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Abstract. In this work we study the problem of using referential lan-
guage to identify common objects in real-world 3D scenes. We focus on a
challenging setup where the referred object belongs to a fine-grained ob-
ject class and the underlying scene contains multiple object instances of
that class. Due to the scarcity and unsuitability of existent 3D-oriented
linguistic resources for this task, we first develop two large-scale and
complementary visio-linguistic datasets: i) Sr3D, which contains 83.5K
template-based utterances leveraging spatial relations among fine-grained
object classes to localize a referred object in a scene, and ii) Nr3D which
contains 41.5K natural, free-form, utterances collected by deploying a 2-
player object reference game in 3D scenes. Using utterances of either
datasets, human listeners can recognize the referred object with high
(>86%, 92% resp.) accuracy. By tapping on this data, we develop novel
neural listeners that can comprehend object-centric natural language and
identify the referred object directly in a 3D scene. Our key technical con-
tribution is designing an approach for combining linguistic and geometric
information (in the form of 3D point clouds) and creating multi-modal
(3D) neural listeners. We also show that architectures which promote
object-to-object communication via graph neural networks outperform
less context-aware alternatives, and that fine-grained object classification
is a bottleneck for language-assisted 3D object identification.

1 Introduction

The progress on connecting language and vision in the past decade has rekindled
interest in tasks like visual question answering (e.g., [12,54]), image caption-
ing (e.g., [28,63,68,41,6]), and sentence-to-image similarity (e.g., [28,31]). Recent
works have enhanced the accessibility of visual content through language via
grounding (e.g., [49,48]), showing strong results in locating linguistically de-
scribed visual elements in images. However, most of these works focus on devel-
oping better models that connect vision to language in images, which express
after all only a 2D view of our 3D reality. Even in embodied AI most works (e.g.,
embodied QA [21], or embodied visual recognition [69]), fine-grained 3D object
identification is not explicitly modeled. Fine-grained 3D understanding however



2 Panos Achlioptas et al.

1. “The chair closest to the door.”
2. “The chair under the chalkboard.”

1. “The office chair that is green.”
2. “Choose the brown office chair 

pushed under the desk.”

1
2

1 2

Fig. 1. Examples of natural free-form utterances. Each color-coded utterance
distinguishes the corresponding object (marked with same color) against a distracting
object in the underlying scene; contrasting two simple chairs (left) and two office-
chairs (right). The use of a specific contrasting context inside a scene (as delineated
by the bounding boxes surrounding all and only those objects of the same fine-grained
class) fosters the production of discriminative language and lifts the reference problem
beyond fine-grained classification.

can be essential to more 3D-oriented visually-grounded embodied tasks, such as
those that need to be performed by autonomous robotic agents [66,57].

Humans possess an astonishing capacity to reason about, describe, and lo-
cate 3D objects. Over time we have developed efficient communication protocols
to linguistically express such processes – e.g., given the utterance “the laptop
placed on the table next to the main door”, one can identify the referred ob-
ject in the room, as long as the reference conveys some unique aspect of that
object. Solving such a reference problem directly in 3D space – i.e., without a
camera view dependency – can benefit many downstream robotics applications,
including embodied question answering [21], visual- and language-based naviga-
tion [9], instruction following [58], and manipulating objects in a scene [67,37].
Despite this, developing datasets and methods with characteristics that enable
machine learning models to perform well on this 3D reference task is far from
straightforward; in this work, we examine how to address both.

Leveraging 3D visual understanding for solving vision and language tasks has
been recently explored in Visual Question Answering [33] and Visual Ground-
ing [50]. Still, the focus has been on synthetic datasets without 3D understand-
ing going beyond (at best) multiple 2D views. An alternative, yet more direct
way to gain this understanding is by analyzing point cloud data of real-world
scenes [3,52]. Point clouds carry the entire geometric and appearance character-
istics of objects and provide access to a larger spatial context (within a scene)
than a single 2D view [13]. This flexibility enables us also to bypass camera view
dependency (e.g., having access to parts of a scene occluded by a fixed camera)
when we refer linguistically to objects.



3D Neural Listeners 3

In this paper, we investigate object references when multiple instances of
the same fine-grained object class are present in a 3D scene. Discriminative un-
derstanding of object classes is important at the fine-grained level and can be
achieved with models combining appearance understanding and spatial reason-
ing skills (e.g., spatial understanding is not critical by itself if we are looking for
the unique office chair in the presence of one or more dining chair(s)). Creat-
ing discriminative linguistic descriptions: We focus on designing a data
collection strategy that covers both spatial and appearance based identification
(Sec. 3). As we show in our experiments, this step is critical for progress in 3D
visual object identification from free-form language descriptions. Our strategy
involves both synthetic and human-based generation of utterances, and has the
following characteristics: (i) in every single example there are multiple object
instances of the same class referred in the language describing the target 3D ob-
ject; (ii) in the case of human language utterances, we explicitly ask the human
subject to describe a target object in contrast to other instances of the same
object class. By explicitly contrasting the same fine-grained class instances and
only them, the resulting utterances are discriminative, even if uttered by crowd-
sourced annotators unfamiliar with the environment. Fig. 1 illustrates examples
of this. Developing a 3D neural listener: We also design a novel visio-
linguistic graph-convolution network that predicts the referred object given a
language description, by enabling communication among objects in a 3D visual
scene. Our contributions can be summarized below:

1. Fine-Grained ReferIt3D task: We introduce the task of language-based
identification of specific 3D object instances, where fine-grained object-centric
and multi-object understanding is necessary for its completion.

2. Nr3D and Sr3D datasets: We contribute a new dataset that contains nat-
ural and synthetic language descriptions, namely Nr3D and Sr3D respec-
tively. For Sr3D we propose a simple but effective methodology for build-
ing template-based and spatially-oriented object referential language in 3D
scenes. We show that training with Sr3D in addition to natural language
data (Nr3D or [18]) improves neural-based pipelines.

3. ReferIt3DNet: We explore the task of understanding object references
grounded in real-world 3D data (including both language and scenes) by de-
signing a novel visio-linguistic graph neural network, termed ReferIt3DNet3.

2 Related Work

2D High-Level Vision & Language: Vision & Language, also sometimes
called Visual Semantic modeling, has been extensively studied in a variety of
2D tasks. Among early approaches of combining Vision & Semantics are tasks
such as zero-shot learning where language/unseen descriptions of an unseen
class are provided to describe it (e.g., [70,35,7,26,55,59,25,39,24,38,74,61]). Sim-
ilar approaches have been developed to model image-sentence similarity for bi-
directional retrieval of images given a sentence (e.g., [28,31]). More recently, the

3 The datasets and neural listener code are available at https://referit3d.github.io

https://referit3d.github.io
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development of a large scale dataset of 2D Visual Question answering (VQA) [12]
enabled new approaches on how to best represent question and images for this
task. However, a huge language bias was revealed: just by looking at the lan-
guage and without necessarily understanding the visual content, the predictive
performance of the right answer is high [5]. The same bias was shown in tasks
such as image-captioning [22]. More balanced VQA benchmarks [27] mitigated
some of the biases and motivated the development of better attention mecha-
nisms (e.g., [30]) and modular networks [71,11]. As per the example of the 2D
Vision and Language community, properly modeling 3D visio-lingual tasks re-
quires establishing carefully designed connections between language and the 3D
visual data, encoded with point clouds.

2D ReferIt Game and Grounded Vision & Language: Several papers
explore connecting referential language to image regions for co-reference res-
olution (e.g., [15,53,42] – in videos, e.g., [8]), for generating referring expres-
sions [29,44,42], and more. Recent work grounds noun phrases in image cap-
tions, such as in Flickr30KEntities [49] and ActivityNetEntities [73] in videos.
In [23,43], the authors proposed the use of referring expressions for human-
robot interaction and object localization in real-word environments but using
primarily 2D images in contrast to our work.

Visual Relationships and Spatial Reasoning: Detecting visual relationships
in images such as <woman, carrying, umbrella> (e.g., [40,72,1]) has been ex-
plored using datasets such as VRD [40] and more recently on the large Visual
Genome dataset [32]. Spatial relations have also been studied in 3D by Rosema et
al. [56]. However, relations in that work are not described in free form and hence
are of restricted vocabulary. Also, the goal in [56] is simpler than identifying a
target object in a complex 3D environment (our goal).

3D Vision & Language: Connecting 3D vision to natural language is rel-
atively understudied. From a generative angle, [16] presented conditional gen-
eration of 3D models from text, which could be useful in augmented reality
applications. In a concurrent work [18], Chen et al., collected natural language
to localize/discover referred objects in 3D scenes. In contrast, we assume that
we are given the segmented object instances in a room and focus on identifying
a referred object among instances of the same fine-grained category.

ReferIt 3D Game. Our 41,503 human language utterances were collected via
a reference game between two humans, as inspired by 2D ReferItGame [29]
and ShapeGlot [3]. The basic arrangement of such games can be traced back
to the language games explored by Wittgenstein [65] and Lewis [36]. Recently,
these approaches have also been adopted as a benchmark for discriminative and
context-aware NLP [47,10,46,19,62,60,34,4]. Our paper goes beyond this prior
work by grounding language behavior in a reference task containing objects
in complex (real-world) 3D scenes, thereby eliciting compositional spatial and
color/shape-oriented language.
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3 Developing Referential 3D-Centric Data

The problem of language driven disambiguation of common objects in real world
3D scenes is new, and as such, not many datasets exist that are well suited for
this task. With this in mind we introduce a two-part dataset: a high quality
synthetic dataset of referential utterances (Sr3D) and a dataset with natural
(human) referential utterances (Nr3D). Both Sr3D and Nr3D are built on top
of ScanNet [20], a real-world 3D scene dataset with extensive semantic annota-
tions that we utilize to create appropriate contrastive communication contexts.
We define communication context as a (scene, target, distractor(s)) tu-
ple, where scene is one of the 707 unique indoor scenes of ScanNet, target is
one of 76 fine-grained object classes (e.g., office-chairs, armchairs, etc.), and dis-
tractors are instances of the same fine-grained object class as the target that
are contained in the same scene. We generate a total of 5878 unique tuples. We
select the 76 object classes by applying the following intuitive criteria. A class
is a valid class for a target if: (a) it is contained in at least 5 scenes; and (b)
each scene contains multiple distractors but not more than six (to promote a
problem beyond fine-grained (FG) classification without making it too hard even
for human annotators). We add the constraint of having 5 such scenes per class,
to foster generalization and make the problem less heavy-tailed (15.26% of all
annotated ScanNet classes appear with multiple instances in exactly one scene).
We also exclude the few classes that are object parts (e.g. a door of a closet)
or are structural elements of the scenes (i.e., walls, floors, and ceiling) to ensure
that we are working with common objects.

3.1 Creating Template Based Spatial References

We introduce the Spatial Reference in 3D (Sr3D) dataset, consisting of
83,572 utterances. Each utterance aims to uniquely refer to a target object in
a ScanNet 3D scene by defining a relationship between the target and a sur-
rounding object (anchor). Anchors are object instances that can belong to a set
of 100 object classes in ScanNet, comprising of the 76 mentioned above and an
additional 24 that: (a) frequently appear as singletons in a scene; and (b) are
large objects (e.g., a fireplace or a TV). However, an anchor can never belong
to the same class as the target and, as such, its distractors.

Consider, for instance, an underlying 3D scene with a target object (e.g.
desk) that can be completely disambiguated from its distractors with the help
of a spatial relation (e.g., closest) to an anchor object (e.g., door). We synthesize
discriminative Sr3D utterances using the following compositional template:

< target-class > < spatial-relation > < anchor-class(es) > (1)

e.g., “the desk that is closest to the door”. Per (1), the Sr3D template consists
of three placeholders. Our goal is to find combinations of them that can uniquely
characterize target objects among their distractors in their scenes.
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Fig. 2. Examples of spatial reference types of Sr3D. In the left image, there are exam-
ples of “horizontal proximity”, “between”, and “support” relations; the target object
in the first two is an armchair and the target in the third relation is a table. In the
right image, there are examples of “vertical proximity” and “allocentric” relations; the
target objects are an armchair and a table respectively. The left and the right images
represent a ScanNet scene where there exist two armchairs (one is beside the refriger-
ator and the other under the bulletin board) and three tables (a black one under the
bulletin board, one in front of the couch, and one in the corner of the room).

We define the following five types of spatial object-to-object relations. For
more details we refer the reader to Table 1 for a summary of statistics and to
the Supplementary Material [2].

(i) Horizontal Proximity: This type indicates how close/far is a target from
the anchors in the scene (Fig. 2, i). It applies to distance on the horizontal
placement of the objects.

(ii) Vertical Proximity: It indicates that the target is either above or below
the anchor (Fig. 2, ii).

(iii) Between: Between relations indicate the existence of a target between two
anchors (Fig. 2, iii).

(iv) Allocentric: Allocentric relations encode information about the location of
the target with respect to the intrinsic self-orientation of an anchor (Fig. 2,
iv). To define the aforementioned orientation, we need to know; (a) the ori-
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entated bounding boxes of the anchor and (b) whether the anchor has an
intrinsic front (e.g., a chair with a back) or not (e.g., a stool). For (a) we uti-
lized the Scan2CAD [14] annotations that provide 9DOF alignments between
ShapeNet models and ScanNet objects, and for (b) we used a combination
of PartNet’s [45] and manual annotations.

(v) Support: Support relations indicate that the target is either supported by
or supporting the anchor (Fig. 2, v).

Table 1. Statistics of Sr3D. The first row contains the number of distinct commu-
nication contexts yielded by each reference-type. The second row contains the number
of synthetically generated utterances. Please note that communication context in the
Sr3D setup also takes into account spatial relationships and anchors.

Relationship Horizontal Prox. Vertical Prox. Support Allocentric Between All

|Context| 34001 1589 747 1880 3569 41786
|Utterances| 68002 3178 1494 3760 7138 83572

Discussion Our protocol for generating Sr3D is simple but also effective:

– A user study conducted in Amazon Mechanical Turk (AMT) revealed that
86.1% of the time, humans guessed correctly the target when provided with
a sampled utterance of Sr3D (2K samples, p<0.001).

– As shown in Sec. 5, Sr3D allows us to investigate the reference problem in
a more controlled manner than Nr3D, by providing a homogeneous vocab-
ulary and a specific type of reasoning. For example, it bypasses color- or
shape- based reference, and other complicated factual reasoning (e.g., use of
brand names or metaphors).

Sr3D+: In addition to the dataset generation described above, we augment
Sr3D with more utterances choosing the target object’s class among those that
do not comply with the criterion of having more than one distractors in the
scene. Given the synthetic nature of the data, we can generate a large amount
of utterances in a cost-free way. We explore the contribution of Sr3D+ to the
final performance of our neural listener in Sec. 5. This additional set of data will
be particularly useful when comparing our method to the Unique setting of [18]
(Table 4), since it assumes that the target object is the only instance of that
class in the scene.

3.2 Natural Reference in 3D Scenes

The Natural Reference in 3D (Nr3D) dataset contains 41,503 human utterances
collected by deploying an online reference game in AMT. The game is played
between two humans: a ‘speaker’ who was asked to describe a designated target
object in a ScanNet 3D scene and a ‘listener’ who, given the speaker’s utterance,
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Fig. 3. Vocabulary histogram.

was asked to select the referred object
among its distractors. The game is struc-
tured such that both ‘speaker’ and ‘lis-
tener’ are rewarded when the target is suc-
cessfully selected, hence incentivising de-
scriptions that are most discriminative in
the context of a scene and a general audi-
ence.

Both players are shown the same 3D
scene in the form of a decimated mesh
model and can interact with it through a
3D interface. In order to remove any camera view bias, we initialize the ‘speaker’
and ‘listener’ 3D interfaces with different randomized camera parameters. Given
the specifics of the task and the difficulty of understanding the depicted 3D
real-world visual content by the non-expert players, we highlight with bounding
boxes (oriented when available) the target and distractors. We distinguish them
for the ‘speaker’ with red and green color respectively, whereas for the ‘listener’
there is no distinction among them. To encourage players to explore the scene
and familiarize themselves with all highlighted objects, we also provide them
with a total count of bounding boxes they should expect in the scene. For an
example of the speaker’s interface we refer the reader to Fig. 1 in Supplementary
Material [2].

We collect at least 7 utterances from different player pairs per target object.
During the collection process, we iterate over all object instances with the same
fine-grained object class in a scene (e.g., all 6 sofa chairs Fig. 1 in Supplemen-
tary Material [2]), providing to the dataset a symmetric property. Among the
collected utterances, some originate from games with unsuccessful results; these
are not used for training/learning purposes.

Discussion Before presenting our neural agents, we identify several important
properties of Nr3D:

– Performance in the gamified data collection process was high (92.2%), but
‘listeners’ made significantly more errors in the more challenging “hard”
contexts (90.0% vs. 94.7%, z = 17.5, p<0.001). We define “hard” contexts
as those 3D scenes that contain more than 2 distractors (Fig. 5 illustrates
examples of “hard” vs. “easy”).

– Speakers naturally produced longer utterances on average to describe targets
in hard contexts (approximately 12.5 words vs 10.2, t=-35, p<0.001). The
average number of words across all utterances (ignoring punctuation) is 11.4
and the median is 10.

– Regardless of the context difficulty, we identified two attributes in the de-
scriptive power of the utterances (Fig. 5): (a) the target is scene-discoverable
when it is uniquely distinguishable among objects in the entire scene and not
only its distractors. The majority of the utterances mention the fine-grained
class type or a close synonym of the target (91.6%). This naturally emerging
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property of Nr3D allows us to identify the target among all objects in the
room; and (b) the identification of the target is view-independent thus not
requiring the observer to place themselves into the scene facing certain ob-
jects. Although this attribute is not as prominent as the previous one (63%),
even in the case that there is view dependency, speakers were instructed to
guide the listeners on how to place themselves in the scene.

– The use of spatial prepositions is ubiquitous (90.5%), which exemplifies why
Sr3D is relevant. Reference to color and shape properties is drastically less
used in distinguishing instances of the same fine-grained object class. Fig. 3
is a frequency-histogram of the different types of language use.

4 Developing 3D Neural Listeners

Given a 3D scene S represented as an RGB-colored point-cloud of N points
S ∈ RN×6 and a word-tokenized utterance U = {u1, . . . , ut} we want to build a
neural listener that can identify the referred target object T ⊂ S. To this end,
we assume access to a partition of S = {O1, . . . , OM} that represents the objects
(Oi) present in S. While it is feasible to attempt identification (or more precisely,
in this case, object localization) by operating directly on the unstructured S ([51],
[18]), the problem of instance localization (especially for FG classes) remains
vastly unsolved. To overcome this and decouple the 3D instance-segmentation
problem from our referential setting, we assume access to the instance-level ob-
ject segmentations of the underlying scene. This choice allows us to cast the 3D
reference problem into a classification problem that aims to predict the referred
“target” among M segmented 3D instances.

While the above assumption eliminates the need to define each object in S,
it still leaves open the problems of: (i) FG object classification; (ii) recognition
of the referred object class (per the utterance); and (iii) the original problem
of selecting the referred object among the m options. For the first two tasks,
we experiment with a neural listener that utilizes two auxiliary cross-entropy
losses (Lfg, Ltext) aimed to decouple these intrinsic aspects of the original task.
Specifically, the two losses are added to the cross-entropy loss of the main task
in hand (Lref ) making a final loss that is a weighted sum of these terms:

Ltotal = α1Lfg + α2Ltext + Lref

Contextual scene understanding The above design is object-aware, but our un-
derlying task is also scene-oriented and heavily relies on the configuration of
the objects present in a scene. Because of this reason it is important to pro-
vide a neural listener with a signal that contains explicit information about the
scene it operates. A baseline that we explored to this end, is to create a Point-
Net++ hierarchical scene-feature (based on a large number of points of S) which
we fused with every visual representation extracted independently for each ob-
ject Oi. While the resulting representation is simultaneously object-centric and
scene-aware it is not taking into account explicit object-to-object interactions.
A more sophisticated approach – which is part of the ReferIt3DNet – uses a
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structured and explicit way of capturing object-to-object interactions to provide
information about the scene. Specifically, we use a dynamic graph-convolutional
network (DGCN) [64] that operates on the visual features of the objects present
in a scene (the object are nodes of a graph). The edges of this graph are computed
dynamically at each layer of the DGCN according to the Euclidean similarity
among the updated (per-node) visual features. In our experiments we use the
k-nearest neighbor-graph among the nodes (k = 7, chosen per validation). We
note that k = 7 creates a relatively sparse graph (the 90th percentile of the
number of objects in the training scenes is 52). For further details we refer the
reader to the Supplementary Material [2].

Incorporation of language An important decision regards how one should “fuse”
the linguistic signal in a pipeline like the above. Despite a chair being visually
different from a door, our graph-network should inspect the relation among these
objects, especially when the reference requires it (e.g., “the chair close to the
door”). To promote this action we fuse the visual (object) features with the
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Fig. 4. The ReferIt3DNet neural listener. A visual encoder processes (via a shared
PointNet++) each 3D object of a given scene that is represented by a 6D point cloud
containing its xyz coordinates and RGB color. Simultaneously, the utterance describing
the referred object (e.g., “the armchair next to the whiteboard”) is processed by a
Recurrent Neural Network (RNN). The resulting visio-linguistic representations are
fused together and processed by a Dynamic Graph Convolution Network (DGCN)
which creates an object-centric and scene- (context-) aware representation per object.
The output of the DGCN is processed by an MLP classifier that estimates for every
object its likelihood to be the referred one. Two auxiliary losses modulate the visio-
linguistic representations before they are processed by the DGCN via an FG object-
class classifier and a referential-text classifier (Lfg and Ltext – see text for details).



3D Neural Listeners 11

linguistic ones (derived by an RNN) before we pass them to the DGCN. We
also explore the effect of adding the linguistic features after the DGCN and in
both places – which is the best performing option. An overview of our pipeline
is illustrated in Fig. 4.

Hard contextEasy context
VI SD

“The lamp closer to the white armchair.”   

“Looking at bed, the one on the left.”

VI SD
“Closest to the person with the green shirt.”

“The lamp on the right in between the beds.”

Fig. 5. Easy vs. Hard communication contexts and examples of natural utterances
with attributes that affect a navigating/listening agent. Scene-Discoverable (SD):
does the utterance explicitly refer to the target’s object class (or a synonym), hence
permitting object-identification among all objects of the scene? View-Independent
(VI): Is the description in the utterance view-independent?

5 Experiments and Analysis

We explore different listening architectures 4 and report the listening accuracy;
each test utterance receives a binary score (1 if the correct object is predicted as
target and 0 otherwise). For all experiments we use the official-ScanNet splits.

1. Decoupled approach: This is a baseline listener consisting of a text clas-
sifier and an (FG) object classifier that are trained separately. Given an
utterance we use the text-clf to predict the referred object-class. Then we
select uniformly i.i.d. (and output) an object from Oi ∈ S for which the
object-clf matches the text-based prediction. We note that in Nr3D (Sr3D)
test accuracies for the two classifiers are 93.0% (100.0%) and 64.7% (67.4%),
indicating a noticeable asymmetry in the difficulty of solving the two tasks.

2. Vision + Language, no Context (V + L): Inspired by context-free
listening architectures like those in [4,46], we ground an RNN with the visual
feature of each object of Oi ∈ S, independently, and use a shallow classifier to
predict the likelihood of each Oi for being the referred target. This baseline
can encode visual properties of an object beyond its FG class enabling rich
(context-free) distinctions (e.g.,“very small, or yellow colored chair”).

4 Architecture details and hyper-parameters for all the experiments, are provided in
the Supplementary Material [2].
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Table 2. ReferIt3DNet performance on Nr3D with/out Sr3D. The first row
contains the achieved accuracy on the Nr3D testing data for a listener trained solely
with the Nr3D training set; the other rows showcase the effect of training simultane-
ously with the Sr3D/Sr3D+, respectively.

Overall Easy Hard View-dep. View-indep.

Nr3D 35.6%±0.7% 43.6%±0.8% 27.9%±0.7% 32.5%±0.7% 37.1%±0.8%
w/ Sr3D 37.2%±0.3% 44.0%±0.6% 30.6%±0.3% 33.3%±0.6% 39.1%±0.2%

w/ Sr3D+ 37.6%±0.4% 45.4%±0.6% 30.0%±0.4% 33.1%±0.5% 39.8%±0.4%

Table 3. Listening performance of various ablated models. The first two
columns contain the obtained accuracy when no auxiliary losses are used, and the
last two the accuracy when these losses are included.

Nr3D Sr3D Nr3D Sr3D

Aux. classification loss No Yes

Decoupled 25.45% 31.73% - -
V + L 26.12%±0.5% 32.61%±0.4% 26.62%±0.5% 32.98%±0.4%

V + L + C 27.45%±0.6% 34.7%±0.4% 28.51%±0.6% 37.2%±0.4%
ReferIt3DNet-A 32.3%±0.3% 39.7%±0.3% 33.4%±0.3% 41.0%±0.3%
ReferIt3DNet-B 31.8%±0.3% 38.1%±0.2% 33.0%±0.3% 40.5%±0.2%

ReferIt3DNet 32.4%±0.5% 38.4%±0.2% 35.6%±0.7% 39.8%±0.2%

3. Vision + Language + Holistic Context (V + L + C): Similar to the
above, but also fuses a PointNet++ scene-feature with each object’s visual
feature to ground the RNN. This enables the inspection of non-structured
context when solving the reference task (PointNet++ is applied on a non-
segmented scene point cloud).

4. Vision + Language + Graph (structured) Context (ReferIt3DNet):
This is our proposed listener and comes in three variants that differ w.r.t.
where we fuse the linguistic with the visual information.

Neural Listeners. Comparisons for the above models are presented in Table 3.
We observe the following main trends5: i) using the visual and linguistic auxiliary
classification losses improves performance; ii) Simplified language (Sr3D) makes
identification easier; iii) scene context matters a lot, but most importantly how
we incorporate the context (e.g., via DGCN, or direct fusion of PointNet++)
makes an important difference in performance. As expected, a more structured
versus a rudimentary representation favors better results; iv) where we fuse lan-
guage matters as well: ReferIt3DNet-A fuses after the DGCN, ReferIt3DNet-B
before, and the best performing (for Nr3D) model fuses in both places.

The results shown in Fig. 6 show the neural listener’s capability to under-
stand and locate objects in challenging 3D scenarios. For example, the top-right
example was successful despite the utterance being long. Referring to this par-
ticular trashcan among other similar ones requires both spatial reasoning and

5 In all results mean accuracies and standard errors across 5 random seeds are reported,
to control for the point cloud scene sampling.
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Table 4. ScanRefer performance with/out Sr3D. MeanIoU improvements when
combining Sr3D data with ScanRefer’s data during training.

Dataset
Unique Multiple Overall

P@0.25 P@0.5 P@0.25 P@0.5 P@0.25 P@0.5

ScanRefer 53.75% 37.47% 21.03% 12.83% 26.44% 16.90%
w/ Sr3D 59.99% 39.06% 21.69% 14.33% 28.02% 18.42%

w/ Sr3D+ 63.55% 42.18% 24.12% 15.75% 30.64% 20.12%

visual 3D understanding. Similar capability can be demonstrated in the two ex-
amples in the second row about the door and the cabinets. Finally, the last row
shows two challenging failure cases of our model. In the bottom-left example,
the utterance has wrongly placed the listener in the room (the chair is at the 3
o’clock position instead of 9). The bottom-right example is particularly hard to
solve; the scene is almost symmetric and stripped of visual features, making it
hard to discriminate among the chairs.

Combining Nr3D & Sr3D. In Table 2, we observe how combining the two
datasets provides a consistent boost in performance. This demonstrates the con-
tribution of adding a synthetically generated dataset to a human one. We get a
similar outcome when combining Sr3D to the ScanRefer [18] data (see Table 4).
We performed this experiment following the implementation in [17]. Going back
to Table 2, the results showcase that our neural listener performs better by a
margin in “easy” versus “hard” cases. This is expected and solidifies the un-
derstanding that more work needs to be done in discriminatively distinguishing
objects when there are multiple distractors in the scene. Another important find-
ing is that view-independent utterances are easier to solve than dependent ones.
This does not come as a surprise, since the network has naturally more work to
do to comprehend nuances related to viewing the scene w.r.t. another object.

6 Conclusion

Language assisted object disambiguation done directly for 3D objects in 3D en-
vironments is a novel but very challenging task. This is especially true when
one tries to distinguish among multiple instances of the same fine-grained object
category. In addition to the intrinsic difficulty of the problem, there is a scarcity
of appropriate datasets. Creating relevant visio-linguistic data that allow us to
study this problem is important for advancing 3D deep-learning that, similar to
2D visual learning, is a data hungry methodology. While our neural listeners are
a promising first step, more research has to be done before human-level perfor-
mance and generalization is attained. In summary, this paper has (a) introduced
the problem of fine-grained multi-instance 3D object identification in real-world
scenes; (b) contributed two relevant public datasets; and (c) explored an array
of sensible neural architectures for solving the referential task.
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Fig. 6. Qualitative results. Success cases are in the top four images and Failure in
the bottom two. Targets are shown in green boxes and distractors in red. The network
predictions are shown in a dashed yellow circle, along with the predicted probabilities.
Please note that probabilities of inter class distractors are not illustrated here.
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