s mixture of experts mitigate the scale-accuracy
tradeoff well at the cost of computational complexity. DeepFit’s soft point selec-
tion process overcomes this tradeoff. In the supplemental materials we perform
additional evaluation using the percentage of good points (PGPα) metric.

Figure 2a depicts a visualization of DeepFit’s results on three point clouds.
Here the normal vectors are mapped to the RGB cube. It shows that for complex
shapes (pillar, liberty) with high noise levels, the general direction of the normal
vector is predicted correctly, but, the fine details and exact normal vector are not

DeepFit 9

Aug.
Our

Deep-
Fit

PCA
[10]

Jet
[6]

PCPNet
[9]

Len-
ssen
et. al
[14]

Nesti-
Net

scale ss small med large small med large ss ms ss ms (MoE)

None 6.51 8.31 12.29 16.77 7.60 12.35 17.35 9.68 9.62 6.72 6.99

Noise σ
0.00125 9.21 12.00 12.87 16.87 12.36 12.84 17.42 11.46 11.37 9.95 10.11
0.006 16.72 40.36 18.38 18.94 41.39 18.33 18.85 18.26 18.87 17.18 17.63
0.012 23.12 52.63 27.5 23.5 53.21 27.68 23.41 22.8 23.28 21.96 22.28

Density
Gradient 7.31 9.14 12.81 17.26 8.49 13.13 17.8 13.42 11.7 7.73 9.00
Stripes 7.92 9.42 13.66 19.87 8.61 13.39 19.29 11.74 11.16 7.51 8.47

average 11.8 21.97 16.25 18.87 21.95 16.29 19.02 14.56 14.34 11.84 12.41

Table 1: Comparison of the RMSE angle error for unoriented normal vector
estimation of our DeepFit method to classical geometric methods (PCA [10] and
Jet [6] - for three scales small, med, and large corresponding to k = 18, 122, 450),
and deep learning methods (PCPNet [9], Lenssen et. al [14], and Nesti-Net [3]).

obtained. For a basic shape (Boxysmooth) the added noise does not affect the
results substantially. Most notably, DeepFit shows robustness to point density
corruptions. Figure 2b depicts a visualization of the angular error in each point
for the different methods using a heat map. For the Jet method [6] we display
the results for medium scale. For all methods, it can be seen that more errors
occur in regions with small details, high curvature e.g. edges and corners, and
complex geometry. DeepFit suffers the least from this effect due to its point-wise
weight estimation, which allows it to adapt to the different local geometry and
disregard irrelevant points in the fitting process.

Figure 3 qualitatively visualizes the performance of DeepFit’s point-wise
weight prediction network. The colors of the points correspond to weight mag-
nitude, mapped to a heatmap ranging from 0 to 1 i.e. red points highly affect
the fit while blue points have low influence. It shows that the network learns to
adapt well to corner regions (column n = 1), assigning high weights to points on
one plane and excluding points on the perpendicular one. Additionally, it shows
how the network adapted the weight to achieve a good fit for complex geometries
(column n = 2, 3, 4).

Fig. 4 shows the unoriented normal RMSE results for different parameter
choices of our method. We explore different Jet orders n = 1, 2, 3, 4, and a
different number of neighboring points k = 64, 128, 256. It shows that using a
large neighborhood size highly improves the performance in high noise cases
while only minimally affecting the performance in low noise. It also shows that
all jet orders are comparable with a small advantage for order 1-jet (plane) and
order 3-jet which is an indication for a bias in the dataset towards low curvature
geometry. Additional ablation results, including more augmentations and the
PGPα metric are provided in the supplemental material.

10 Y. Ben-Shabat, S. Gould

(a) (b)

Fig. 2: (a) DeepFit’s normal estimation results for different noise levels (columns
1-4), and density distortions (columns 5-6). The colors of the points are normal
vectors mapped to RGB. (b) Normal estimation error visualization results of
DeepFit compared to other methods for three types of point clouds without
noise. The colors of the points correspond to angular difference, mapped to a
heatmap ranging from 0-60 degrees.

Fig. 3: DeepFit point-wise weight prediction. Three views of different n-jet sur-
face fits. The colors of the points correspond to weight magnitude , mapped to
a heatmap ranging from 0 to 1; see color bar on the right i.e. red points highly
affect the fit while blue points have low influence.

DeepFit 11

n=1 n=2 n=3 n=4

64 128 256
Number of points

6.0

6.5

7.0

7.5

8.0
an

gl
e

RM
SE

No Noise

(a)

64 128 256
Number of points

24

26

28

30

32

an
gl

e
RM

SE

High Noise

(b)

Fig. 4: Normal estimation RMSE results for DeepFit ablations for (a) no noise
and (b) high noise augmentations. Comparing the effect of number of neighboring
points and jet order.

Timing and efficiency performance are provided in the supplemental material.
DeepFit is faster and has fewer parameters than PCPNet and Nesti-Net and has
the potential of only being slightly slower than CGAL implementation of Jet
fitting because the forward pass for weight estimation is linear w.r.t the number
of points and the network weights. Note that Lenssen et. al. [14] is faster due to
its lower number of parameters and its direct use of the graph structure.

4.3 Principal curvature estimation performance

Figure 5 qualitatively depicts DeepFit’s results on five point clouds. For vi-
sualization, the principal curvatures are mapped to RGB values according to
the commonly used mapping given in its bottom right corner i.e. both positive
(dome) are red, both negative (bowl) are blue, one positive and one negative
(saddle) are green, both zero (plane) are white, and one zero and one posi-
tive/negative (cylinder) are yellow/cyan. For consistency in color saturation we
map each model differently according to the mean and standard deviation of the
principal curvatures. Note that the curvature sign is determined by the ground
truth normal orientation.

For quantitative evaluation we use the normalized RMSE metric curvature
estimation evaluation proposed in Guerrero et. al. [9] and given in Eq. 12, for
comparing the proposed method to other deep learning based [9] and geometric
methods [6]. Table 2 summarizes the results and shows an average error reduc-
tion of 35% and 13.7% for maximum and minimum curvatures respectively. We
analyze robustness for the same types of data corruptions as in normal estima-
tion i.e. point perturbation and density. DeepFit significantly outperforms all
other methods for maximum principal curvature k1. For the minimum principal
curvature k2 DeepFit outperforms all methods for low and no noise augmenta-

12 Y. Ben-Shabat, S. Gould

Fig. 5: Curvature estimation results visualization. The colors of the points cor-
responds to the mapping of k1, k2 to the color map given in the bottom right.
Values in the range [−(µ(|ki|) + σ(|ki|)), µ(|ki|) + σ(|ki|)]|i=1,2.

tion in addition to gradient and striped density augmentation, however PCPNet
has a small advantage for medium and high noise levels. The results for the
minimum curvature are very sensitive since most values are close to zero.

Dkj =

∣∣∣∣ kj − kGT
max{|kGT |, 1}

∣∣∣∣ , for j = 1, 2. (12)

The normalized RMSE metric is visualized in Fig. 6 for DeepFit and PCPNet
as the magnitude of the error vector mapped to a heatmap. It can be seen that
more errors occur near edges, corners and small regions with a lot of detail and
high curvature. These figures show that for both simple and complex geometric
shapes DeepFit is able to predict the principal curvatures reliably.

4.4 Surface reconstruction and noise removal

We further investigate the effectiveness of our surface fitting in the context of two
subsequent applications—Poisson surface reconstruction [12] and noise removal.

Surface reconstruction. Fig. 7a shows the results for the classical Jet fitting
and our DeepFit approach. Since the reconstruction requires oriented normals,
we orient the normals, in both methods, according to the ground truth normal.
It shows that using DeepFit, the poisson reconstruction is moderately more
satisfactory by being smoother overall, and crispier near corners. It also retains
small details (liberty crown, cup rim).

DeepFit 13

Aug.
Our

Deep-
Fit

PCP-
Net
[9]

Jet
[6]

output k1+n k1+n k1 k1 k1
scale ss ms small med. large

None 1.00 1.36 2.19 6.55 2.97
Noise σ
0.00125 1.00 1.48 57.35 6.68 2.90
0.006 0.98 1.46 60.91 9.86 3.30
0.012 1.21 1.59 49.40 10.78 3.58

Density
Gradient 0.59 1.32 2.07 1.40 1.53
Stripes 0.6 1.09 2.04 1.54 1.89

average 0.89 1.38 28.99 6.13 2.69
reduc. 35.5%

Aug.
Our

Deep-
Fit

PCP-
Net
[9]

Jet
[6]

output k2+n k2+n k2 k2 k2
scale ss ms small med. large

None 0.46 0.54 1.61 2.91 1.59
Noise σ
0.00125 0.47 0.53 25.83 2.98 1.53
0.006 0.57 0.51 22.27 4.88 1.73
0.012 0.68 0.53 18.17 5.22 1.84

Density
Gradient 0.31 0.61 2.04 0.79 0.83
Stripes 0.31 0.55 1.92 0.89 1.09

average 0.466 0.54 11.97 2.94 1.43
reduc. 13.7%

Table 2: Comparison of normalized RMSE for (left) maximal (k1) and (right)
minimal (k2) principal curvature estimation of our DeepFit method to the classic
Jet [6] with three scales, and PCPNet [9]

Fig. 6: Curvature estimation error results for DeepFit compared to PCPNet. The
numbers under each point cloud are its normalized RMSE errors in the format
(k1, k2). The color corresponds to the L2 norm of the error vector mapped to a
heatmap ranging from 0-5.

14 Y. Ben-Shabat, S. Gould

(a)
(b)

Fig. 7: DeepFit performance in two subsequent application pipelines: (a) Pois-
son surface reconstruction. (b) Noise removal results using DeepFit predicted
weights.

Noise removal. The point-wise weight prediction network enables a better
fit by reducing the influence of neighboring points. This weight can also be
interpreted as the network’s confidence of that point to lie on the object’s surface.
Therefore, we can use the weight to remove points with low confidence. We first
aggregate the weights by summing all of its weight prediction from all of its
neighbors. Then we compute the mean and standard deviation of the aggregateed
weights and remove points under a threshold of µ(

∑
wi)−σ(

∑
wi). The output

point cloud contains less points than the original one and the removed points
are mostly attributed to outliers or noise. The results are depicted in Fig. 7b.

5 Summary

In this paper we presented a novel method for deep surface fitting for unstruc-
tured 3D point clouds. The method consists of estimating point-wise weights for
solving a weighted least square fitting of an n-jet surface. Our model is fully dif-
ferentiable and can be trained end-to-end. The estimated weights (at test time)
can be interpreted as a confidence measure for every point in the point cloud and
used for noise removal. Moreover, the formulation enables the computation of
normal vectors and higher order geometric quantities like principal curvatures.
The approach demonstrates high accuracy, robustness and efficiency compared
to state-of-the-art methods. This is attributed to it’s ability to adaptively select
the neighborhood of points through a learned model while leveraging classic ro-
bust surface fitting approaches, allowing the network to achieve high accuracy
with a low number of parameters and computation time.

Acknowledgments: This research was conducted by the Australian Research
Council Centre of Excellence for Robotic Vision (CE140100016).

DeepFit 15

References

1. Yizhak Ben-Shabat, Tamar Avraham, Michael Lindenbaum, and Anath Fischer.
Graph based over-segmentation methods for 3d point clouds. Computer Vision
and Image Understanding, 2018.

2. Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 3dmfv: Three-
dimensional point cloud classification in real-time using convolutional neural net-
works. IEEE Robotics and Automation Letters, 3(4):3145–3152, 2018.

3. Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. Nesti-net: Normal
estimation for unstructured 3d point clouds using convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 10112–10120, 2019.

4. Alexandre Boulch and Renaud Marlet. Fast and robust normal estimation for
point clouds with sharp features. In Computer Graphics Forum, volume 31, pages
1765–1774. Wiley Online Library, 2012.

5. Alexandre Boulch and Renaud Marlet. Deep learning for robust normal estimation
in unstructured point clouds. Computer Graphics Forum, 35(5):281–290, 2016.

6. Frédéric Cazals and Marc Pouget. Estimating differential quantities using polyno-
mial fitting of osculating jets. Computer Aided Geometric Design, 22(2):121–146,
2005.

7. Zheng Dang, Kwang Moo Yi, Yinlin Hu, Fei Wang, Pascal Fua, and Mathieu
Salzmann. Eigendecomposition-free training of deep networks with zero eigenvalue-
based losses. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 768–783, 2018.

8. Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. ACM Trans-
actions on Graphics (TOG), 26(3):23, 2007.

9. Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. Pcpnet learn-
ing local shape properties from raw point clouds. Computer Graphics Forum,
37(2):75–85, 2018.

10. Hugues Hoppe, Tony DeRose, Tom Duchampt, John McDonald, and Werner Stuet-
zle. Surface reconstruction from unorganized points. Computer Graphics, 26:2,
1992.

11. George Kamberov and Gerda Kamberova. Geometric integrability and consistency
of 3d point clouds. In 2007 IEEE 11th International Conference on Computer
Vision, pages 1–6. IEEE, 2007.

12. Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface recon-
struction. In Proceedings of the fourth Eurographics symposium on Geometry pro-
cessing, volume 7, 2006.

13. Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models. In The IEEE International Conference on
Computer Vision (ICCV), pages 863–872, Oct 2017.

14. Jan Eric Lenssen, Christian Osendorfer, and Jonathan Masci. Differentiable iter-
ative surface normal estimation. arXiv preprint arXiv:1904.07172, 2019.

15. Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural net-
work for real-time object recognition. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 922–928. IEEE, 2015.

16. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Discrete
differential-geometry operators for triangulated 2-manifolds. In Visualization and
mathematics III, pages 35–57. Springer, 2003.

16 Y. Ben-Shabat, S. Gould

17. Niloy J Mitra and An Nguyen. Estimating surface normals in noisy point cloud
data. In Proceedings of the Nineteenth Annual Symposium on Computational ge-
ometry, pages 322–328. ACM, 2003.

18. Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

19. Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems, pages 5099–5108, 2017.

20. Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle
meshes. In Proceedings. 2nd International Symposium on 3D Data Processing,
Visualization and Transmission, 2004. 3DPVT 2004., pages 486–493. IEEE, 2004.

21. Michael D Spivak. A comprehensive introduction to differential geometry. Publish
or perish, 1970.

	DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares

