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Abstract. This paper presents a novel relational network for group ac-
tivity recognition. The core of our network is to augment the conditional
random fields (CRF), amenable to learning inter-dependency of corre-
lated observations, with the newly devised temporal and spatial self-
attention to learn the temporal evolution and spatial relational contexts
of every actor in videos. Such a combination utilizes the global recep-
tive fields of self-attention to construct a spatio-temporal graph topol-
ogy to address the temporal dependency and non-local relationships of
the actors. The network first uses the temporal self-attention along with
the spatial self-attention, which considers multiple cliques with different
scales of locality to account for the diversity of the actors’ relationships in
group activities, to model the pairwise energy of CRF. Afterward, to ac-
commodate the distinct characteristics of each video, a new mean-field
inference algorithm with dynamic halting is also addressed. Finally, a
bidirectional universal transformer encoder (UTE), which combines both
of the forward and backward temporal context information, is used to
aggregate the relational contexts and scene information for group activ-
ity recognition. Simulations show that the proposed approach surpasses
the state-of-the-art methods on the widespread Volleyball and Collective
Activity datasets.

Keywords: bidirectional universal transformer encoder, self-attention
mechanism, conditional random field, graph cliques, group activity.

1 Introduction

Group activity recognition has received much attention in view of numerous
applications in abnormal event detection [1], sport tactical analysis [2], social
behaviours [3], and etc. Understanding group activities requires reasoning on
how interactions of every actor with different individual actions can lead to a
collective activity. This is a challenging issue as the relations among the actors are
dynamic [4] and, in addition, some individual actions may not be directly related
to the group activity [1, 5]. Therefore, it is of great importance to effectively learn
the spatial relational contexts and temporal evolution of the actors in the group
activity, as illustrated in Fig. 1.
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Fig. 1: A spatial-temporal graph learnt by the self-attention augmented CRF to model
spatial relations and temporal evolution of actors in ‘Left Spiking’ activity.

A number of methods have been proposed to deal with group activity recog-
nition. Earlier approaches [6–8] reasoned interactions of actors without a deep
network architecture. However, these approaches do not properly address the
temporal relationship of the actors and leverage complex semantic information
from deep networks. To tackle this setback, [3, 5, 9] utilized recurrent neural net-
work (RNN) to learn the dynamics of the individual actions. These methods,
however, do not consider the spatial relational structure of the actors that is
important in understanding complex group activities, where the actors’ appear-
ances and movements are dynamically changing. To learn the interactions of the
actors, Deng et al. [10] introduced a structure inference machine to construct a
graphical RNN model using a gating function. Shu et al. [11] proposed a graph-
ical long short-term memory (LSTM), composed of an energy-based layer that
can be optimized with a relatively small scale of data. Wang et al. [12] devel-
oped an efficient interaction model that combines person-level, group, and scene
information. Biswas et al. [13] designed a grid pooling layer to aggregate the in-
teraction information from the graphical RNN with a varying number of nodes
and edges. Ibrahim et al. [2] proposed an autoencoder network comprising of
multiple relational layers to learn multi-person interactions. Qi et al. [1] devel-
oped a soft attentive mechanism with message passing to model the interaction
of relevant actors. However, the aforementioned approaches [1, 2, 10, 11, 13] are
based on either RNN or LSTM, which generally requires a large variety of train-
ing data and may encounter the vanishing gradient problem [14]. Azar et al.
[15] proposed a specific convolutional neural network (CNN) to learn group ac-
tivities without explicitly detecting individual actions. Wu et al. [4] constructed
relational graphs based on self-similarity of the actors. However, the relational
graphs in [4] are limited to a few frames of observation without considering the
diversity of actors’ relationships at various spatial distances.

In this paper, we propose a novel relational network for group activity recog-
nition. The core of our network is to augment the mean-field conditional random
fields (CRF) [16] with the newly devised temporal and spatial self-attention to
learn the temporal evolution and spatial relational contexts of every actor in
videos. In contrast to the convolutional or recurrent architectures in [16, 17],
self-attention, which calculates the response of every position in a sequence by
relating it to all other positions, has global receptive fields across the whole
data [18, 19]. Such a combination thereby allows CRF, amenable to learning
inter-dependency of correlated observations, to infer individual actions based on
a spatio-temporal graph topology that considers temporal dependency of ev-
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Fig. 2: Overview of the proposed network, which first uses a self-attention augmented
CRF to produce the spatial relational contexts and temporal evolution of every ac-
tor. A bidirectional UTE is then used to aggregate the relational contexts and scene
information.

ery actor across the frames and their non-local relationships. The network first
employs the temporal self-attention along with the spatial self-attention, which
considers multiple fully-connected sub-graphs, cliques [20], with different scales
of locality to address the diversity of the actors’ relationships in the group ac-
tivities, in which their interactions can be local or non-local. As an illustration
in Fig. 1, the interaction between ‘blocking’ and ‘spiking’ in the last frame of
the ‘Left Spiking’ activity is local as those actions are close to each other while
in the first frame it is non-local. Thereafter, to accommodate the distinct char-
acteristics of each video, a new mean-field inference algorithm with dynamic
halting is also addressed. Finally, a bidirectional universal transformer encoder
(UTE) [21], which combines both of the forward and backward temporal context
information to deal with videos with similar patterns in the first few frames, is
utilized to aggregate the relational contexts with scene information. Simulations
show that our network can achieve state-of-the-art performance on the widely
adopted Volleyball and Collective Activity datasets.

The contributions of this paper include: (i) the mean-field CRF inference is
reinforced by the temporal and spatial self-attention to facilitate the learning
of the spatial relations and temporal evolution of the actors. To the best of the
authors’ knowledge, this is the first time CRF and self-attention are combined
together to jointly model the spatial-temporal relations of multiple actors in
action recognition; (ii) the CRF considers the pairwise energy with multi-scale
cliques to deal with the diverse relationships of multiple actors in every frame;
(iii) the proposed mean-field inference algorithm can adaptively decide an ap-
propriate number of iterations; (iv) a bidirectional UTE is devised to aggregate
the relational contexts and scene information for group activity recognition.

2 Related Works

CNN Based Action Recognition. CNN has become an important milestone
in video context understanding because of its effectiveness to extract meaningful
image features. In action recognition, the majority of CNN architectures can be
classified into two categories: two-stream networks [22–24], which are trained to
capture appearance and motion information from RGB frames and optical flow
images, and 3D networks [25, 26], which are composed of spatial and tempo-
ral convolutional layers to process a number of consecutive video frames. Some
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recent methods [27–29] combined both architectures to attain a good trade-off
between the accuracy and efficiency of the network in training and inference.
Attention Mechanism. Attention mechanism has been extensively used to
improve the capability of CNN to extract fine-grained image features [30–33].
Li et al. [30] made use of an attentional masking scheme to filter noisy back-
ground information for more precise video object segmentation. Zhang et al. [31]
proposed a generative adversarial network with a spatial attention mechanism
that helps localize attribute-specific regions for face attribute editing. Zhao et al.
[32] developed a pyramid feature attention network that can capture multi-level
visual contexts for saliency detection. Fu et al. [33] introduced a dual attention
network to learn correlation among channel and spatial feature maps.
Learning of Temporal Dependency. Temporal dependency is a core issue
in video understanding as the past information can help infer the present and
future behavior. For instance, a time-delayed graphical model was developed in
[34] to detect global anomaly from multiple disjoint cameras. Swears et al. [35]
took advantage of the Granger Causality to measure the temporal dependency
between two time sequences. Meanwhile, the majority of the approaches [36–38]
relied on RNN to learn temporal dependency from sequences of video frames.
However, RNN and its variants such as LSTM have difficulty to generalize when
the volume of training data is small and highly aperiodic [14]. Inspired by the
impressive success of transformer based methods [18, 21, 19] in natural language
processing, several recent works [39–43] made use of similar self-attention mech-
anisms in action recognition and detection.
Graphical Models. Graphical models [44–46] have been remarkably successful
in various image and video analysis tasks. Intille et al. [45] modeled correlation
of object trajectories to recognize complex activities. Morariu et al. [44] designed
markov logic networks to recognize events in structured scenarios. Xu et al. [46]
developed causal and-or graphs to learn the multiple person-object interaction
for tracking humans in videos. However, [44–46] are based on non-deep networks,
which can not capture spatial semantic information and not be integrated end-
to-end with deeper networks. Several approaches [47, 48] have addressed this
setback by using CNN for graph models to learn complex semantic information.
Li et al. [47] devised a deep relational network based on self-similarity to detect
important persons in images. However, it is limited to low dimensional features
from still images. Wang et al. [48] made use of graphical convolutional network
to model local and long-term dependency for single human action recognition,
but it is not devised for multiple-action scenario.

3 Feature Extraction Network
A feature extraction network, composed of a faster R-CNN on feature pyra-
mid network (FPN) with ResNet-50 [49] and a two-stream inflated 3D network
(I3D) [27] fine-tuned for individual action recognition, is employed to generate
multi-scale and 3D features, respectively. The final fully-connected layer and
the temporally-averaged last convolutional layer of FPN and I3D, respectively,
are used to extract appearance features from actors. Also, scene features from
the whole frame are generated using the same networks. The spatial location
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cues of each actor are obtained by concatenating its spatial position and the
spatial distances with the other actors. In addition, the pose information of ev-
ery actor, characterized by 17 keypoints, is extracted using AlphaPose [50]. The
appearance, spatial location, and pose information are aggregated by a linear
feed-forward layer to provide the final feature representation for every actor.

4 CRF for Individual Action Recognition

The graph representation for individual action recognition is illustrated in Fig.
1, where actors’ interactions in every frame and temporal evolution of every
actor are jointly modelled to infer individual action categories. Here, we define
an actor’s features in a particular frame obtained from the feature extraction
network in Sec. 3 as a node. A node in each frame is fully connected to the
other nodes in the same frame and a set of nodes from the same actor across
a temporal sliding window of M frames is temporally interconnected. Denote a
set of individual action labels X = {x1, · · · , xK} and a set of random variables
z = {z1,1, · · · , zM,N}, where zi,j ∈ X is a random variable assigned to node i in
frame j and N is the maximum number of actor in all frames.

The graph can be learnt by a conditional random fields (CRF) that abides
by the Markov random fields conditioned on all actors’ features B. A CRF
graph can be characterized by the Gibbs distribution of the form P (z|B) =

1
n(B)exp(−E(z|B)), where E(z|B) is the energy of the label assignment and

n(B) is the partition function [51]. In a fully-connected CRF model, the total
energy can be expressed as a summation of the unary and pairwise energies [52]:

E(z|B) =
∑
i,j

φu(zi,j |B) +
∑

(i′,j′) 6=(i,j)

φp(zi,j , zi′,j′ |B), (1)

where the first term is the unary energy used to compute the cost of assigning
a label zi,j ∈ z to node i in frame j and the second term is the pairwise energy
utilized to determine the cost of assigning labels to the same actor across the
frames and to different actors in the same frame.

Minimizing the total energy can provide the most probable label assignment.
However, in a dense pairwise graph, the exact minimization is intractable. So, a
mean-field algorithm [52] can be adopted to approximate P (z|B) by a product
of independent marginal distributions. However, the mean-field algorithm is not
suitable for end-to-end training with deep CNN. Moreover, it is not designed
for a spatio-temporal graph, in which the temporal dependency and non-local
relationships of the actors are also considered.

5 Proposed Method

This section first introduces temporal and spatial self-attention in Sec. 5.1, fol-
lowed by a self-attention augmented CRF to generate the relational context and
an individual action label for every actor in Sec. 5.2. Next, reformulation of the
mean-field inference as a self-attention network is described in Sec. 5.3, followed
by the bidirectional UTE for group activity recognition in Sec. 5.4. For easy
reference, the overall architecture of the proposed method is depicted in Fig. 2.
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5.1 Temporal and Spatial Self-Attention

Inspired by the success of self-attention to encode the structural information
of a sequence of data, we use it to model the link between every pair of the
nodes of a graph by their feature similarity. By self-attention, non-local edges
can be constructed as it has global receptive fields that can simultaneously relate
every node to the other nodes in the graph. Given an input sequence of nodes
V = [v1, · · · ,vTs

] ∈ RTs×F with a feature length of F and a sequence length of
Ts, the self-attention function S(vm) can be defined as [18]:

S(vm) = vm +
∑

∀m′∈{1,··· ,Ts}

p(vm,vm′)e3(vm), (2)

p(vm,vm′) =
e1(vm)e2(vm′)√

F

T

, (3)

where e1(·), e2(·), and e3(·) are linear transformations implemented by matrix
multiplication with trainable weights. Eqn. (3) computes the pairwise similarity
between two different nodes. For our problem, we consider two types of self-
attention, i.e. temporal self-attention and spatial self-attention.

The essence of temporal self-attention is to learn the temporal evolution of
an actor by feature similarity of the same actor across the frames. The temporal
evolution of actor i can be obtained by applying (2) to every node representation
of the actor i over M frames, {bi,1, · · · ,bi,M}. Suppose that the temporal self-
attention output for node i in frame j is rti,j = S(bi,j). Thereby, the temporal
self-attention applied to all actors in all frames, B = [b1,1, · · · ,bN,M ], can be
expressed as ST (B) = [rt1,1, · · · , rtN,M ] ∈ R(M×N)×F , where N is the maximum
number of actors in all frames.

A new spatial self-attention mechanism is devised here to learn the sta-
tistical correlations of all actors in every frame by their pairwise similarity. It
is designed to resolve the natural diversification of relationships among the ac-
tors as their interactions can be local or non-local, thereby making it difficult to
learn the statistical correlations of all actors. The major idea behind the spatial
self-attention is to prioritize the pairwise relationships of nodes with different
scales of locality. A pair of local nodes is assigned a high priority edge while a
pair of non-local nodes is assigned a low-priority edge. To compute the spatial
self-attention, the actors in every frame are divided according to their horizon-
tal positions into a set of cliques defined as fully-connected sub-graphs with l
nodes, 2 ≤ l ≤ N , where l represents the scale of locality of the cliques. For
every clique, (3) is used to compute the edges based on the pairwise similarity
of the nodes within that clique. The priority assignment for node i in frame j,
rsi,j , can thus be expressed as a linear combination of the self-attention outputs
from all cliques enclosing node i:

rsi,j = w2 · ps,2
i,j + · · ·+ wk · ps,k

i,j + · · ·+ wN · ps,N
i,j , (4)

where ps,k
i,j ∈ R1×F is the result of applying (2) to relate node i to the other k

nodes in frame j and wk is the corresponding trainable scalar weight. Eqn. (4)
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Fig. 3: (a) a pairwise fully connected graph constructed from three complete sub-graphs
with the number of nodes l = 2, 3, 6; (b) temporal self-attention connecting the same
actor across the frames.

facilitates the learning of actors’ diverse relationships by combining the edges
from all cliques with different localities, as illustrated in Fig. 3. Likewise, the
spatial self-attention applied to all nodes in all frames can be expressed as
SS(B) = [rs1,1, · · · , rsN,M ] ∈ R(M×N)×F .

5.2 Self-Attention Augmented Conditional Random Fields

To resolve the setback of the conventional CRF, this section considers a self-
attention augmented CRF to learn the temporal evolution and spatial relational
contexts of every actor. Different from convolutional or recurrent architectures,
self-attention can generate global receptive fields to facilitate CRF inference
having non-local edges while addressing temporal dependency of the actors.

The unary energy of assigning an action label to an actor is now obtained
by applying a linear feed-forward classifier, fu(·), to the feature of each node,
obtained from the feature extraction network described in Sec. 3:∑

(i,j)

φu(zi,j |B) = −
∑
i,j

fu(bi,j), (5)

The pairwise energy of assigning different individual action labels to the
same actor across the frames and to different actors in the same frame can be
modelled by the spatial and temporal self-attention as follows:∑

(i′,j′)6=(i,j)

φp(zi,j , zi′,j′ |B) = −
∑
i,j

fp(rsi,j + rti,j), (6)

where fp(·) is a linear transformation applied to the outputs of the spatial and
temporal self-attention for each node, rsi,j and rti,j , respectively, discussed in Sec.
5.1. Such a definition of pairwise energy can provide a measure of the cost for
assigning the relevant labels to a pair of nodes based on their feature similarity.
The new pairwise energy can be viewed as a degenerated version of the higher-
order CRF [53–55], where several graph cliques are used to enforce consistency in
labelling in image segmentation. However, learning the compatibility of several
actors in a clique simultaneously is more difficult as the actors’ interactions
are dynamic. Therefore, in contrast to the higher order potentials, we restrict
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Fig. 4: A single mean-field iteration modelled as a self-attention network.

the problem to the minimization of the pairwise energy based on multi-scale
cliques. As illustrated in Fig. 3, the edges of the pairwise graph are obtained by
a combination of the spatial self-attention outputs at different scales of cliques.

The total energy formed by the unary and pairwise energy can be minimized
by a new mean-field inference to be described in the next section.

5.3 Reformulation of Mean-Field Inference

The mean-field inference can be used to approximate Gibbs distribution of action
labels by a product of independent marginal distribution of all actors, Q(z) =∏

i,j Qzi,j , each of which is obtained from the unary and pairwise energy [52]:

Qzi,j =
1

Zi,j
exp
(
− qu(i, j)− qp(i, j)

)
, (7)

in which Zi,j is the normalization constant [52], and qu(i, j) = −fu(bi,j) and
qp(i, j) = −fp(rsi,j + rti,j) are respectively the unary and pairwise energies of
assigning a label zi,j to a node i in frame j and two labels at once to both the
node and the other node connected to it. Such an inference can be implemented
by iteratively stacking CNN kernels to refine the marginal distribution [16, 53,
17], which, however, do not consider temporal dependency and non-local actors’
interactions. To resolve the setback, we reformulate the mean-field inference
algorithm as a self-attention network as summarized in Algorithm 1, described
in details below.

Multiple mean-field iterations can be implemented by refining the marginal
distribution Q̂ = [−qp(1, 1), · · · ,−qp(M,N)] using self-attention networks, as
depicted in Fig. 4. The marginal distribution is initialized by the unary energy
Qu = [−qu(1, 1), · · · ,−qu(M,N)], as given in Step 5 of Algorithm 1. In each
iteration, the pairwise energy, Qp = [−qp(1, 1), · · · ,−qp(M,N)], is calculated
using the spatial and temporal self-attention, as given in Steps 7 to 8, followed
by compatibility transform, in Step 9, to learn the penalty of assigning labels
to a pair of nodes based on their correlation. Subsequently, in Steps 10 to 11,
the marginal distribution Q̂ is refined by an addition of the pairwise energy and
then normalized using a softmax layer [16]. Meanwhile, the node representation
is updated by combining the outputs of the temporal and spatial self-attention,
as given in Step 13. Finally, in Step 14, the probability of halting the iteration
is computed using (8) based on the current node representation.

Message Passing. We employ the temporal and spatial self-attention in Sec.
5.1 to connect every node by their feature similarity and address the non-local
interactions of the nodes. Implementing the message passing within mean-field
iterations is similar to increasing the depth of the self-attention network in [18,
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Algorithm 1 Mean-field inference of the self-attention augmented CRF

Input: B,max iter . actors’ features, maximum number of iterations

Output: Q̂, C̄ . individual action scores, final context representation

1: halt = 0 . initialization of the halting probability

2: v = 0
3: Cv = B . initialization of the node representation

4: Qu = fu(B) . feed forward classifier to obtain unary energy

5: Q̂ = softmax(Qu) . initialize the marginal distribution by the unary energy

6: while halt ≤ 1 and v ≤ max iter do
7: Compute ST (Cv) and SS(Cv) . message passing by temporal and spatial self-attention

8: Feed-forward layer applied to ST (B) and SS(B) to obtain Qt
p,Q

s
p

9: Qp = Qt
pU

t + Qs
pU

s
. compatibility transform

10: Q̄ = Qu + Qp . unary addition

11: Q̂ = softmax(Q̄) . update the marginal distribution of action labels

12: v = v + 1
13: Cv = ST (Cv−1) + SS(Cv−1) . update the node representation

14: halt = fs(Cv) . adaptive halting probability by sigmoidal function in Eqn. (8)

15: end while
16: C̄ = Cv . final relational context information

21]. First, denote the node feature representation at the vth mean-field iteration,
Cv, as the combination of the outputs of the temporal and spatial self-attention
in the previous iteration, i.e., Cv = ST (Cv−1) +SS(Cv−1), where C0 = B. The
pairwise energy by the temporal and spatial self-attention Qt

p,Q
s
p ∈ R(M×N)×K ,

where K is the number of individual action labels, is thus obtained by propagat-
ing the temporal and spatial self-attention outputs of the current node represen-
tation, ST (Cv) and SS(Cv), to linear feed forward layers. Thereafter, compati-
bility transform is performed by multiplying Us and Ut ∈ RK×K with Qs

p and
Qt

p, respectively, to learn the penalty of assigning labels to a pair of nodes based
on their correlation. Instead of using fixed penalty, the compatibility matrices
are trained to provide data-dependent penalty, provided that different labels are
assigned to nodes with high correlation.

Adaptive Mean-Field Iterations. Due to the diverse nature of actor inter-
actions in group activities, the mean-field inference in some videos may require
more iterations to converge. Consequently, instead of using a fixed number of
iterations for all videos, we resort to a dynamic halting scheme, which computes
the halting probability based on the current node representation. At the vth

iteration, the halting probability given the current node representation, Cv, is
obtained by using the sigmoid function with the corresponding weight matrix
Wh and bias Bh [21, 56]:

fs(Cv) = fs(Cv−1) + σ(WhCv +Bh) v ≥ 1, (8)

where fs(C0) = 0. Eqn. (8) computes the accumulated halting probability up to
the current iteration. Once the probability reaches one, the iteration stops and
the node representation at the last iteration is considered as the final relational
context information C̄. All inference parameters, including the trainable weights
in (2)-(8), are updated by back propagation.
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5.4 Bidirectional UTE for Group Activity Recognition

To recognize group activity in each frame, we aggregate the scene information
and the relational context representation, C̄, obtained in Secs. 3 and 5.2, re-
spectively, by UTE [21]. UTE combines the advantages of recurrent neural net-
works and self-attention in modelling the temporal correlation at distant posi-
tions with more flexible network depth. To this end, the relational representation
in each frame is first summarized as a weighted sum of feature vectors. Suppose
C̄j ∈ RN×F is the relational representation in frame j, it can be aggregated as:

gj = 1T (C̄jqj)
T C̄j , j = 1, . . . ,M. (9)

where 1 is an all-one vector and qj ∈ RF×N is a trainable weight. Subsequently,
for positional direction consideration, we employ the bidirectional self-attention
encoding to combine both of the forward and backward temporal contexts to
deal with videos with similar patterns in the first few frames. More specifically,
denote a concatenation of scene and context information for frame j as nj =
[gj , fj ] ∈ R1×2F . We can modify (2) to include positional masks as follows:

Sf (nj) = nj +
∑
∀j′

(
p(nj ,nj′)�Mf

j,j′

)
e3(nj), (10)

Sb(nj) = nj +
∑
∀j′

(
p(nj ,nj′)�M b

j,j′

)
e3(nj), (11)

where Sf (·) and Sb(·) are the self-attention functions in the forward and back-
ward directions, respectively, and{

Mf
j,j′ = 1, j < j′

0, otherwise
and

{
Mb

j,j′ = 1, j > j′

0, otherwise.
(12)

The bidirectional representation of self-attention in UTE can be expressed as

Sfb(nj) = Sf (nj) + Sb(nj), (13)

which is then propagated to a fully connected layer and a softmax layer to obtain
the group activity distribution for every frame.

6 Experimental Results

We evaluate the performance of our proposed method on two popular group
activity recognition datasets, Volleyball [5] and Collective Activity [57, 6], which
provide bounding boxes and tracking annotations.
Volleyball Dataset [5]. This dataset is a collection of 55 volleyball matches,
which are trimmed into 4830 short videos. Every video is composed of 41 frames
and categorized into one of eight group activity classes: ‘right set’, ‘right spike’,
‘right pass’, ‘right winpoint’, ‘left winpoint’, ‘left pass’, ‘left spike’ and ‘left set’
with nine possible individual action classes for every actor: ‘waiting’, ‘setting’,
‘digging’, ‘falling’, ‘spiking’, ‘blocking’, ‘jumping’, ‘moving’ and ‘standing’.
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Table 1: Impact of input features. The best results are bold-faced.

Appearance Spatial Location Pose
Accuracy

Volleyball Collective Activity
Group Activity Individual Action Group Activity

X - - 94.1 81.9 93.9

X X - 94.5 82.3 94.6

X X X 95.0 83.1 95.2Table 2: Performance comparison with various combination of modules. The best results
are bold-faced.

Spatial Self-Attention Accuracy
Max Augmented UTE [21] Bidirectional UTE Volleyball Collective Activity

Pooling [5] CRF Group Activity Individual Action Group Activity

X - - - 87.1 78.4 84.6

X X - - 94.0 82.5 93.9

- X X - 94.6 82.8 94.8

- X - X 95.0 83.1 95.2

Collective Activity Dataset [57, 6]. This dataset contains 44 untrimmed
video sequences captured by hand-held cameras from crowded daily environment.
There are five collective activities: ‘crossing’, ‘waiting’, ‘queueing’, ‘walking’, and
talking’ and six individual action labels: ‘NA’, ‘crossing’, ‘waiting’, ‘queueing’,
‘walking’, and ‘talking’. The group activity label in one frame is decided by the
largest number of the existing individual actions.

6.1 Experimental Settings

Faster R-CNN is fine-tuned with RGB images using stochastic gradient descent
(SGD) and a pre-trained COCO model with a learning rate of 0.0001, a mo-
mentum of 0.9, and a decay rate of 0.1 after 160K iterations for a total of 240K
iterations. The two-stream I3D is fine-tuned with a volume of 64 RGB and op-
tical flow images [58] using Adam and a pre-trained Kinetics with a learning
rate of 0.0001, a batch of 6, and a decay rate of 0.1 in every 5K iterations for a
total of 20K iterations. AlphaPose [50] with a pre-trained COCO model is used
to generate the keypoints. The features of the faster R-CNN, two-stream I3D,
spatial location, and pose information for each actor enclosed by a bounding box
from the annotation are aggregated into a feature dimension of F = 1024. The
self-attention augmented CRF and the bidirectional UTE are jointly trained
for both individual action and group activity recognition using Adam with a
learning rate of 0.0005, a decay rate of 0.1 after 60 epochs, for 100 epochs. The
multi-task loss function for our relational network consists of the cross entropy
for group activity and individual action recognition, L2 regularization loss [59],
and the pondering time penalty for the dynamic halting [21]. Same as [18], the
number of the parallel self-attention heads is 8 and the drop out rate is 0.1. To
simplify the pairwise graph complexity, we set l = {2, 4, 6, N}, where N = 12 and
13 for Volleyball and Collective Activity, respectively. The length of temporal
sliding window, M , and the maximum number of iterations of the self-attention
CRF are set as 10 for both datasets. The compatibility matrices are initialized
with the Potts model [16]. The experiments mainly follow the protocols and
evaluation metrics provided by Volleyball [5] and Collective Activity [57, 6].

6.2 Ablation Studies

Input Features. We first scrutinize the performance with a different combina-
tion of input features as shown in Table 1, from which we can see that with the
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Table 3: Impact of the number of iterations on our self-attention augmented CRF. The
best results are bold-faced.

Number of Iterations
Accuracy

Volleyball Collective Activity
Group Activity Individual Action Group Activity

1 92.1 81.0 92.3

5 93.4 82.1 94.3

8 94.2 82.5 93.5

10 93.1 81.8 92.7

Adaptive 95.0 (5 iterations) 83.1 (5 iterations) 95.2 (3 iterations)Table 4: Comparison with the state-of-the-art methods on Volleyball and Collective
Activity. The best results are bold-faced.

Method Backbone
Accuracy

Volleyball Collective Activity
Group Activity Individual Action Group Activity

Discriminative Latent Models (RGB) [60] - - - 79.1
Iterative Belief Propagation (RGB) [6] - - - 79.6
Structure Inference Machine (RGB) [10] AlexNet - - 81.2
HDTM (RGB) [5] AlexNet 81.9 - 81.5
HiRF (RGB) [7] - - - 83.1
Cardinality Potential Kernel (RGB) [8] - - - 83.4
SBGAR (RGB + Flow) [9] Inception-v3 67.6 - 86.1
SRNN (RGB) [13] AlexNet 83.5 - -
CERN (RGB) [11] VGG16 83.3 69.1 87.2
StagNet w/o Attention (RGB) [1] VGG16 87.9 81.9 87.7
StagNet w/ Attention (RGB) [1] VGG16 89.3 - 89.1
SSU (RGB) [3] Inception-v3 90.6 81.8 -
Recurrent Modelling (RGB + Flow) [12] AlexNet + GoogleNet - - 89.4
RCRG (RGB) [2] VGG19 89.5 - -
ARG (RGB) [4] Inception-v3 92.5 83.0 91.0
CRM (RGB + Flow) [15] I3D 93.0 - 85.8

Ours (RGB + Flow) I3D + FPN 95.0 83.1 95.2

addition of spatial location information, the group activity recognition perfor-
mance can be improved by 0.4% and 0.7% on Volleyball and Collective Activity,
respectively. This is because some volleyball activities usually have distinct ac-
tors’ positions as part of the game strategies. Also, for Collective Activity, the
majority of the action classes, which determines the overall group activity, are
located within a close distance to each other. The performance of individual
action classification on Volleyball can also be boosted by 0.4%, as some indi-
vidual action classes like ‘spiking’ and ’waiting’ have different spatial positions
throughout the video. Adding pose information helps bolster both group activity
and individual action recognition performance on Volleyball by 0.5% and 0.8%,
respectively. Also, the group activity classification on Collective Activity is im-
proved by 0.6%. This is because our CRF can learn the dynamic changes of the
actors’ poses and their relation with the other actors that are crucial in deter-
mining the group activity and the individual action categories. Consequently, we
employ all three features in the following simulations.

Functions of Modules. We assess the effect of the modules in our relational
network, as shown in Table 2, from which we can see that compared with using
only the node features by the feature extraction network, the proposed self-
attention augmented CRF can improve the individual action recognition perfor-
mance by 4.1% on Volleyball. The accuracy of group activity classification is also
boosted by 6.9% and 9.3% on Volleyball and Collective Activity, respectively,
compared to applying max pooling directly to aggregate the actors’ features in
every frame. This is because it can leverage the spatial relational context and
temporal evolution of every actor to precisely infer the group activity category.
Lastly, we assess the impact of bidirectional UTE. We can see that using the uni-
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directional UTE [21], the group activity recognition performance can be slightly
improved by 0.6% and 0.9% on Volleyball and Collective Activity, respectively.
The performance gain can be further enhanced respectively by 0.4% on both of
the datasets with a replacement of the bidirectional UTE.
Number of Iterations. We inspect the significance of using the adaptive num-
ber of iterations by using the dynamic halting scheme instead of a fixed one. As
shown in Table 3, the performance of the individual action and group activity
recognition on Volleyball is improved with the number of iterations, but it be-
gins to drop after it reaches 8 iterations. Similarly, on Collective Activity, the
accuracy of group activity classification stops to improve after 5 iterations. This
is because different videos require different numbers of iterations and increasing
the number of iterations can lead to overfitting. Meanwhile, the proposed adap-
tive inference, which in average converges in 5 iterations and 3 iterations for
Volleyball and Collective Activity, respectively, achieves the best performance.

6.3 Comparison with the State-of-the-Art Works

We first compare the proposed method with state-of-the-art works, including
HDTM [5], SBGAR [9], SRNN [13], CERN [11], StagNet [1], Recurrent Mod-
elling [12], SSU, [3], RCRG [2], ARG [4], and CRM [15], on Volleyball in terms of
the group activity and individual action recognition accuracy, as shown in Table
4, from which we can see that SBGAR [9] is the worst as it relies on the high-level
semantic caption data. This approach [9] is inferior to HDTM [5], CERN [11],
and SRNN [13], which aggregate individual actions using two-level of RNN. Con-
siderable improvement is attained by StagNet [1] as it models the relationships
among the actors using semantic attentive graphs. RCRG [2] achieves similar
performance by utilizing stacks of relational encoders. SSU [3] has even better
performance by multi-task learning of action detection and group activity recog-
nition. ARG [4] outperforms [3] by constructing an actor relational graph based
on self similarity. Without explicitly learning individual actions, CRM [15] yields
slightly better results by incorporating multi-stage refinement. Our work outper-
forms all of the aforementioned methods by learning the spatial relation and the
temporal evolution of actors using the self-attention endowed CRF. Also, our ap-
proach excels the state-of-the-art works that reported their performance on the
individual action recognition. This is because our self-attention augmented CRF
can model the non-local relationships and temporal dependency of the actors.
Some visualization results are shown in Fig. 5 (a), from which we can observe
that the the error comes from differentiating between ‘setting’ and ‘passing’ that
have similar actors’ movements.

Next, we compare the group activity recognition with twelve baselines, Dis-
criminative Latent Models [60], Iterative Belief Propagation (RGB) [6], Struc-
ture Inference Machine [10], HiRF [7], Cardinality Potential Kernel[8], HDTM
[5], SBGAR [9], CERN [11], StagNet [1], Recurrent Modelling [12], ARG [4], and
CRM [15], on Collective Activity. As shown in Table 4, CRM [15] has superior
performance compared with non-deep networks [60, 6–8] and relatively shallow
networks [10, 5] by learning the group activity from multi-stage convolutional
maps. SBGAR [9] outperforms [15] by capturing the dynamics of the semantic
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Fig. 5: Some group activity and individual action recognition results by our method,
where the individual action classification is in white while the incorrect classification
is marked by a red cross.

caption data. CERN [11] achieves even better performance by using an energy
based optimization scheme for training. StagNet outperforms [11] by incorpo-
rating an attention mechanism to determine important actor features for more
precise group activity recognition. Recurrent Modelling [12] yields even better
results as it uses multi-context information. ARG [4] attains higher accuracy by
constructing an actor relational graph based on self-similarity. Our method out-
performs all other works by modelling the spatial relation and temporal evolution
of the actors using the self-attention strengthened CRF. Some visualization re-
sults are depicted in Fig. 5 (b), from which we can see that ‘waiting’ can be
easily confused with ‘crossing’ and ‘walking’ as it has similar appearances.

7 Conclusions
This paper has developed an efficacious relational network for group activity
recognition. Our network first utilizes a self-attention augmented CRF to learn
the spatial relational context and temporal evolution of every actor. Such a
combination explores actors’ interactions from a graph topology with different
localities. Next, an adaptive mean-field inference is addressed. Finally, a bidirec-
tional UTE is used to amass the actors’ relational context and scene information.
Simulations show the effectiveness of the new approach on two common datasets.
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