NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis:
Supplementary Materials

This document contains additional implementation details for our method
and baseline methods used for comparison, as well as a more detailed breakdown
of quantitative results presented in the main paper. Please view our included
supplementary video for a brief overview of our method, convincing comparisons
of rendered novel view paths, and additional qualitative results.

1 Additional Implementation Details
Network Architecture Fig. 1 details our simple fully-connected architecture.

Volume Bounds Our method renders views by querying the neural radiance
field representation at continuous 5D coordinates along camera rays. For exper-
iments with synthetic images, we scale the scene so that it lies within a cube of
side length 2 centered at the origin, and only query the representation within
this bounding volume. Our dataset of real images contains content that can ex-
ist anywhere between the closest point and infinity, so we use normalized device
coordinates to map the depth range of these points into [—1,1]. This shifts all
the ray origins to the near plane of the scene, maps the perspective rays of the
camera to parallel rays in the transformed volume, and uses disparity (inverse
depth) instead of metric depth, so all coordinates are now bounded.

Training Details For real scene data, we regularize our network by adding
random Gaussian noise with zero mean and unit variance to the output o values
(before passing them through the ReLU) during optimization, finding that this
slightly improves visual performance for rendering novel views. We implement
our model in Tensorflow [1].

Rendering Details To render new views at test time, we sample 64 points per
ray through the coarse network and 64 + 128 = 192 points per ray through the
fine network, for a total of 256 network queries per ray. Our realistic synthetic
dataset requires 640k rays per image, and our real scenes require 762k rays per
image, resulting in between 150 and 200 million network queries per rendered
image. On an NVIDIA V100, this takes approximately 30 seconds per frame.

2 Additional Baseline Method Details

Neural Volumes (NV) [2] We use the NV code open-sourced by the authors at
https://github.com/facebookresearch/neuralvolumes and follow their procedure
for training on a single scene without time dependence.

2 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

y(x)
60

+ (o
7(x)
g —> 256 —> 256 —> 256 —» 25 —> 25 —» 256 —> 256 —> 256 256 —> 128 --> RGB
+
7(d)

24

Fig. 1: A visualization of our fully-connected network architecture. Input vectors
are shown in green, intermediate hidden layers are shown in blue, output vectors
are shown in red, and the number inside each block signifies the vector’s dimen-
sion. All layers are standard fully-connected layers, black arrows indicate layers
with ReLU activations, orange arrows indicate layers with no activation, dashed
black arrows indicate layers with sigmoid activation, and “4” denotes vector
concatenation. The positional encoding of the input location (y(x)) is passed
through 8 fully-connected ReLU layers, each with 256 channels. We follow the
DeepSDF [4] architecture and include a skip connection that concatenates this
input to the fifth layer’s activation. An additional layer outputs the volume den-
sity o (which is rectified using a ReLU to ensure that the output volume density
is nonnegative) and a 256-dimensional feature vector. This feature vector is con-
catenated with the positional encoding of the input viewing direction (y(d)),
and is processed by an additional fully-connected ReLU layer with 128 channels.
A final layer (with a sigmoid activation) outputs the emitted RGB radiance at
position x, as viewed by a ray with direction d.

Scene Representation Networks (SRN) [6] We use the SRN code open-
sourced by the authors at https://github.com/vsitzmann/scene-representation-
networks and follow their procedure for training on a single scene.

Local Light Field Fusion (LLFF) [3] We use the pretrained LLFF model
open-sourced by the authors at https://github.com/Fyusion/LLFF.

Quantitative Comparisons The SRN implementation published by the au-
thors requires a significant amount of GPU memory, and is limited to an image
resolution of 512 x 512 pixels even when parallelized across 4 NVIDIA V100
GPUs. We compute quantitative metrics for SRN at 512 x 512 pixels for our
synthetic datasets and 504 x 376 pixels for the real datasets, in comparison to
800 x 800 and 1008 x 752 respectively for the other methods that can be run at
higher resolutions.

NeRF Supplementary Materials 3
3 NDC ray space derivation

We reconstruct real scenes with “forward facing” captures in the normalized
device coordinate (NDC) space that is commonly used as part of the triangle
rasterization pipeline. This space is convenient because it preserves parallel lines
while converting the z axis (camera axis) to be linear in disparity.

Here we derive the transformation which is applied to rays to map them from
camera space to NDC space. The standard 3D perspective projection matrix for
homogeneous coordinates is:

5o 0 0
0% 0 0
M= § =Utn) —2fn 1)
00 === 5=
00 —1 0

where n, f are the near and far clipping planes and r and ¢ are the right and top
bounds of the scene at the near clipping plane. (Note that this is in the convention
where the camera is looking in the —z direction.) To project a homogeneous point
(7,y,2,1) T, we left-multiply by M and then divide by the fourth coordinate:

Do 0 0\ [z ng
02z 0 0 n
t Y tY
~(f+n) —2fn = | —gtn)’ —2fn (2)
00 Fon Fon z o ® =
00 -1 0 1 —z
project — T (3)
(f+n) _ ?fn 1

The projected point is now in normalized device coordinate (NDC) space, where
the original viewing frustum has been mapped to the cube [—1,1]3.

Our goal is to take a ray o+ td and calculate a ray origin o’ and direction d’
in NDC space such that for every ¢, there exists a new t' for which 7(o + td) =
o' + t'd’ (where 7 is projection using the above matrix). In other words, the
projection of the original ray and the NDC space ray trace out the same points
(but not necessarily at the same rate).

Let us rewrite the projected point from Eqn. 3 as (a,z/z,a,y/2,a, +b,/2)".
The components of the new origin o’ and direction d’ must satisfy:

a 0p+tdy
T o,+td, O; 4 t/d;
oy +td, _ ’ 1!
Ay 5. Fid. =1 9% +1 dy : (4)

/ 7 g7
a, + b, 0, +1 dz
Z o.+td.

To eliminate a degree of freedom, we decide that # = 0 and ¢ = 0 should map
to the same point. Substituting ¢ = 0 and ¢ = 0 Eqn. 4 directly gives our NDC

4 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

space origin o'

o, Ga o
o= |0, |=| e |=n(). (5)
O/
z az + gi

This is exactly the projection 7(0) of the original ray’s origin. By substituting
this back into Eqn. 4 for arbitrary ¢, we can determine the values of ¢ and d’:
+td

Ay Oz x

t/d; 0,+td,

! ! _ oyttdy _ Oy
)| - o
z

a; +

Ox
— Q.=
xoz

— @, — ==
z 0,

bZ
o+td.

0, (0g+tdy)—o0,(0.+td,)
Og (Oz +td,)Oz

0. (oy+tdy)—oy(0.+td.)
(0= +d=)o- (7

b 0,—(0.+td.)
Z (0y+td:)o.

q. —tdz de _ Og
To,+td. \ d. 0

= ay

= td, dy oy]
Ay o ttd; (dz 0z ()
_b td, 1
Zo0,+td, o,

Factoring out a common expression that depends only on ¢ gives us:

td, 1 0,
0, +td, 0, +td,

d = ay(;lfy_ofy) : (10)
_bzé

Note that, as desired, t = 0 when ¢ = 0. Additionally, we see that ¢’ — 1 as
t — oo. Going back to the original projection matrix, our constants are:

ap = _; (11)

ay=—% (12)
f+n

* f-n (13)

b, = 2" (14)

NeRF Supplementary Materials 5

Using the standard pinhole camera model, we can reparameterize as:

0 = ﬁv;g (15)
o) =5 (16)

where W and H are the width and height of the image in pixels and f..n, is the
focal length of the camera.

In our real forward facing captures, we assume that the far scene bound is
infinity (this costs us very little since NDC uses the z dimension to represent
inverse depth, i.e., disparity). In this limit the z constants simplify to:

a, =1 (17)
b, =2n. (18)

Combining everything together:

_ feam 0g

W/2 o,

o = _J;?/;% (19)

1422

_feam (de _ 0a
w/2 \ d. 0.

d = 7fcam(d7y,07y) . (20)

H/2 \ d. 0

—_opL
Oz

One final detail in our implementation: we shift o to the ray’s intersection with
the near plane at z = —n (before this NDC conversion) by taking o,, = o + t,d
for t,, = —(n+o0.)/d,. Once we convert to the NDC ray, this allows us to simply
sample ¢’ linearly from 0 to 1 in order to get a linear sampling in disparity from
n to oo in the original space.

4 Additional Results

Per-scene breakdown Tables 1, 2, 3, and 4 include a breakdown of the quanti-
tative results presented in the main paper into per-scene metrics. The per-scene
breakdown is consistent with the aggregate quantitative metrics presented in
the paper, where our method quantitatively outperforms all baselines. Although
LLFF achieves slightly better LPIPS metrics, we urge readers to view our sup-
plementary video where our method achieves better multiview consistency and
produces fewer artifacts than all baselines.

6 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

\ o

Pedestal

Cube

>

Ground Truth NeRF (ours) LLFF [3] SRN [6] NV [2]

Fig.2: Comparisons on test-set views for scenes from the DeepVoxels [5] syn-
thetic dataset. The objects in this dataset have simple geometry and perfectly
diffuse reflectance. Because of the large number of input images (479 views) and
simplicity of the rendered objects, both our method and LLFF [3] perform nearly
perfectly on this data. LLFF still occasionally presents artifacts when interpo-
lating between its 3D volumes, as in the top inset for each object. SRN [6] and
NV [2] do not have the representational power to render fine details.

PSNR+t SSIM T LPIPS)
Chair Pedestal Cube Vase | Chair Pedestal Cube Vase | Chair Pedestal Cube Vase
DeepVoxels [5] | 33.45 3235 2842 27.99 | 0.99 0.97 0.97 0.96 — - — —

SRN [6] 36.67 3591 28.74 31.46 | 0.982 0.957 0.944 0.969 | 0.093 0.081 0.074 0.044
NV [2] 35.15 36.47 26.48 20.39 | 0.980 0.963 0.916 0.857 | 0.096 0.069 0.113 0.117
LLFF [3] 36.11 35.87 32,58 3297 [0.992 0983 0.983 0.983 | 0.051 0.039 0.064 0.039
Ours 42.65 41.44 39.19 37.32| 0.991 0.986 0.996 0.992|0.047 0.024 0.006 0.017

Table 1: Per-scene quantitative results from the DeepVoxels [5] dataset. The
“scenes” in this dataset are all diffuse objects with simple geometry, rendered
from texture-mapped meshes captured by a 3D scanner. The metrics for the
DeepVoxels method are taken directly from their paper, which does not report
LPIPS and only reports two significant figures for SSIM.

NeRF Supplementary Materials 7

PSNR?t
Chair Drums Ficus Hotdog Lego Materials Mic Ship
SRN [6] | 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60
NV [2] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93
LLFF [3] | 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22
Ours 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65

SSIMt
Chair Drums Ficus Hotdog Lego Materials Mic Ship
SRN [6] | 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757
NV [2] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784
LLFF [3] | 0.948 0.890 0.896 0.965 0.911 0.890 0.964 0.823
Ours 0.967 0.925 0.964 0974 0.961 0.949 0.980 0.856

LPIPS])
Chair Drums Ficus Hotdog Lego Materials Mic Ship
SRN [6] | 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299
NV [2] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
LLFF [3] | 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218
Ours 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206

Table 2: Per-scene quantitative results from our realistic synthetic dataset. The
“scenes” in this dataset are all objects with more complex gometry and non-
Lambertian materials, rendered using Blender’s Cycles pathtracer.

8 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

PSNR?t
Room Fern Leaves Fortress Orchids Flower T-Rex Horns
SRN [6] 27.29 21.37 18.24 26.63 17.37 24.63 22.87 24.33
LLFF [3] | 28.42 22.85 19.52 29.40 18.52 25.46 24.15 24.70
Ours 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45

SSIMt
Room Fern Leaves Fortress Orchids Flower T-Rex Horns
SRN [6] | 0.883 0.611 0.520 0.641 0.449 0.738 0.761 0.742
LLFF [3] | 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840
Ours 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828

LPIPS|
Room Fern Leaves Fortress Orchids Flower T-Rex Horns
SRN [6] 0.240 0.459 0.440 0.453 0.467 0.288 0.298 0.376
LLFF [3] | 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193
Ours 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268

Table 3: Per-scene quantitative results from our real image dataset. The scenes
in this dataset are all captured with a forward-facing handheld cellphone.

NeRF Supplementary Materials 9

PSNR?
Chair Drums Ficus Hotdog Lego Materials Mic Ship
1) No PE, VD, H 28.44 2311 25.17 32.24 26.38 24.69 28.16 25.12
2) No Pos. Encoding 30.33 2454 29.32 33.16 27.75 27.79 30.76 26.55
3) No View Dependence | 30.06 23.41 25.91 32.65 29.93 24.96 28.62 25.72
4) No Hierarchical 31.32 2455 29.25 35.24 31.42 29.22 31.74 27.73
5) Far Fewer Images 30.92 22,62 24.39 32.77 27.97 26.55 30.47 26.57
6) Fewer Images 32.19 23.70 2745 3491 31.53 28.54 32.33 27.67
7) Fewer Frequencies 32.19 25.29 30.73 36.06 30.77 29.77 31.66 28.26
8) More Frequencies 32.87 24.65 29.92 35.78 32.50 29.54 32.86 28.34
9) Complete Model 33.00 25.01 30.13 36.18 3254 29.62 3291 28.65
SSIM*T
Chair Drums Ficus Hotdog Lego Materials Mic Ship
1) No PE, VD, H 0.919 0.896 0.926 0.955 0.882 0.905 0.955 0.810
2) No Pos. Encoding 0.938 0.918 0.953 0.956 0.903 0.933 0.968 0.824
3) No View Dependence | 0.948 0.906 0.938 0.961 0.947 0.912 0.962 0.828
4) No Hierarchical 0.951 0914 0.956 0.969 0.951 0.944 0.973 0.844
5) Far Fewer Images 0.956 0.895 0.922 0.966 0.930 0.925 0.972 0.832
6) Fewer Images 0.963 0911 0.948 0.971 0.957 0.941 0.979 0.847
7) Fewer Frequencies 0.959 0.928 0.965 0.972 0.947 0.952 0.973 0.853
8) More Frequencies 0.967 0921 0962 0973 0.961 0.948 0.980 0.853
9) Complete Model 0.967 0925 0964 0974 0961 0.949 0.980 0.856
LPIPS|
Chair Drums Ficus Hotdog Lego Materials Mic Ship
1) No PE, VD, H 0.095 0.168 0.084 0.104 0.178 0.111 0.084 0.261
2) No Pos. Encoding 0.076 0.104 0.050 0.124 0.128 0.079 0.041 0.261
3) No View Dependence | 0.075 0.148 0.113 0.112 0.088 0.102 0.073 0.220
4) No Hierarchical 0.065 0.177 0.056 0.130 0.072 0.080 0.039 0.249
5) Far Fewer Images 0.058 0.173 0.082 0.123 0.081 0.079 0.035 0.229
6) Fewer Images 0.051 0.166 0.057 0.121 0.055 0.068 0.029 0.223
7) Fewer Frequencies 0.055 0.143 0.038 0.087 0.071 0.060 0.029 0.219
8) More Frequencies 0.047 0.158 0.045 0.116 0.050 0.064 0.027 0.261
9) Complete Model 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206

Table 4: Per-scene quantitative results from our ablation study. The scenes used
here are the same as in Table 2.

10 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.
References
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow:
Large-scale machine learning on heterogeneous systems (2015)

Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural
volumes: Learning dynamic renderable volumes from images. ACM Transactions on
Graphics (SIGGRAPH) (2019)

. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,

R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics (SIGGRAPH) (2019)

. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learn-

ing continuous signed distance functions for shape representation. In: CVPR (2019)

. Sitzmann, V., Thies, J., Heide, F., Niefiner, M., Wetzstein, G., Zollhofer, M.: Deep-

voxels: Learning persistent 3D feature embeddings. In: CVPR (2019)

. Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: Con-

tinuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)

