ReferIt3D: Neural Listeners for Fine-Grained 3D
Object Identification in Real-World Scenes
Supplemental Material

Panos Achlioptas®, Ahmed Abdelreheem?, Fei Xial!,
Mohamed Elhoseiny!?, Leonidas Guibas!

! Stanford University
2 King Abdullah University of Science and Technology
1{panos, feixia, elhoseiny, guibas}@cs.stanford.edu,
2{ahmed.abdelreheem, mohamed.elhoseiny}@kaust.edu.sa

Contents of Supplemental

1. Details regarding Nr3D.
2. Details regarding Sr3D.
3. Implementation & Training Details.
4. More Ablations for ReferIt3DNet.

1 Building Nr3D Detalils

1.1 Making Stimuli

Nr3D is comprised by a total of 41503 utterances describing objects belonging
in one 76 fine-grained object classes in 5878 communication contexts (unique
sets {S, I}, where S denotes a specific scene, and I the (single) fine-grained class
of the contrasted objects of S). These communication contexts were created by
considering all 707 scenes of ScanNet [2] with all their fine-grained annotated
objects classes. Concretely, a context {S, I} of Nr3D satisfies:

1. 2 <o € SNclass-of(0) == I| < 6. In words, the contrasted objects are more
than 1 but not more than 6, and they are of the same fine-grained object
class.

2. There exist 5 or more scenes, S, for any given I, for which the above condition
is satisfied.

3. I is not a structural object class (‘wall’; ‘floor’, ‘ceiling’), nor a part of an
object (‘doorframe’; ‘stair rail’, ‘closet wall’), nor an object class that tends
to have vague or poorly annotated object instances (‘object’, ‘decoration’,
‘clothes’, ‘clothing’).

2 Panos Achlioptas et.al.,

1.2 Representing ScanNet Scenes on AMT

To create Nr3D, we utilized the web interface presented in Fig 1. The 3D scene
shown to users (acting as speakers or listeners) was a decimated mesh represen-
tation of a ScanNet scene. The high resolution mesh and low resolution (deci-
mated) mesh are obtained from ScanNet[2] dataset. The decimated mesh is then
UV-unwrapped to create texture mapping. Texture is mapped from high resolu-
tion ScanNet mesh to decimated mesh mentioned above and packed into GLTF2
format. This way, we can load the decimated mesh in browser fast while keeping
high visual quality of the mesh. The users can navigate the scene via rotation,
pan and zoom in any place of the given scene. The rendering is done in real-time
through a web browser.

3D Neural Listeners 3

INSTRUCTIONS (MUST READ)

STEP 1: Use your mouse to navigate and clearly see ALL GREEN and RED boxes in the scene below.

then...

STEP 2: Describe the object in the GREEN box so that another Turker can FIND IT given your description (you
get 4-cents bonus when he/she does).

RULES:

a. Do NOT describe missing details like holes or missing parts (e.g. "the chair with the broken back, next to a
hole", etc.)

b. Do NOT describe peculiarities of the boxes (e.g. “the box is tight/green/small")

c. To navigate the scene with a typical mouse: right-button:move, left-button:rotate, scroll:zoom
(on MacOS also use command key)

IMPORTANT Your partner (listening) Turker:

1. will enter the scene from a DIFFERENT view! so you might need to guide them, e.g. "facing the door...",
2. will see the boxes in the same scene, but all boxes will have a neutral color,
3. will be provided only with your description.

We truly want you to get this bonus. Please try. (due at most in 7 days)

You are looking at 6 boxes containing sofa chairs.

Submit

Fig. 1. Snapshot of the interface we used in Amazon Mechanical Turk to collect human
utterances while building the Nr3D. The Turkers were instructed to pay attention on
all objects in highlighted boxes, while ignoring any sampling artifacts (e.g., holes or
broken pieces of the objects). Furthermore, we motivated the Turkers to be effective
by providing them a financial bonus (50% of their base-pay) each time their produced
utterance enabled the paired listener to guess the target.

4 Panos Achlioptas et.al.,

2 Spatial Reference in 3D

Sr3D is built on top of ScanNet [2]. In this section we will discuss the generation
method for each spatial relation and how we created human-like utterances out
of these relations. In Table 1, we provide the number of unique communication

contexts for each relation type.

Spatial Relation||Contexts|
closest 17126
farthest 16875
between 3569

front 703
behind 113
left 518
right 546
supporting 390
supported by 357
above 960
under 629
Total 41786

Table 1. Detailed statistics of Sr3D. For each spatial relation we report the total
number of unique tuples (communication contexts) it creates in ScanNet.

3D Neural Listeners 5

2.1 Horizontal Proximity Based Relations

(a) Farthest Relation (b) Closest Relation
Target Distractor
. Object _ . Object
A > max(B: + epsilonGap) ., A < min(B; - epsilonGap) K
Distractor A Target '
Object : Object ' Bi

Top View

Fig. 2. This figure shows the horizontal (farthest/closest) relations. In (a), the target
is the farthest from the anchor object. In (b), it is the opposite. The farthest target to
the anchor object should be at a distance greater than epsilonGap from the distance
between the farthest distractor object and the anchor object.

This type of relations describes what the nearest (closest) and the farthest
target objects are according to a certain unique anchor object in the scene. To
generate such relations, we get the list of all anchor objects. Then for each anchor
object and each target fine-grained class, we calculate the pairwise distance
between each same-class target object and this anchor. If the farthest target
object to this anchor object is at a distance of epsilonGap greater than of the
second farthest target object, this combination of the anchor and the farthest
target object is used as a relation. Similar logic is used to get the closest relations
(See Fig. 2).

2.2 Support Relations

The support relations describe whether a target object is supporting (holding) or
supported by (held by) an anchor object. To be able to generate these relations
for an anchor object, we need to first get the target objects that lie in the vicinity

6 Panos Achlioptas et.al.,

of that anchor top/bottom surface. Then, we find the target objects that their
top/bottom surfaces touch the anchor’s bottom/top surface respectively (See
Fig.3). To check if an object is in the vicinity of the anchor object or not, we first
look at the two objects’ 2D bounding boxes in the top view then we calculate
the intersection area between them and the ratio of the object’s area to the
intersection area should be greater than a certain threshold. For an object to be
touching an anchor object, the difference in their bottom/top or top/bottom z
surfaces is within a small range.

(a) Supported-by Relation (b) Supporting Relation

Front View

Fig. 3. Example of support relations. In (a), the target is supported by the anchor
object and in (b) the target is supporting/holding the anchor object.

2.3 Vertical Proximity Based Relations

These relations represent whether a target object is considered above or below
the anchor object without touching each other. The generation method for this
type of relations is quite similar to the support relations but we make sure that
the target and the anchor objects do not touch each other (See Fig.4.)

2.4 Between Relations

The between relations describe the target objects that lie between two anchor
objects (see Fig. 5). To generate such types, we consider all possible pairs of

3D Neural Listeners 7

(a) Above Relation (b) Below Relation

Front View

Fig. 4. Examples of vertical (above/below) relations. In (a), the target is above the
anchor object and in (b) it is the opposite. The target and the anchor objects should
not be touching each other.

anchor objects. For each anchor pair, we look at the anchors’ 2D bounding boxes
in the top view (XY axes) and we find the convex hull of those 2D bounding
boxes. We search for target objects that satisfy the following conditions: (a) they
do not intersect with the two anchors; (b) they exist solely inside the convex hull
where none of their distractors are found inside; and (c) intersect with each of
the two anchors in the z-axis coordinates.

8 Panos Achlioptas et.al.,

Top View

Fig. 5. Example of a between relation. The green shaded area is the area where a
target object should be found to be considered as being between the two anchors. This
shaded area is the convex hull of the two anchor bounding boxes in the top view. None
of the target object’s distractors should be inside the shaded area.

3D Neural Listeners 9

2.5 Allocentric Relations

These relations indicate where a target object might exist with respect to the
anchor orientation. For example, the armchair (target object) that is at the right
of the TV (anchor object). For generating allocentric relations, we need to know:
(a) whether the anchor objects have an intrinsic front view (e.g., armchair) or
not (e.g., stool); and (b) the orientation of the objects in ScanNet. For (a), we
used the annotations of PartNet to extract if a chair has a back or not, so as to
define which ShapeNet chair models we will use. Also, we manually annotated
several ShapeNet models covering 33 categories in total. For (b) we utilized the
Scan2CAD [1] annotations that provide 9DOF alignments between ShapeNet
models and ScanNet objects. For every anchor object that has an intrinsic front
view, we create four oriented sections (regions) (see Fig. 6) and we try to find
the objects that solely occupy an oriented section where no distractors of the
same object class co-exist in there. For an object to occupy solely an anchor’s
oriented section, the ratio of its points inside the section over its total number
of points should be greater than a certain threshold (occupancy threshold).

Anchor’s Front Side

Anchor’s
Right Side

Anchor’s
Left Side

Target
Object

Anchor’s Back Side

Top View

Fig. 6. Allocentric relations generation. This figure shows how we determine where the
target object might exist with respect to one of the four oriented sections of the anchor
(front, back, left, and right). In this example the target object is at the back of the
anchor object.

10 Panos Achlioptas et.al.,

2.6 Creating Human-like Utterances

To create the human-like utterances out of the spatial references, we have created
template sentences for each spatial relation type. We chose to sample at most
2 utterances for each spatial relation by replacing the ”target” and ”anchor”
placeholders in the template sentences with the relation’s target and the anchor
instance types respectively.

3D Neural Listeners 11

3 Implementation Details

We use 4 graph-convolutional layers for DGCN each producing an intermediate
representation of 128 dimensions. Dy, Dy are also 128-dimensional each. We
set the o and 8 hyper-parameters controlling the contribution of the object and
text classification losses in the total loss to 0.5 each. To process the linguistic
information in our networks, we use a uni-directional LSTM cell [3] with 128
hidden units and word embeddings of 64D that were randomly initialized from
unit-normal Gaussian. We note that initializing the embeddings with a 100D
GloVe [5] embedding pre-trained on the 6B Wikipedia 2014 corpus did not give
any significant performance boost. For the object referential loss, we use an
MLP([128, 64, 1]) network. We sample 1024 points from the point cloud of each
segmented object before passing it to the object encoder.

3.1 Preprocessing utterances

We preprocess the collected human utterances by i) lowercasing, ii) tokenizing by
splitting off punctuation, iii) replacing tokens that appear less than three times
in the training split with a special symbol marking an unknown token (UNK).
Furthermore, we ignore all utterances comprised by more than 24 tokens (99th
percentile) and those for which the human listener in the underlying trial did
not guess correctly the target.

3.2 Training details

We use ADAM [4] with an initial learning-rate of 0.0005 and 8; = 0.9 across all
our experiments. We train each model for a mazimum of 100 epochs. We use the
test-set to evaluate performance at the end of each training epoch and stop the
training if we encounter 10 consecutive training epochs without improvement in
terms of test-accuracy. Our batch-size is 32 for all experiments, except for when
we train a model with Nr3D and Sr3D utterances (simultaneously) where we use
64 examples in each batch. Last, we use a learning-rate scheduler that reduces
the learning rate by a multiplicative factor of 0.65 every 5 consecutive epochs
that the test-accuracy did not improve.

4 Listening Ablations

We show the effect of using different values of k nearest neighbor-graph nodes
in the DGCN. We trained ReferIt3DNet-V2 with the default architecture on
Nr3D dataset and in Figure 7, we report the listening accuracies.

12 Panos Achlioptas et.al.,

0.37

0.36 -

0 o 0o
0.35 - e o e

0
0

C.

<
0.34 1 ®

0.33 1 ®

0.32 A

4 5 6 7 8 9 10 15 20 25 30
knn

Fig. 7. Reporting the Nr3D test accuracy upon training the default ReferIt3DNet-
V2 using different values of k nearest neighbor-graph nodes in the DGCN.

3D Neural Listeners 13

References

1. Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nieiner, M.: Scan2cad:
Learning cad model alignment in rgh-d scans. In: Conference on Computer Vision
and Pattern Recognition (CVPR) (2019)

2. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Niefiner: Scannet:

Richly-annotated 3d reconstructions of indoor scenes (2017)

Hochreiter, S., JiiRgen, S.: Long short-term memory. In: Neural Computation (1997)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

5. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP) (2014)

w

