
End-to-End Object Detection with
Transformers:

Supplementary material

Table of Contents

1 Appendix . 1
1.1 Preliminaries: Multi-head attention layers . 1
1.2 Losses . 2
1.3 Detailed architecture . 3
1.4 Training hyperparameters . 4
1.5 Additional results . 5
1.6 PyTorch inference code . 8
1.7 Acknowledgements . 9

1 Appendix

1.1 Preliminaries: Multi-head attention layers

Since our model is based on the Transformer architecture, we remind here the
general form of attention mechanisms we use for exhaustivity. The attention
mechanism follows [8], except for the details of positional encodings (see Equa-
tion 6) that follows [1].

Multi-head The general form of multi-head attention with M heads of dimen-
sion d is a function with the following signature (using d′ = d

M , and giving
matrix/tensors sizes in underbrace)

mh-attn : Xq︸︷︷︸
d×Nq

, Xkv︸︷︷︸
d×Nkv

, T︸︷︷︸
M×3×d′×d

, L︸︷︷︸
d×d

7→ X̃q︸︷︷︸
d×Nq

(1)

where Xq is the query sequence of length Nq, Xkv is the key-value sequence of
length Nkv (with the same number of channels d for simplicity of exposition), T
is the weight tensor to compute the so-called query, key and value embeddings,
and L is a projection matrix. The output is the same size as the query sequence.
To fix the vocabulary before giving details, multi-head self-attention (mh-s-attn)
is the special case Xq = Xkv, i.e.

mh-s-attn(X,T, L) = mh-attn(X,X, T, L) . (2)

The multi-head attention is simply the concatenation of M single attention
heads followed by a projection with L. The common practice [8] is to use residual

2 Carion et al.

connections, dropout and layer normalization. In other words, denoting X̃q =

mh-attn(Xq, Xkv, T, L) and ¯̄X(q) the concatenation of attention heads, we have

X ′q = [attn(Xq, Xkv, T1); ...; attn(Xq, Xkv, TM)] (3)

X̃q = layernorm
(
Xq + dropout(LX ′q)

)
, (4)

where [;] denotes concatenation on the channel axis.

Single head An attention head with weight tensor T ′ ∈ R3×d′×d, denoted by
attn(Xq, Xkv, T

′), depends on additional positional encoding Pq ∈ Rd×Nq and
Pkv ∈ Rd×Nkv . It starts by computing so-called query, key and value embeddings
after adding the query and key positional encodings [1]:

[Q;K;V] = [T ′1(Xq + Pq);T ′2(Xkv + Pkv);T ′3Xkv] (5)

where T ′ is the concatenation of T ′1, T
′
2, T

′
3. The attention weights α are then

computed based on the softmax of dot products between queries and keys, so
that each element of the query sequence attends to all elements of the key-value
sequence (i is a query index and j a key-value index):

αi,j =
e

1√
d′
QT

i Kj

Zi
where Zi =

Nkv∑
j=1

e
1√
d′
QT

i Kj . (6)

In our case, the positional encodings may be learnt or fixed, but are shared
across all attention layers for a given query/key-value sequence, so we do not
explicitly write them as parameters of the attention. We give more details on
their exact value when describing the encoder and the decoder. The final output
is the aggregation of values weighted by attention weights: The i-th row is given
by attni(Xq, Xkv, T

′) =
∑Nkv

j=1 αi,jVj .

Feed-forward network (FFN) layers The original transformer alternates
multi-head attention and so-called FFN layers [8], which are effectively multi-
layer 1x1 convolutions, which have Md input and output channels in our case.
The FFN we consider is composed of two-layers of 1x1 convolutions with ReLU
activations. There is also a residual connection/dropout/layernorm after the two
layers, similarly to equation 4.

1.2 Losses

For completeness, we present in detail the losses used in our approach. All losses
are normalized by the number of objects inside the batch. Extra care must be
taken for distributed training: since each GPU receives a sub-batch, it is not
sufficient to normalize by the number of objects in the local batch, since in
general the sub-batches are not balanced across GPUs. Instead, it is important
to normalize by the total number of objects in all sub-batches.

End-to-End Object Detection with Transformers: Supplementary Material 3

Box loss Similarly to [7, 5], we use a soft version of Intersection over Union in

our loss, together with a `1 loss on b̂:

Lbox(bσ(i), b̂i) = λiouLiou(bσ(i), b̂i) + λL1||bσ(i) − b̂i||1 , (7)

where λiou, λL1 ∈ R are hyperparameters and Liou(·) is the generalized IoU [6]:

Liou(bσ(i), b̂i) = 1−
(|bσ(i) ∩ b̂i|
|bσ(i) ∪ b̂i|

−
|B(bσ(i), b̂i) \ bσ(i) ∪ b̂i|

|B(bσ(i), b̂i)|

)
. (8)

|.| means “area”, and the union and intersection of box coordinates are used
as shorthands for the boxes themselves. The areas of unions or intersections
are computed by min /max of the linear functions of bσ(i) and b̂i, which makes

the loss sufficiently well-behaved for stochastic gradients. B(bσ(i), b̂i) means the

largest box containing bσ(i), b̂i (the areas involving B are also computed based
on min /max of linear functions of the box coordinates).

DICE/F-1 loss [3] The DICE coefficient is closely related to the Intersection
over Union. If we denote by m̂ the raw mask logits prediction of the model, and
m the binary target mask, the loss is defined as:

LDICE(m, m̂) = 1− 2mσ(m̂) + 1

σ(m̂) +m+ 1
(9)

where σ is the sigmoid function. This loss is normalized by the number of objects.

1.3 Detailed architecture

The detailed description of the transformer used in DETR, with positional en-
codings passed at every attention layer, is given in Fig. 1. Image features from
the CNN backbone are passed through the transformer encoder, together with
spatial positional encoding that are added to queries and keys at every multi-
head self-attention layer. Then, the decoder receives queries (initially set to zero),
output positional encoding (object queries), and encoder memory, and produces
the final set of predicted class labels and bounding boxes through multiple multi-
head self-attention and decoder-encoder attention. The first self-attention layer
in the first decoder layer can be skipped.

Computational complexity Every self-attention in the encoder has complex-
ityO(d2HW+d(HW)2):O(d′d) is the cost of computing a single query/key/value
embeddings (and Md′ = d), while O(d′(HW)2) is the cost of computing the at-
tention weights for one head. Other computations are negligible. In the decoder,
each self-attention is in O(d2N+dN2), and cross-attention between encoder and
decoder is in O(d2(N +HW) + dNHW), which is much lower than the encoder
since N � HW in practice.

4 Carion et al.

Add & Norm

FFN

Add & Norm

Multi-Head Self-Attention

+ +

K QV

N×

Image features

Encoder

Multi-Head Self-Attention

Add & Norm

Multi-Head Attention

Add & Norm

FFN

Add & Norm

+ +

K QV

+ +
K Q

M×

Decoder

V

Spatial positional
encoding Object queries

FFN FFN

Class Bounding Box

Fig. 1: Architecture of DETR’s transformer. Please, see Section 1.3 for details.

FLOPS computation Given that the FLOPS for Faster R-CNN depends on
the number of proposals in the image, we report the average number of FLOPS
for the first 100 images in the COCO 2017 validation set. We compute the
FLOPS with the tool flop count operators from Detectron2 [9]. We use it
without modifications for Detectron2 models, and extend it to take batch matrix
multiply (bmm) into account for DETR models.

1.4 Training hyperparameters

We train DETR using AdamW [2] with improved weight decay handling, set to
10−4. We also apply gradient clipping, with a maximal gradient norm of 0.1. The
backbone and the transformers are treated slightly differently, we now discuss
the details for both.

Backbone ImageNet pretrained backbone ResNet-50 is imported from Torchvi-
sion, discarding the last classification layer. Backbone batch normalization weights
and statistics are frozen during training, following widely adopted practice in ob-
ject detection. We fine-tune the backbone using learning rate of 10−5. We observe
that having the backbone learning rate roughly an order of magnitude smaller
than the rest of the network is important to stabilize training, especially in the
first few epochs.

End-to-End Object Detection with Transformers: Supplementary Material 5

Table 1: Effect of encoder size. Each row corresponds to a model with varied
number of encoder layers and fixed number of decoder layers. Performance grad-
ually improves with more encoder layers.

#layers GFLOPS/FPS #params AP AP50 APS APM APL

0 76/28 33.4M 36.7 57.4 16.8 39.6 54.2
3 81/25 37.4M 40.1 60.6 18.5 43.8 58.6
6 86/23 41.3M 40.6 61.6 19.9 44.3 60.2
12 95/20 49.2M 41.6 62.1 19.8 44.9 61.9

Transformer We train the transformer with a learning rate of 10−4. Additive
dropout of 0.1 is applied after every multi-head attention and FFN before layer
normalization. The weights are randomly initialized with Xavier initialization.

Losses We use linear combination of `1 and GIoU losses for bounding box re-
gression with λL1 = 5 and λiou = 2 weights respectively. All models were trained
with N = 100 decoder query slots.

Baseline Our enhanced Faster-RCNN+ baselines use GIoU [6] loss along with
the standard `1 loss for bounding box regression. We performed a grid search
to find the best weights for the losses and the final models use only GIoU loss
with weights 20 and 1 for box and proposal regression tasks respectively. For the
baselines we adopt the same data augmentation as used in DETR and train it
with 9× schedule (approximately 109 epochs). All other settings are identical to
the same models in the Detectron2 model zoo [9].

Spatial positional encoding Encoder activations are associated with corre-
sponding spatial positions of image features. In our model we use a fixed absolute
encoding to represent these spatial positions. We adopt a generalization of the
original Transformer [8] encoding to the 2D case [4]. Specifically, for both spatial
coordinates of each embedding we independently use d

2 sine and cosine functions
with different frequencies. We then concatenate them to get the final d channel
positional encoding.

1.5 Additional results

Some extra qualitative results for the panoptic prediction of the DETR-R101
model are shown in Fig.2.

Loss ablations. To evaluate the importance of different components of the
matching cost and the loss, we train several models turning them on and off.
There are three components to the loss: classification loss, `1 bounding box
distance loss, and GIoU [6] loss. The classification loss is essential for training
and cannot be turned off, so we train a model without bounding box distance
loss, and a model without the GIoU loss, and compare with baseline, trained with
all three losses. Results are presented in table 3. GIoU loss on its own accounts
for most of the model performance, losing only 0.7 AP to the baseline with

6 Carion et al.

(a) Failure case with overlapping objects. PanopticFPN misses one plane entirely, while
DETR fails to accurately segment 3 of them.

(b) Things masks are predicted at full resolution, which allows sharper boundaries than
PanopticFPN

Fig. 2: Comparison of panoptic predictions. From left to right: Ground truth,
PanopticFPN with ResNet 101, DETR with ResNet 101

Table 2: Results for different positional encodings compared to the baseline (last
row), which has fixed sine pos. encodings passed at every attention layer in
both the encoder and the decoder. Learned embeddings are shared between all
layers. Not using spatial positional encodings leads to a significant drop in AP.
Interestingly, passing them in decoder only leads to a minor AP drop. All these
models use learned output positional encodings.

spatial pos. enc. output pos. enc.
encoder decoder decoder AP ∆ AP50 ∆

none none learned at input 32.8 -7.8 55.2 -6.5
sine at input sine at input learned at input 39.2 -1.4 60.0 -1.6
learned at attn. learned at attn. learned at attn. 39.6 -1.0 60.7 -0.9
none sine at attn. learned at attn. 39.3 -1.3 60.3 -1.4
sine at attn. sine at attn. learned at attn. 40.6 - 61.6 -

combined losses. Using `1 without GIoU shows poor results. We only studied
simple ablations of different losses (using the same weighting every time), but
other means of combining them may achieve different results.

Decoder output slot analysis In Fig. 3 we visualize the boxes predicted
by different slots for all images in COCO 2017 val set. DETR learns different
specialization for each query slot. We observe that each slot has several modes of
operation focusing on different areas and box sizes. In particular, all slots have
the mode for predicting image-wide boxes (visible as the red dots aligned in the

End-to-End Object Detection with Transformers: Supplementary Material 7

Table 3: Effect of loss components on AP. We train two models turning off `1
loss, and GIoU loss, and observe that `1 gives poor results on its own, but when
combined with GIoU improves APM and APL. Our baseline (last row) combines
both losses.

class `1 GIoU AP ∆ AP50 ∆ APS APM APL

X X 35.8 -4.8 57.3 -4.4 13.7 39.8 57.9
X X 39.9 -0.7 61.6 0 19.9 43.2 57.9
X X X 40.6 - 61.6 - 19.9 44.3 60.2

Fig. 3: Visualization of all box predictions on all images from COCO 2017 val
set for 20 out of total N = 100 prediction slots in DETR decoder. Each box
prediction is represented as a point with the coordinates of its center in the 1-
by-1 square normalized by each image size. The points are color-coded so that
green color corresponds to small boxes, red to large horizontal boxes and blue
to large vertical boxes. We observe that each slot learns to specialize on certain
areas and box sizes with several operating modes. We note that almost all slots
have a mode of predicting large image-wide boxes that are common in COCO
dataset.

middle of the plot). We hypothesize that this is related to the distribution of
objects in COCO.

Increasing the number of instances By design, DETR cannot predict more
objects than it has query slots, i.e. 100 in our experiments. In this section,
we analyze the behavior of DETR when approaching this limit. We select a
canonical square image of a given class, repeat it on a 10×10 grid, and compute
the percentage of instances that are missed by the model. To test the model with
less than 100 instances, we randomly mask some of the cells. This ensures that
the absolute size of the objects is the same no matter how many are visible. To
account for the randomness in the masking, we repeat the experiment 100 times
with different masks. The results are shown in Fig.4. The behavior is similar
across classes, and while the model detects all instances when up to 50 are
visible, it then starts saturating and misses more and more instances. Notably,
when the image contains all 100 instances, the model only detects 30 on average,
which is less than if the image contains only 50 instances that are all detected.
The counter-intuitive behavior of the model is likely because the images and the
detections are far from the training distribution.

8 Carion et al.

20 40 60 80 100

0

10

20

30

40

50

60

70

Number of visible instances

%
of

m
is
se
d
in
st
an

ce
s dog

person
apple

Fig. 4: Analysis of the number of instances of various classes missed by DETR
depending on how many are present in the image. We report the mean and the
standard deviation. As the number of instances gets close to 100, DETR starts
saturating and misses more and more objects

Note that this test is a test of generalization out-of-distribution by design,
since there are very few example images with a lot of instances of a single class.
It is difficult to disentangle, from the experiment, two types of out-of-domain
generalization: the image itself vs the number of object per class. But since few
to no COCO images contain only a lot of objects of the same class, this type
of experiment represents our best effort to understand whether query objects
overfit the label and position distribution of the dataset. Overall, the experiments
suggests that the model does not overfit on these distributions since it yields
near-perfect detections up to 50 objects.

1.6 PyTorch inference code

To demonstrate the simplicity of the approach, we include inference code with
PyTorch and Torchvision libraries in Listing 1. The code runs with Python 3.6+,
PyTorch 1.4 and Torchvision 0.5. Note that it does not support batching, hence
it is suitable only for inference or training with DistributedDataParallel with
one image per GPU. Also note that for clarity, this code uses learnt positional
encodings in the encoder instead of fixed, and positional encodings are added
to the input only instead of at each transformer layer. Making these changes
requires going beyond PyTorch implementation of transformers, which hampers
readability. The entire code to reproduce the experiments will be made available
before the conference.

End-to-End Object Detection with Transformers: Supplementary Material 9

1 import torch
2 from torch import nn
3 from torchvision.models import resnet50
4

5 class DETR(nn.Module):
6

7 def __init__(self, num_classes, hidden_dim, nheads,
8 num_encoder_layers, num_decoder_layers):
9 super().__init__()

10 # We take only convolutional layers from ResNet-50 model
11 self.backbone = nn.Sequential(*list(resnet50(pretrained=True).children())[:-2])
12 self.conv = nn.Conv2d(2048, hidden_dim, 1)
13 self.transformer = nn.Transformer(hidden_dim, nheads,
14 num_encoder_layers, num_decoder_layers)
15 self.linear_class = nn.Linear(hidden_dim, num_classes + 1)
16 self.linear_bbox = nn.Linear(hidden_dim, 4)
17 self.query_pos = nn.Parameter(torch.rand(100, hidden_dim))
18 self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
19 self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
20

21 def forward(self, inputs):
22 x = self.backbone(inputs)
23 h = self.conv(x)
24 H, W = h.shape[-2:]
25 pos = torch.cat([
26 self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),
27 self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),
28], dim=-1).flatten(0, 1).unsqueeze(1)
29 h = self.transformer(pos + h.flatten(2).permute(2, 0, 1),
30 self.query_pos.unsqueeze(1))
31 return self.linear_class(h), self.linear_bbox(h).sigmoid()
32

33 detr = DETR(num_classes=91, hidden_dim=256, nheads=8, num_encoder_layers=6, num_decoder_layers=6)
34 detr.eval()
35 inputs = torch.randn(1, 3, 800, 1200)
36 logits, bboxes = detr(inputs)

Listing 1: DETR PyTorch inference code. For clarity it uses learnt positional
encodings in the encoder instead of fixed, and positional encodings are added
to the input only instead of at each transformer layer. Making these changes
requires going beyond PyTorch implementation of transformers, which hampers
readability. The entire code to reproduce the experiments will be made available
before the conference.

1.7 Acknowledgements

We thank Sainbayar Sukhbaatar, Piotr Bojanowski, Natalia Neverova, David
Lopez-Paz, Guillaume Lample, Danielle Rothermel, Kaiming He, Ross Girshick,
Xinlei Chen, Aishwarya Kamath and the whole Facebook AI Research Paris
team for discussions and advices without which this work would not be possible.

10 Carion et al.

References

1. Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention
and convolutional layers. In: ICLR (2020)

2. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2017)
3. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks

for volumetric medical image segmentation. In: 3DV (2016)
4. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.:

Image transformer. In: ICML (2018)
5. Ren, M., Zemel, R.S.: End-to-end instance segmentation with recurrent attention.

In: CVPR (2017)
6. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized

intersection over union. In: CVPR (2019)
7. Romera-Paredes, B., Torr, P.H.S.: Recurrent instance segmentation. In: ECCV

(2015)
8. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)
9. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2.

https://github.com/facebookresearch/detectron2 (2019)

