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Abstract. Human movement is goal-directed and influenced by the spa-
tial layout of the objects in the scene. To plan future human motion, it is
crucial to perceive the environment – imagine how hard it is to navigate
a new room with lights off. Existing works on predicting human motion
do not pay attention to the scene context and thus struggle in long-term
prediction. In this work, we propose a novel three-stage framework that
exploits scene context to tackle this task. Given a single scene image and
2D pose histories, our method first samples multiple human motion goals,
then plans 3D human paths towards each goal, and finally predicts 3D
human pose sequences following each path. For stable training and rigor-
ous evaluation, we contribute a synthetic dataset with clean annotations.
In both synthetic and real datasets, our method shows consistent quanti-
tative and qualitative improvements over existing methods. Project page:
https: // people. eecs. berkeley. edu/ ~ zhecao/ hmp/ index. html
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Fig. 1: Long-term 3D human motion prediction. Given a single scene image
and 2D pose histories (the 1st row), we aim to predict long-term 3D human motion
(projected on the image, shown in the 2-3rd rows) influenced by scene. The human
path is visualized as a yellow line.

1 Please refer to our arXiv for a longer version of the paper with more visualizations.

https://people.eecs.berkeley.edu/~zhecao/hmp/index.html
https://arxiv.org/pdf/2007.03672.pdf
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1 Introduction

Figure 1 shows the image of a typical indoor scene. Overlaid on this image is
the pose trajectory of a person, depicted here by renderings of her body skeleton
over time instants, where Frames 1-3 are in the past, Frame 4 is the present, and
Frames 5-12 are in the future. In this paper, we study the following problem:
Given the scene image and the person’s past pose and location history in 2D,
predict her future poses and locations.

Human movement is goal-directed and influenced by the spatial layout of
the objects in the scene. For example, the person may be heading towards the
window, and will find a path through the space avoiding collisions with various
objects that might be in the way. Or perhaps a person approaches a chair with
the intention to sit on it, and will adopt an appropriate path and pose sequence
to achieve such a goal efficiently. We seek to understand such goal-directed,
spatially contextualized human behavior, which we have formalized as a pose
sequence and location prediction task.

With the advent of deep learning, there has been remarkable progress on the
task of predicting human pose sequences [14,36,60,63]. However, these frame-
works do not pay attention to scene context. As a representative example, Zhang
et al. [63] detect the human bounding boxes across multiple time instances and
derive their predictive signal from the evolving appearance of the human figure,
but do not make use of the background image. Given this limitation, the predic-
tions tend to be short-term (around 1 second), and local in space, e.g., walking
in the same spot without global movement. If we want to make predictions that
encompass bigger spatiotemporal neighborhoods, we need to make predictions
conditioned on the scene context.

We make the following philosophical choices: (1) To understand long term
behavior, we must reason in terms of goals. In the setting of moving through
space, the goals could be represented by the destination points in the image.
We allow multi-modality by generating multiple hypotheses of human movement
“goals”, represented by 2D destinations in the image space. (2) Instead of taking
a 3D path planning approach as in the classical robotics literature [6,26], we
approach the construction of likely human motions as a learning problem by
constructing a convolutional network to implicitly learn the scene constraints
from lots of human-scene interaction videos.

Specifically, we propose a learning framework that factorizes this task into
three sequential stages as shown in Figure 2. Our model sequentially predicts the
motion goals, plans the 3D paths following each goal and finally generates the
3D poses. In Section 5, we demonstrate our model outperforms existing methods
quantitatively and generates more visually plausible 3D future motion.

To train such a learning system, we contribute a large-scale synthetic dataset
focusing on human-scene interaction. Existing real datasets on 3D human motion
have either contrived environment [21,58], relatively noisy 3D annotations [45], or
limited motion range due to the depth sensor [17,45]. This motivates us to collect
a diverse synthetic dataset with clean 3D annotations. We turn the Grand Theft
Auto (GTA) gaming engine into an automatic data pipeline with control over
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(a) predicted goals (b) planned paths (c) final poses

Fig. 2: Overall pipeline. Given a single scene image and 2D pose histories, our method
first samples (a) multiple possible future 2D destinations. We then predict the (b) 3D
human path towards each destination. Finally, our model generates (c) 3D human pose
sequences following paths, visualized with the ground-truth scene point cloud.

different actors, scenes, cameras, lighting conditions, and motions. We collect
over one million HD resolution RGB-D frames with 3D annotations which we
discuss in detail in Section 4. Pre-training on our dataset stabilizes training and
improves prediction performance on real dataset [17].

In summary, our key contributions are the following: (1) We formulate a
new task of long-term 3D human motion prediction with scene context in terms
of 3D poses and 3D locations. (2) We develop a novel three-stage computa-
tional framework that utilizes scene context for goal-oriented motion prediction,
which outperforms existing methods both quantitatively and qualitatively. (3)
We contribute a new synthetic dataset with diverse recordings of human-scene
interaction and clean annotations.

2 Related Work

Predicting future human motion under real-world social context and scene con-
straints is a long-standing problem [4,16,18,24,44]. Due to its complexity, most
of the current approaches can be classified into global trajectory prediction and
local pose prediction. We connect these two components in a single framework
for long-term scene-aware future human motion prediction.
Global trajectory prediction: Early approaches in trajectory prediction model
the effect of social-scene interactions using physical forces [18], continuum dy-
namics [49], Hidden Markov model [24], or game theory [33]. Many of these ap-
proaches achieve competitive results even on modern pedestrian datasets [29,43].
With the resurgence of neural nets, data-driven prediction paradigm that cap-
tures multi-modal interaction between the scene and its agents becomes more
dominant [4,5,8,16,34,44,47,62]. Similar to our method, they model the influence
of the scene implicitly. However, unlike our formulation that considers images
from diverse camera viewpoints, they make the key assumption of the bird-eye
view image or known 3D information [4,16,24,44].
Local pose prediction: Similar to trajectory prediction, there has been plenty
of interest in predicting future pose from image sequences both in the form of
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image generation [52,64], 2D pose [9,54], and 3D pose [11,15,61,63]. These meth-
ods exploit the local image context around the human to guide the future pose
generation but do not pay attention to the background image or the global scene
context. Approaches that focus on predicting 3D pose from 3D pose history also
exist and are heavily used in motion tracking [12,53]. The goal is to learn 3D
pose prior conditioning on the past motion using techniques such as Graphi-
cal Models [7], linear dynamical systems [42], trajectory basis [2,3], or Gaussian
Process latent variable models [48,50,55,56], and more recently neural networks
such as recurrent nets [14,22,32,36,41], temporal convolution nets [19,20,30], or
graph convolution net in frequency space [60]. However, since these methods
completely ignore the image context, the predicted human motion may not be
consistent with the scene, i.e, waling through the wall. In contrast, we propose to
utilize the scene context for future human motion prediction. This is similar in
spirit to iMapper [37]. However, this approach relies on computationally expen-
sive offline optimization to jointly reason about the scene and the human motion.
Currently, there is no learning-based method that holistically models the scene
context and human pose for more than a single time instance [10,28,31,57,59].

3D Human Motion Dataset Training high capacity neural models requires
large-scale and diverse training data. Existing human motion capture datasets
either contain no environment [1], contrive environment [21,58], or in the outdoor
setting without 3D annotation [35]. Human motion datasets with 3D scenes are
often much smaller and have relatively noisy 3D human poses [17,45] due to
the limitations of the depth sensor. To circumvent such problems, researchers
exploit the interface between the game engine and the graphics rendering system
to collect large-scale synthetic datasets [13,25]. Our effort on synthetic training
data generation is a consolidation of such work to the new task of future human
motion prediction with scene context.

3 Approach

In this work, we focus on long-term 3D human motion prediction that is goal-
directed and is under the influence of scene context. We approach this problem
by constructing a learning framework that factorizes long-term human motions
into modeling their potential goal, planing 3D path and pose sequence, as shown
in Figure 3. Concretely, given a N -step 2D human pose history X1:N and an
2D image2 of the scene I (the Nth video frame in our case), we want to predict
the next T -step 3D human poses together with their locations, denoted by a se-
quence YN+1:N+T . We assume a known human skeleton consists of J keypoints,
such that X ∈ RJ×2,Y ∈ RJ×3. We also assume a known camera model param-
eterized by its intrinsic matrix K ∈ R3. To denote a specific keypoint position,
we use the superscript of its index in the skeleton, e.g., Xr refers to the 2D
location of the human center (torso) indexed by r ∈ [1, J ].

2 We choose to represent the scene by RGB images rather than RGBD scans because
they are more readily available in many practical applications.
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Fig. 3: Network architecture. Our pipeline contains three stages: GoalNet predicts
2D motion destinations of the human based on the reference image and 2D pose
heatmaps (Section 3.1); PathNet plans the 3D global path of the human with the
input of 2D heatmaps, 2D destination, and the image (Section 3.2); PoseNet predicts
3D global human motion, i.e., the 3D human pose sequences, following the predicted
path (Section 3.3).

We motivate and elaborate our modular design for each stage in the rest
of the section. Specifically, GoalNet learns to predict multiple possible human
motion goals, represented as 2D destinations in the image space, based on a
2D pose history and the scene image. Next, PathNet learns to plan a 3D path
towards each goal – the 3D location sequence of the human center (torso) – in
conjunction with the scene context. Finally, PoseNet predicts 3D human poses
at each time step following the predicted 3D path. In this way, the resulting
3D human motion has global movement and is more plausible considering the
surrounding scene.

Thanks to this modular design, our model can have either deterministic or
stochastic predictions. When deploying GoalNet, our model can sample multi-
ple destinations, which results in stochastic prediction of future human motion.
If not deploying GoalNet, our model generates single-mode prediction instead.
We discuss them in more detail in the rest of the section and evaluate both
predictions in our experiments.

3.1 GoalNet : Predicting 2D Path Destination

To understand long-term human motion, we must reason in terms of goals. In-
stead of employing autoregressive models to generate poses step-by-step, we seek
to first directly predict the destination of the motion in the image space. We al-
low our model to express uncertainty of human motion by learning a distribution
of possible motion destinations, instead of a single hypothesis. This gives rise to
our GoalNet denoted as F for sampling plausible 2D path destination.

GoalNet learns a distribution of possible 2D destinations {X̂r
N+T } at the

end of the time horizon conditioned on the 2D pose history X1:N and the scene
image I. We parametrize each human keypoint Xj by a heatmap channel Hj

which preserves spatial correlation with the image context.
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We employ GoalNet as a conditional variational auto-encoder [23]. The model
encodes the inputs into a latent z-space, from which we sample a random z vector
for decoding and predicting the target destination positions. Formally, we have

z ∼ Q(z|H1:J
1:N , I) ≡ N (µ,σ), where µ,σ = Fenc(H

1:J
1:N , I). (1)

In this way, we estimate a variational posterior Q by assuming a Gaussian in-
formation bottleneck using the decoder. Next, given a sampled z latent vector,
we learn to predict our target destination heatmap with our GoalNet decoder,

Ĥr
N+T = Fdec(z, I), (2)

where it additionally conditions on the scene image. We use soft-argmax [46] to

extract the 2D human motion destination X̂r
N+T from this heatmap Ĥr

N+T . We
choose to use soft-argmax operation because it is differentiable and can produce
sub-pixel locations. By constructing GoalNet, we have

Ĥr
N+T = F(I,H1:J

1:N ). (3)

We train GoalNet by minimizing two objectives: (1) the destination prediction
error and (2) the KL-divergence between the estimated variational posterior Q
and a normal distribution N (0,1):

Ldest2D = ‖Xr
N+T − X̂r

N+T ‖1,
LKL = KL

[
Q
(
z|H1:J

1:N , I
)
||N (0, 1)

]
,

(4)

where we weigh equally between them. During testing, our GoalNet is able to
sample a set of latent variables {z} from N (0,1) and map them to multiple

plausible 2D destinations {Ĥr
N+T }.

3.2 PathNet : Planning 3D Path towards Destination

With predicted destinations in the image space, our method further predicts
3D paths (human center locations per timestep) towards each destination. The
destination determines where to move while the scene context determines how
to move. We design a network that exploits both the 2D destination and the
image for future 3D path planning. A key design choice we make here is that,
instead of directly regressing 3D global coordinate values of human paths, we
represent the 3D path as a combination of 2D path heatmaps and the depth
values of the human center over time. This 3D path representation facilitates
training as validated in our experiments (Section 5.3).

As shown in Figure 3, our PathNet Φ takes the scene image I, the 2D pose
history H1:J

1:N , and the 2D destination assignment Ĥr
N+T as inputs, and predicts

global 3D path represented as (Ĥr
N+1:N+T , d̂

r
1:N+T ), where d̂rt ∈ R denotes the

depth of human center at time t:

Ĥr
N+1:N+T , d̂

r
1:N+T = Φ(I,X1:J

1:N ,X
r
N+T ). (5)
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We use soft-argmax to extract the resulting 2D path X̂r
N+1:N+T from predicted

heatmaps Ĥr
N+1:N+T . Finally, we obtain the 3D path Ŷr

1:N+T by back-projecting
the 2D path into the 3D camera coordinate frame using the human center depth
d̂r
1:N+T and camera intrinsics K.

We use Hourglass54 [27,38] as the backbone of PathNet to encode both the
input image and 2D pose heatmaps. The network has two branches where the
first branch predicts 2D path heatmaps and the second branch predicts the depth
of the human torso.

We train our PathNet using two supervisions. We supervise our path predic-
tions with ground-truth 2D heatmaps:

Lpath2D = ‖Xr
N+1:N+T − X̂r

N+1:N+T ‖1. (6)

We also supervise path predictions with 3D path coordinates, while encouraging
smooth predictions by penalizing large positional changes between consecutive
frames:

Lpath3D = ‖Yr
1:N+T − Ŷr

1:N+T ‖1 + ‖Ŷr
1:N+T−1 − Ŷr

2:N+T ‖1. (7)

These losses are summed together with equal weight as the final training loss.
During training, we use the ground-truth destination to train our PathNet, while
during testing, we can use predictions from the GoalNet.

The GoalNet and PathNet we describe so far enable sampling multiple 3D
paths during inference. We thus refer to it as the stochastic mode of the model.
The modular design of GoalNet and PathNet is flexible. By removing GoalNet
and input Xr

N+T from Equation 5, we can directly use PathNet to produce
deterministic 3D path predictions. We study these two modes, deterministic and
stochastic mode, in our experiments.

3.3 PoseNet : Generating 3D Pose following Path

With the predicted 3D path Ŷr
1:N+T and 2D pose history X1:N , we use the

transformer network [51] as our PoseNet Ψ to predict 3D poses following such
path. Instead of predicting the 3D poses from scratch, we first lift 2D pose history
into 3D to obtain a noisy 3D human pose sequence Ȳ1:N+T as input, and further
use Ψ to refine them to obtain the final prediction. Our initial estimation consists
of two steps. We first obtain a noisy 3D poses Ȳ1:N by back-projecting 2D pose
history X1:N into 3D using the human torso depth d̂r

1:N and camera intrinsics K.
We next replicate the present 3D pose ȲN to each of the predicted future 3D
path location for an initial estimation of future 3D poses ȲN+1:N+T . We then
concatenate both estimations together to form Ȳ1:N+T as input to our PoseNet:

ŶN+1:N+T = Ψ(Ȳ1:N+T ). (8)

The training objective for PoseNet is to minimize the distance between the 3D
pose prediction and the ground-truth defined as:

Lpose3D = ‖YN+1:N+T − ŶN+1:N+T ‖1. (9)
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Fig. 4: Sample RGBD images from GTA-IM dataset. Our dataset contains re-
alistic RGB images (visualized with the 2D pose), accurate depth maps, and clean 3D
human pose annotations.

During training, ground-truth 3D path Yr
1:N+T is used for estimating coarse 3D

pose input. During testing, we use the predicted 3D path Ŷr
1:N+T from PathNet.

4 GTA Indoor Motion Dataset

We introduce the GTA Indoor Motion dataset (GTA-IM)3 that emphasizes
human-scene interactions. Our motivation for this dataset is that existing real
datasets on human-scene interaction [17,45] have relatively noisy 3D human pose
annotations and limited long-range human motion limited by depth sensors. On
the other hand, existing synthetic human datasets [13,25] focus on the task of
human pose estimation or parts segmentation and sample data in wide-open
outdoor scenes with limited interactable objects.

To overcome the above issues, we spend extensive efforts in collecting a syn-
thetic dataset by developing an interface with the game engine for controlling
characters, cameras, and action tasks in a fully automatic manner. For each
character, we randomize the goal destination inside the 3D scene, the specific
task to do, the walking style, and the movement speed. We control the lighting
condition by changing different weather conditions and daytime. We also diver-
sify the camera location and viewing angle over a sphere around the actor such
that it points towards the actor. We use in-game ray tracing API and synchro-
nized human segmentation map to track actors. The collected actions include
climbing the stairs, lying down, sitting, opening the door, and etc. – a set of
basic activities within indoor scenes. For example, the character has 22 walking
styles including 10 female and 12 male walking styles. All of these factors enable
us to collect a diverse and realistic dataset with accurate annotations for our
challenging task.

In total, we collect one million RGBD frames of 1920× 1080 resolution with
the ground-truth 3D human pose (98 joints), human segmentation, and camera
pose. Some examples are shown in Figure 4. The dataset contains 50 human
characters acting inside 10 different large indoor scenes. Each scene has several

3 Dataset available in https://github.com/ZheC/GTA-IM-Dataset

https://github.com/ZheC/GTA-IM-Dataset
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floors, including living rooms, bedrooms, kitchens, balconies, and etc., enabling
diverse interaction activities.

5 Evaluation

We perform extensive quantitative and qualitative evaluations of our future 3D
human path and motion predictions. The rest of this section is organized as fol-
lows: We first describe the datasets we use in Section 5.1. We then elaborate on
our quantitative evaluation metrics and strong baselines in Section 5.2. Further,
we show our quantitative and qualitative improvement over previous methods
in Section 5.3. Finally, we evaluate our long-term predictions and show qualita-
tive results of destination samples and final 3D pose results in Section 5.4. We
discussed some failure cases in Section 5.5.

5.1 Datasets

GTA-IM: We train and test our model on our collected dataset as described in
Section 4. We split 8 scenes for training and 2 scenes for evaluation. We choose
21 out of 98 human joints provided from the dataset. We convert both the 3D
path and the 3D pose into the camera coordinate frame for both training and
evaluation.
PROX: Proximal Relationships with Object eXclusion (PROX) is a new dataset
captured using the Kinect-One sensor by Hassan et al. [17]. It comprises of 12
different 3D scenes and RGB sequences of 20 subjects moving in and interacting
with the scenes. We split the dataset with 52 training sequences and 8 sequences
for testing. Also, we extract 18 joints from the SMPL-X model [39] from the
provided human pose parameters.

5.2 Evaluation Metric and Baselines

Metrics: We use the Mean Per Joint Position Error (MPJPE) [21] as a metric for
quantitatively evaluating both the 3D path and 3D pose prediction. We report
the performance at different time steps (seconds) in millimeters (mm).
Baselines: To the best of our knowledge, there exists no prior work that predicts
3D human pose with global movement using 2D pose sequence as input. Thus,
we propose three strong baselines for comparison with our method. For the first
baseline, we combine the recent 2D-to-3D human pose estimation method [40]
and 3D human pose prediction method [60]. For the second baseline, we use
Transformer [51], the state-of-the-art sequence-to-sequence model, to perform 3D
prediction directly from 2D inputs treating the entire problem as a single-stage
sequence to sequence task. For the third baseline, we compare with is constructed
by first predicting the future 2D human pose using [51] from inputs and then
lifting the predicted pose into 3D using [40]. Note that none of these baselines
consider scene context or deal with uncertainty in their future predictions. We
train all models on both datasets for two-second-long prediction based on 1-
second-long history and report their best performance for comparison.
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Table 1: Evaluation results in GTA-IM dataset. We compare other baselines in
terms of 3D path and pose error. The last column (All) is the mean average error of
the entire prediction over all time steps. VP denotes Pavllo et al. [40], TR denotes
transformer [51] and LTD denotes Wei et al. [60]. GT stands for ground-truth, xyz.
stands for directly regressing 3D coordinates of the path. We report the error of our
stochastic predictions with varying number of samples.

3D path error (mm) 3D pose error (mm)

Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 All ↓

TR [51] 277 352 457 603 291 374 489 641 406
TR [51] + VP [40] 157 240 358 494 174 267 388 526 211
VP [40] + LTD [60] 124 194 276 367 121 180 249 330 193

Ours (deterministic) 104 163 219 297 91 158 237 328 173

Ours (samples=4) 114 162 227 310 94 161 236 323 173
Ours (samples=10) 110 154 213 289 90 154 224 306 165

Ours w/ xyz. output 122 179 252 336 101 177 262 359 191
Ours w/o image 128 177 242 320 99 179 271 367 196
Ours w/ masked image 120 168 235 314 96 170 265 358 189
Ours w/ RGBD input 100 138 193 262 93 160 235 322 172
Ours w/ GT destination 104 125 146 170 85 133 178 234 137

5.3 Comparison with Baselines

In this section, we perform quantitative evaluations of our method in the two
datasets. We also show some qualitative comparisons in Figure 5. We evaluate the
two modes of our model: the stochastic mode that generates multiple predictions
by sampling different 2D destinations from the GoalNet; and the deterministic
mode that can generate one identical prediction without deploying GoalNet.
GTA-IM: The quantitative evaluation of 3D path and 3D pose prediction in
GTA-IM dataset is shown in Table 1. Our deterministic model with image input
can outperform the other methods by a margin, i.e., with an average error of
173 mm vs. 193 mm. When using sampling during inference, the method can
generate multiple hypotheses of the future 3D pose sequence. We evaluate differ-
ent numbers of samples and select the predictions among all samples that best
matches ground truth to report the error. We find using four samples during in-
ference can match the performance of our deterministic model (173 mm error),
while using ten samples, we further cut down the error to 165 mm. These results
validate that our stochastic model can help deal with the uncertainty of future
human motion and outperform the deterministic baselines with few samples.

As an ablation, we directly regress 3D coordinates (“Ours w/ xyz.” in the
Table 1) and observe an overall error that is 18 mm higher than the error of our
deterministic model (191 mm vs. 173 mm). This validates that representing the
3D path as the depth and 2D heatmap of the human center is better due to its
strong correlation to the image appearance. We also ablates different types of
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Table 2: Evaluation results in PROX dataset. We compare other baselines in
terms of 3D future path and pose prediction. VP denotes Pavllo et al. [40], TR denotes
transformer [51] and LTD denotes Wei et al. [60]. GT stands for ground-truth. We rank
all methods using mean average error of the entire prediction (last column).

3D path error (mm) 3D pose error (mm)

Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 All ↓

TR [51] 487 583 682 783 512 603 698 801 615
TR [51] + VP [40] 262 358 461 548 297 398 502 590 326
VP [40] + LTD [60] 194 263 332 394 216 274 335 394 282

Ours w/o GTA-IM pretrain 192 258 336 419 192 273 352 426 280
Ours (deterministic) 189 245 317 389 190 264 335 406 270

Ours (samples=3) 192 245 311 398 187 258 328 397 264
Ours (samples=6) 185 229 285 368 184 249 312 377 254
Ours (samples=10) 181 222 273 354 182 244 304 367 249

Ours w/ gt destination 193 223 234 237 195 235 276 321 237

input to our model. Without image input, the average error is 23 mm higher.
With only masked images input, i.e., replacing pixels outside human crop by
ImageNet mean pixel values, the error is 16 mm highe. This validates that using
full image to encode scene context is more helpful than only observing cropped
human image, especially for long-term prediction. Using both color and depth
image as input (“Ours w/ RGBD input”), the average error is 172 mm which is
similar to the model with RGB input. This indicates that our model implicitly
learns to reason about depth information from 2D input. If we use ground-truth
2D destinations instead of predicted ones, and the overall error decreases down
to 137 mm. It implies that the uncertainty of the future destination is the major
source of difficulty in this problem.

PROX: The evaluation results in Table 2 demonstrate that our method outper-
forms the previous state of the art in terms of mean MPJPE of all time steps,
270 mm vs. 282 mm. Overall, we share the same conclusion as the comparisons in
GTA-IM dataset. When using sampling during inference, three samples during
inference can beat the performance of our deterministic model (264 mm vs. 270
mm), while using ten samples, the error decreases to 249 mm. Note that these
improvements are more prominent than what we observe on GTA-IM bench-
mark. This is because the uncertainty of future motion in the real dataset is
larger. Therefore, stochastic predictions have more advantage.

Moreover, we find that pre-training in GTA-IM dataset can achieve better
performance (270 mm vs. 280 mm). Our method exploits the image context and
tends to overfit in PROX dataset because it is less diverse in terms of camera
poses and background appearance (both are constant per video sequence). Pre-
training in our synthetic dataset with diverse appearance and clean annotations
can help prevent overfitting and boost the final performance.
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Fig. 5: Qualitative comparison. We visualize the input (a), the results of VP[40]
and LTD [60] (b) and our results (c) in the ground-truth 3D mesh. The color of pose
is changed over timesteps according to the color bar. The first example includes both
top-down and side view. From the visualization, we can observe some collisions between
the baseline results and the 3D scene, while our predicted motion are more plausible
by taking the scene context into consideration.

Qualitative comparison: In Figure 5, we show qualitative comparison with
the baseline of VP [40] and LTD [60]. This baseline is quantitatively competitive
as shown in Table 1 and 2. However, without considering scene context, their
predicted results may not be feasible inside the 3D scene, e.g., the person cannot
go through a table or sofa. In contrast, our model implicitly learns the scene
constraints from the image and can generate more plausible 3D human motion.

5.4 Evaluation and Visualization on Longer-term Predictions

To demonstrate our method can predict future human motion for more than 2
seconds, we train another model to produce the 3-second-long future prediction.
In Figure 6, we show the self-comparisons between our stochastic predictions and
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(a) predicted 3D paths (b) predicted 3D poses

Fig. 6: Comparison between our stochastic predictions and deterministic
predictions. We show error curves of predicted (a) 3D paths and (b) 3D poses with
varying numbers of samples over varying timesteps on GTA-IM dataset. In all plots,
we find that our stochastic model can achieve better results with a small number of
samples, especially in the long-term prediction (within 2-3 second time span).

Fig. 7: Destination sampling results. In each image, the blue dots denote the path
history, the green dots are ground-truth future destination, red dots are sample desti-
nations from the GoalNet which we draw 30 times from the standard Gaussian. Our
method can generate diverse plausible motion destination samples which leads to dif-
ferent activities, i.e., sitting still or standing up.

deterministic predictions. Our stochastic models can beat their deterministic
counterpart using 5 samples. With increasing number of samples, the testing
error decreases accordingly. The error gap between deterministic results and
stochastic results becomes larger at the later stage of the prediction, i.e., more
than 100 mm difference at 3 second time step. This indicates the advantage of
the stochastic model in long-term future motion prediction.

We show qualitative results of our stochastic predictions on movement desti-
nations in Figure 7. We include more visualizations of our long-term stochastic
future motion prediction in the supplement and our arXiv paper. Our method
can generate diverse human movement destinations, and realistic 3D future hu-
man motion considering the environment context, e.g., turning left/right, walk-
ing straight, taking a U-turn, climbing stairs, standing up from sitting, and
laying back on the sofa.

https://arxiv.org/pdf/2007.03672.pdf
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Fig. 8: Visualization of failure cases. In each red circle area, we observe the inter-
section between the human feet and the 3D mesh, e.g., the bed.

5.5 Discussion of failure cases

Our model implicitly learns scene constraints in a data-driven manner from large
amounts of training data, and can produce consistent 3D human paths without
serious collision comparing to previous methods which do not take scene context
into consideration as shown in Figure 5. However, without assuming we have
access to the pre-reconstructed 3D mesh and using expensive offline optimization
as [17], the resulting 3D poses may not strictly meet all physical constraints of
the 3D scene geometry. Some failure cases are shown in Figure 8. In the red
circled area, we observe small intersections between the human feet and the
3D scene mesh, e.g., the ground floor or the bed. This issue could be relieved
by integrating multi-view/temporal images as input to the learning system to
recover the 3D scene better. The resulting 3D scene could be further used to
enforce explicit scene geometry constraints for refining the 3D poses. We leave
this to the future work.

6 Conclusion

In this work, we study the challenging task of long-term 3D human motion pre-
diction with only 2D input. This research problem is very relevant to many real-
world applications where understanding and predicting feasible human motion
considering the surrounding space is critical, e.g., a home service robot collabo-
rating with the moving people, AR glass providing navigation guide to visually
impaired people, and autonomous vehicle planning the action considering the
safety of pedestrians. We present an initial attempt in attacking the problem
by contributing a new dataset with diverse human-scene interactions and clean
3D annotations. We also propose the first method that can predict long-term
stochastic 3D future human motion from 2D inputs, while taking the scene con-
text into consideration. There are still many aspects in this problem that can
be explored in the future, such as how to effectively evaluate the naturalness
and feasibility of the stochastic human motion predictions, and how to incorpo-
rate information of dynamic objects and multiple moving people inside the scene.
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