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Abstract. An approach for estimating the pose of a camera given a set
of 3D points and their corresponding 2D image projections is presented.
It formulates the problem as a non-linear quadratic program and iden-
tifies regions in the parameter space that contain unique minima with
guarantees that at least one of them will be the global minimum. Each
regional minimum is computed with a sequential quadratic programming
scheme. These premises result in an algorithm that always determines
the global minima of the perspective-n-point problem for any number
of input correspondences, regardless of possible coplanar arrangements
of the imaged 3D points. For its implementation, the algorithm merely
requires ordinary operations available in any standard off-the-shelf linear
algebra library. Comparative evaluation demonstrates that the algorithm
achieves state-of-the-art results at a consistently low computational cost.
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1 Introduction

The perspective-n-point (PnP) problem concerns the recovery of 6D pose given
the central projections of n ≥ 3 known 3D points on a calibrated camera (cf.
Fig. 1). It arises often in vision and robotics applications involving localization,
pose tracking and multi-view 3D reconstruction, e.g. [44,39,50,36,33,40,23,42,32].

We begin with the definition of the PnP problem in order to establish no-
tation for the rest of the paper and remind the reader of the most typical cost
function formulations associated with the problem. For a set of known Euclidean
world points MMM i ∈ R3, i ∈ {1, . . . , n} and their corresponding normalized pro-
jections mmmi on the Z = 1 plane of an unknown camera coordinate frame, we
seek to recover the rotation matrix RRR and translation vector ttt minimizing the
cumulative squared projection error

n∑
i=1

∥∥∥∥mmmi −
RRRMMM i + ttt

111Tz (RRRMMM i + ttt)

∥∥∥∥2 , (1)
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(a) PnP problem setup. (b) Pose estimation with the proposed method.

Fig. 1. (a) The PnP setup for n = 4 points. The unknown camera pose comprises the

rotation matrix RRR =
[
rrrx rrry rrrz

]T
and the vector ttt from the camera center to the world

frame. (b) Camera pose estimation with the proposed method for four coplanar points
(colored dots). The inserted wireframe model reflects the pose estimate’s quality.

where 111z =
[
0 0 1

]T
and (RRRMMM i + ttt) /

(
111Tz (RRRMMM i + ttt)

)
is the projection of MMM i on

the Euclidean plane Z = 1 in the camera coordinate frame. The cost function (1)
is often employed with non-linear least squares to iteratively refine an initial
camera pose estimate; see, e.g., the use of the Gauss-Newton algorithm in [28,49].

Instead of comparing image projections, a slightly different formulation intro-
duced in [17] considers the sum of squared differences between the measured di-
rection vectors and those estimated from world points transformed in the camera

frame, i.e.
∑n
i=1

∥∥∥uuui − (RRRMMMi+ttt)
‖RRRMMMi+ttt‖

∥∥∥2, where uuui = mmmi
‖mmmi‖ is the unit direction vector

associated with the measured Euclidean projection mmmi in the camera frame.

1.1 Related work

Over the last two decades, numerous solutions to the PnP problem have been
proposed. In many cases, authors target specializations of the problem for a
specific number of points. Among them, of particular interest is the minimal
case for n = 3, i.e. P3P, which can be solved analytically by assuming noise-free
data [15,16,14,25]. When n > 3, multiple P3P solutions are typically used in the
context of random sampling schemes [10] to identify mismatches and determine
pose [42,32]. This approach is usually effective, however using minimal sets can
also produce skewed estimates if the data points are very noisy [43].

For the generic (i.e., n ≥ 3) PnP problem, Lepetit et al. [28] proposed EPnP,
in which an initial pose estimate is obtained by rotating and translating the 3D
points in their eigenspace and thereafter, solving the least squares (LS) formu-
lation without the orthonormality constraints. Optionally, the estimate can be
improved iteratively. Although EPnP can yield very good results, it nonetheless
relies on an unconstrained LS estimate, which can be skewed by noise in the
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data. It can also get trapped in local minima, particularly for small size inputs.
There have been a few extensions to EPnP such as the one proposed by Ferraz
et al. [9], whose main improvement upon the original algorithm is an iterative
outlier rejection scheme that enforces a rank-1 constraint on the data matrix.
A technique with procedural similarities to EPnP was proposed by Urban et
al. [48] with a cost function that penalizes the misalignment of a reconstructed
ray from the measured bearing and solved with ordinary least squares to ob-
tain an initial solution. Amongst general solvers there is also a purely iterative
method proposed by Lu et al. [34], which is initialized with a weak perspective
approximation and refines the rotation matrix via successive solutions to the ab-
solute orientation problem [20]. All the aforementioned methods can efficiently
solve the general PnP problem, however they are all heuristic in nature and do
not account for particular data configurations which yield multiple minima (e.g.,
P3P, P4P with coplanar points, etc.).

The largest class of PnP solvers in the literature comprises methods that ren-
der the problem unconstrained by utilizing a minimal degree of freedom (DoF)
parameterization scheme for the rotation matrix [46,47]. The corresponding first
order optimality conditions of the unconstrained optimization problem yield a
complicated system of (at least cubic) polynomials. Solving polynomial systems
with the aid of Gröbner basis solvers is a plausible approach [26,5,35]. Despite
that these solvers tend to perform better in practice than their overall exponen-
tial rating [2], they cannot provide strict limits on execution time. This can be
a serious drawback in applications such as robotic localization, which demand
results within tight time constraints. One of the earliest such methods is that
of Hesch and Roumeliotis [17], who proposed the Direct Least Squares (DLS)
algorithm that employs the Cayley transform [8] to parametrize the rotation ma-
trix and solve with resultants a quartic polynomial system obtained by the first
order optimality conditions. DLS inherits a singularity for 180◦ rotations from
its use of the Cayley transform [47]. A very similar solution was later proposed
by Zheng et al. [51,52], with improved rotation parameterization for singularity
avoidance and a Gröbner polynomial solver. In principle, both methods require
a number of elimination steps to recover in the order of 40 solutions which are
later substituted in the cost function to determine the global minimum.

Kukelova et al. [27] simplified the use of Gröbner basis solvers by introducing
an automatic solver generator suited for computer vision problems. This gener-
ator revived the interest in polynomial solvers and instigated a new work cycle
on the PnP problem. Bujnak et al. [6,7] used it to propose solutions for the
P3P and P4P with unknown focal length problems and reported relatively short
execution times. A more recent work that makes use of the automatic generator
is that by Nakano [37]. He derives an optimality condition without Lagrange
multipliers and proposes a globally optimal DLS method, parameterized by the
Cayley representation. It is also worth mentioning here the RPnP method by
Li et al. [29] which uses a relaxation of the PnP cost function by partitioning
the points in triads so that each triad can minimize the P3P condition under a
common unknown parameter. Owing to the partitioning, the first order condi-
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tions of RPnP are an eighth-degree polynomial in a single variable that can be
readily solved numerically. Despite its efficiency, the method is suboptimal due
to the bias associated with the choice of two common points in all triads. This
fact is acknowledged by Wang et al. [49], who extend RPnP by incorporating a
Gauss-Newton refinement of its estimate.

1.2 The PnP as a quadratic program with quadratic constraints

The objective function (eq. (2)) that will be suggested in Section 2 along with the
constraints on the elements of the rotation matrix can be used to cast the PnP
problem as a quadratically constrained quadratic program (QCQP). Equality-
constrained QCQPs are generally non-convex, NP-hard problems [41,21] and
there has been a substantial number of contributions dealing with various man-
ifestations of these problems in the optimization literature, e.g. [3,1,11,22,19].

To the best of our knowledge, only Schweighofer and Pinz [45] have ap-
proached the PnP problem as a QCQP. In that work, the problem is transformed
into a semi-definite positive program that is solved with general purpose soft-
ware. To achieve this, the original problem is substituted with a relaxation that
seeks to maximize a lower bound of the global minimum expressed as a sum
of squares polynomials. The method is generally effective, yet overly slow and
requires slightly different approaches for special cases (e.g. coplanar points) as
well as careful parameter tuning to achieve convergence.

1.3 Contributions

In this work we present an algorithm, called SQPnP, which casts PnP as a non-
linear quadratic program (NLQP) with a cost function similar to these in [34,45].
However, instead of solving a relaxation of the problem or a polynomial system
on the rotation parameters, our approach concentrates on special feasible points,
from which it locates a small set of regional minima, guaranteed to contain the
global one. Our contribution is two-fold:
1. Present a novel non-polynomial solver that possesses a number of desirable

features generally not jointly present in existing methods:
– It is truly generic and solves the PnP for any number and/or spatial

arrangement of points without the need for any special treatment.
– It is resilient to noise and recovers the global optima with the same or

higher accuracy and consistency than those of state-of-the-art polyno-
mial solvers.

– Its complexity scales linearly with the number of points by virtue of
invoking a small number of local searches, each completed in a bounded
number of steps.

– Its implementation is relatively short and simple, requiring only standard
linear algebra operations.

2. Establish a novel mathematical framework which fully justifies the efficiency
of the solver and provides a walk-through of the search space towards the
global minimum.
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2 Method

We consider the following cost function stemming from the sum of squared re-
projection errors in (1):

E2 =

n∑
i=1

∥∥111Tz (RRRMMM i + ttt)mmmi − (RRRMMM i + ttt)
∥∥2 (2)

The squared terms in eq. (2) penalize the distances between the reconstructed
and the actual 3D points in the camera frame. This type of rearrangement in
the cost function that replaces the reprojection error with a back-projection
error is common in pertinent literature (e.g., [17,34]) and facilitates algebraic
manipulations that lead to the elimination of the unknown translation ttt.

Let now rrr ∈ R9 be the vector formed by stacking the rows of RRR. For future
use, we will denote the inverse operation as mat(rrr) = RRR. For a world point MMM i,
we denote with AAAi ∈ R3×9 the matrix

AAAi =

MMMT
i 000T3 000T3

000T3 MMMT
i 000T3

000T3 000T3 MMMT
i

 , (3)

so that RRRMMM i = AAAirrr. Substituting this into eq. (2) and making use of the fact
that 111Tz (RRRMMM i + ttt)mmmi = mmmi 111

T
z (RRRMMM i + ttt), the cost function can be factored into

E2 =

n∑
i=1

(AAAi rrr + ttt)
T
QQQi (AAAi rrr + ttt), (4)

where QQQi is a symmetric positive semidefinite (PSD) matrix associated with the

normalized Euclidean projection mmmi via QQQi =
(
mmmi 111

T
z − III3

)T (
mmmi 111

T
z − III3

)
.

By considering the first order optimality conditions, ttt can be eliminated from
the factorized cost of eq. (4). Zeroing the derivative of E2 with respect to ttt yields:

n∑
i=1

QQQi (AAAi rrr + ttt) = 0⇔

(
n∑
i=1

QQQi

)
ttt = −

(
n∑
i=1

QQQiAAAi

)
rrr

Proposition 1. The matrix
∑n
i=1QQQi is invertible.

Proof. Provided in the supplementary material.

Hence, the translation vector can be directly expressed in terms of rotation rrr as

ttt = PPP rrr, (5)

where

PPP = −

(
n∑
i=1

QQQi

)−1( n∑
i=1

QQQiAAAi

)
. (6)
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Substituting eq. (5) in eq. (4) yields a squared error quadratic expression in
terms of the rotation vector rrr only, i.e. E2 = rrrT ΩΩΩrrr, where ΩΩΩ is the 9 × 9 PSD
matrix

ΩΩΩ =

n∑
i=1

(AAAi +PPP )
T
QQQi (AAAi +PPP ). (7)

Thus far, rrr has been assumed to represent a valid rotation matrix. We may
now cast the PnP problem as a NLQP3 over an unknown vector denoted xxx
to emphasize that it can assume values in R9 that do not correspond to valid
rotation matrices. Unless otherwise specified, we reserve the notation rrr to imply
a rotation matrix. The NLQP is then

minimize
xxx∈R9

xxxT ΩΩΩxxx s.t. hhh (xxx) = 0006, (8)

where ΩΩΩ is given by eq. (7) and hhh (xxx) ∈ R6 is the vector of constraints ensuring
that when hhh(xxx) = 0006, vector xxx represents a rotation matrix:

hhh(xxx) =
[
xxxT1:3xxx1:3 − 1, xxxT4:6xxx4:6 − 1, xxxT1:3xxx4:6, xxx

T
1:3xxx7:9, xxx

T
4:6xxx7:9, det(mat(xxx))− 1

]T
,

where xxxi:j denotes the subvector of xxx from the ith to the jth component. Note
that the unit norm constraint for xxx7:9 is redundant and therefore omitted from
the components of hhh. These constraints will be henceforth referred to as proper
orthonormality constraints and hhh(xxx) as the proper orthonormality function.

Proposition 2. Define HHHxxx ≡ ∂hhh(xxx)
∂xxx

∣∣
xxx=xxx
∈ R6×9 to be the Jacobian matrix of the

proper orthonormality function at xxx. If rank (mat (xxx)) ≥ 2, then rank (HHHxxx) = 6.

Proof. Provided in the supplementary material.

Proposition 2 will be useful in showing that the quadratic programming algo-
rithm adapted for our method will always involve a non-singular system matrix
(Section 2.2); additionally, it implies that when rank (mat (xxx)) ≥ 2, the null
space of HHHx is 3-dimensional, which reflects the fact that rotations have 3 DoF.
Note that the null space ofHHHxxx is also the tangent space of the 3D rotation group
SO(3) at xxx, hence the two terms will be interchangeable throughout this text.

2.1 Minima on the 8-sphere

Rather than parametrizing the rotation with a minimal representation, we next
consider the problem of finding feasible solutions, i.e. proper orthogonal matrices,
as 9-vectors for the NLQP of (8). Clearly, the feasible set of the constrained
program lies on the hypersphere of radius

√
3 centered at the origin of R9,

henceforth referred to as the 8-sphere and simply denoted by S8. For simplicity,
we assume that ΩΩΩ has exactly nine non-vanishing eigenvalues. However, as will
be explained in Section 2.3, the results that follow also hold in the general case

3 For brevity, the determinant constraint we employ here is cubic. Alternatively, it can
be imposed with 3 quadratic constraints, thereby the formulation becomes a QCQP.
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where ΩΩΩ is singular. Consider now a relaxed, more general problem, specifically
that of finding the minima of the quadratic function defined on S8:

f(xxx) = xxxT ΩΩΩxxx, xxx ∈ S8. (9)

It is a well-known fact that the stationary points of a unit-norm constrained
quadratic function are the eigenvectors of ΩΩΩ [13, Thm. 8.5], which we will
henceforth denote eee1, . . . , eee9, in descending order of the eigenvalues s1 > · · · >
s9. Thus, the function f in eq. (9) has exactly 18 distinct stationary points
xxx1, . . . ,xxx18 ∈ S8 that correspond to the 9 eigenvectors of ΩΩΩ scaled by ±

√
3, i.e.

xxx1 = +
√

3eee1, . . . , xxx9 = +
√

3eee9, xxx10 = −
√

3eee1, . . . , xxx18 = −
√

3eee9. (10)

In the rest of this section, we establish a close relationship between the fea-
sible local minima and the solutions of the nearest orthogonal matrix problem
(NOMP) [18] in a special spherical region around a minimizer of f . Through
Propositions 3, 4, 5, we ensure that the aforementioned spherical region always
contains feasible solutions of the fully constrained QCQP and, through Proposi-
tion 6, that the pertinent minima can be exhaustively traced from the solutions
of the NOMP associated with the minimizer of f .

Proposition 3. The function f(xxx) = xxxT ΩΩΩxxx, xxx ∈ S8, is convex in a region of
the 8-sphere of radius

√
3 that contains a local minimum and the spherical points

that form angles less than 90◦ with the minimum.

Proof. If eee is a local minimizer of f , then it is an eigenvector of ΩΩΩ. Since ΩΩΩ
is a PSD matrix, its eigenvectors are mutually orthogonal. Thus, the nearest
inflection point to eee must also be an eigenvector of ΩΩΩ and forms an angle of at
least 90◦ with eee.

Proposition 4. Let eee ∈ R9 s.t. ‖eee‖ = 1. If rrr represents a rotation minimizing

rrr = argmin
mat(xxx)∈SO(3)

∥∥∥xxx−√3eee
∥∥∥2, (11)

then the angle between vectors eee and rrr is strictly less than 71◦.

Proof. Provided in the supplementary material.

Propositions 3 and 4 suggest that we can identify 90◦ regions of convex-
ity of f which are guaranteed to contain a non-empty set of feasible solutions,
i.e. rotations. For xxx ∈ R9, the Euclidean norm ‖xxx‖ equals the Frobenius norm
‖mat(xxx)‖F. Hence, eq. (11) amounts to finding the orthogonal matrix minimizing
the Frobenius distance from a given matrix, i.e., the NOMP [18].

Proposition 5. For eee ∈ R9 with ‖eee‖2 = 1, there exist exactly 4 vectors ξξξ1, ξξξ2, ξξξ3
and ξξξ4 with mat(ξξξi) ∈ O(3) in the 90◦ region of

√
3eee for which the vectors√

3eee− ξξξi are orthogonal to the tangent space of O(3) at ξξξi.

Proof. Provided in the supplementary material.
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(a) Descent to regional minima.
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Fig. 2. Illustration of regional search for minima from the solutions of the NOMP
(antipodal dark green points on the unit circle) for the case where RRR ∈ SO(2). (a)
Descent from the two NOMP solutions leads to the two local minima shown in red.
(b) The component of the gradient responsible for descent (light green arrows actually
drawn in the direction of ascent for illustration purposes) at a feasible point is the
direction vector from the minimum of the parabola to that point; the projection of
this component on the tangent at the feasible point changes direction on the NOMP
solutions, thus ensuring there can be at most one minimum and/or maximum in a
feasible path between any two such solutions.

Note here that O(3) is the orthogonal group of dimension 3, consisting of all
3× 3 orthogonal matrices. These matrices have determinant either 1 or -1. The
PnP quadratic program of eq. (8) can be equivalently cast with orthogonality
constraints, owing to the fact that the value of f for an orthogonal matrix ξξξ
with determinant -1 is the same as the one for the rotation rrr = −ξξξ. Thus, by
focusing on simply orthogonal matrices in the region of

√
3eee allows us to study

the original program in the 90◦ region of
√

3eee where the behavior of f is known.
In the special case where eee is a minimizing eigenvector, the direction of the

projection of
√

3eee − ξξξi on the tangent space of the sphere at ξξξi should be the
component of the gradient of f responsible for descent (Figure 2(b)), owing to
the fact that f is convex in the 90◦ region of

√
3eee. It follows that the projection

of the gradient’s component of descent on the tangent space of O(3) changes
its direction at ξξξi; based on the latter we conclude that for any feasible path
between these solutions, there can be at most one minimum and/or maximum:

Proposition 6. For a minimizing eigenvector eee of ΩΩΩ, the feasible minimum in
O(3) inside the 90o region of

√
3eee can be reached by descending from at least

one of the vectors ξξξ1, ξξξ2, ξξξ3 and ξξξ4 of Proposition 5.

Proof. Provided in the supplementary material.

Proposition 6 is sufficient to enable safe navigation to the global minimum.
The eigenvectors of ΩΩΩ divide the sphere in overlapping 90◦ regions associated
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with either inflection or saddle points on the surface of f . Clearly, the best
candidates to begin the search for the global minimum of the fully constrained
problem are the global minima of f associated with eigenvector eee9. The feasi-
ble regional minimizers are located by initiating a descent from the orthogonal
matrix vector nearest to the minimum of f . Similar searches may be performed
in the regions of eigenvectors that may simply be saddle points of f , owing to
the overlap of the pertinent regions with regions associated with minimizers.
Figure 2 visualizes this process in 3D for the special PnP case where RRR ∈ SO(2).
SO(2) is effectively a 2D circle and f is a quadratic translated from the origin.

In practice, we do not need to thoroughly examine all eigenvectors as the fact
that the corresponding stationary values of f are the eigenvalues of ΩΩΩ scaled by
3 can be used to avoid unnecessary regional searches [13]. Thus, we begin from
the region of

√
3eee9 and, if the recovered regional minimum has a value above

3 s8, we examine the region
√

3eee8 and repeat in ascending order of eigenvalues,
until one of the new minima is less than the remaining (scaled by 3) eigenvalues,
or the set of eigenvectors is exhausted.

2.2 Sequential quadratic programming

Sequential quadratic programming (SQP) is an iterative technique for solving
non-linear constrained optimization problems [12,38,4]. The core idea in SQP is
to approximate the cost function with a quadratic and the constraints with linear
functions in order to produce a linearly constrained quadratic program (LCQP)
which can be solved analytically with a linear system that comprises the first
order conditions of the Lagrangian function and the linearized constraints. The
solution of the linearly constrained quadratic program yields a perturbation in
the vector of unknowns and the vector of Lagrange multipliers at the solution.
The non-linear program is subsequently approximated at the new estimate and
the process is repeated until convergence.

In the case of the NLQP for the PnP problem (8), we introduce the SQP
approximation at a feasible point rrr on the 8-sphere of radius

√
3. Since the cost

function is already a quadratic, we express it in terms of the difference δδδ = xxx−rrr
and linearize the function hhh(xxx) using its first order Taylor approximation:

minimize
δδδ∈R9

δδδT ΩΩΩδδδ + 2rrrTΩΩΩδδδ s.t. HHHrrr δδδ = −hhh(rrr). (12)

The first order conditions of the Lagrangian function along with the linear
constraints of the LCQP in eq. (12) yield a linear system, the solution of which
is a descent direction that converges towards4 or stays on a trajectory of feasible
solutions. For the solution δ̂δδ of the linear system, the NLQP is approximated at
a new point rrr′ = rrr + δ̂δδ and a new descent direction is obtained. The process is
repeated until the norm of δ̂δδ drops below a threshold.

4 During the first few steps of SQP, the solutions may not be entirely feasible due to
inaccuracies in the linear approximations of the constraints.
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Proposition 7. Let rrr ∈ R9 be the estimate of the rotation matrix which may not
be feasible at some step of the SQP. If rank (ΩΩΩ) ≥ 3, then the linearly constrained
quadratic program of eq. (12) has a unique solution in R9.

Proof. Provided in the supplementary material.

Proposition 7 ensures that the SQP linear system will have a unique solution
in every step of the process. This is because in the presence of non-degenerate
data, rank (ΩΩΩ) will be at least 3 for the problem to be fully constrained.

To solve the PnP, the aim is to recover the regional minima associated initially
with the global minimizer eee9 of the quadratic f(xxx) = xxxT ΩΩΩxxx on the 8-sphere and,
if necessary, proceed to repeat the process in the region of the next eigenvector
in ascending order of eigenvalues (cf. Section 2.1).

As explained in Section 2.1, we may recover the regional minimum associated
with eee by descending along the feasible path from the solutions ξξξ1, ξξξ2, ξξξ3 and ξξξ4
(cf. Props. 5, 6) of the NOMP associated with

√
3eee. We empirically determined

that descending only from the two nearest of ξξξ1, ξξξ2, ξξξ3, ξξξ4 to
√

3eee allows the
method to converge to the global minimum. Finding the two nearest solutions of
the NOMP related to eigenvector eee is equivalent to finding the rotation matrices
rrr1, rrr2 nearest to

√
3eee, −

√
3eee respectively. Thus, each inspected eigenvector eee

contributes to the overall search with two minima recovered via SQP descent
from the following rotations:

rrr1 = argmin
mat(xxx)∈SO(3)

∥∥∥xxx−√3eee
∥∥∥2, rrr2 = argmin

mat(xxx)∈SO(3)

∥∥∥xxx+
√

3eee
∥∥∥2. (13)

2.3 The general case

We have thus far assumed that the PSD data matrix ΩΩΩ has an empty null space.
However, this is not generally the case, particularly when n is small. In these
cases, the intersection of the null space with the sphere of radius

√
3, referred to

here as the null sphere, is treated as a generalized minimum. This “minimum” is
a flat region for f , which can only contain a finite number of solutions. However,
we know that the 90◦ regions of the null space basis vectors are not entirely
flat due to overlap with the corresponding regions of eigenvectors with non-
vanishing eigenvalues. Based on this, we generalize the approach of Section 2.2
and devise a number of SQPs equal to the number of null space vectors with
feasible starting points obtained as in eq. (13). More formally, suppose that the
last (in descending eigenvalue order) k eigenvectors ofΩΩΩ are the null-space basis,
null(ΩΩΩ) = 〈eee10−k, . . . , eee9〉, k ≥ 1. We then perform 2k SQPs with starting points

rrri = argmin
mat(xxx)∈SO(3)

∥∥∥xxx− (−1)b(i−1)/kc
√

3eee9−k+i−bi/kck

∥∥∥2, (14)

where i ∈ {1, . . . , 2k}. Note here that large null spaces (up to 6 basis vectors)
are typically associated with small numbers of points (up to 6) and therefore
multiple solutions may exist. In these cases, the typical treatment involving the
positive depth test applies. The overall procedure is detailed in Algorithm 1.
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3 The SQPnP algorithm

SQPnP is described in pseudocode as Algorithms 1 and 2 that jointly yield the
global minima of the PnP problem. Algorithm 1 solves the PnP problem by
delivering a list of minimizers that contains the global minima. The algorithm
computes the PSD data matrix ΩΩΩ, the matrix PPP required by eq. (5) for the com-
putation of the translation vector, and the feasible starting points from which it
initiates iterative searches using SQP, as detailed by Algorithm 2. SQP typically
converges within 10 iterations, hence the recommendation T ≥ 15. Similarly, we
empirically determined that 10−5 suffices as the perturbation norm tolerance.

Algorithm 1 SQPnP: SolvePnP

Require:
Number of points, n ≥ 3
World points MMM i ∈ R3, 1 ≤ i ≤ n
Projections mmmi =

[
xi yi 1

]T
, 1 ≤ i ≤ n

Perturbation tolerance, ε ≤ 10−5

Maximum number of iterations, T ≥ 15

{ΩΩΩ, PPP } ← eqs. (6), (7)
{eee1, . . . , eee9, s1, . . . , s9} ← SVD(ΩΩΩ)
{eee10−k, . . . , eee9} ← argmin

xxx∈S8
xxxT ΩΩΩxxx

for i← 1 to 2k do
µ← b(i− 1) /kc
ν ← 9− k + i− bi/kc k
rrri ← argmin

mat(xxx)∈SO(3)

∥∥xxx− (−1)µ
√

3eeeν
∥∥2

r̂rri ← SolveSQP (rrri,ΩΩΩ, ε, T )
E2i ← r̂rrTi ΩΩΩ r̂rri

end for

while min
{
E21 , . . . , E22k

}
≥ s9−k do

for i← 1 to 2 do
rrr2k+i ← argmin

mat(xxx)∈SO(3)

∥∥xxx− (−1)i
√

3eee9−k
∥∥2

r̂rr2k+i ← SolveSQP (rrr2k+i,ΩΩΩ, ε, T )
E22k+i ← r̂rrT2k+iΩΩΩ r̂rr2k+i

end for
k ← k + 1

end while
return r̂rr1, . . . , r̂rr2k, E21 , . . . , E22k

Algorithm 2 SQPnP: SolveSQP

Require:
Starting point rrr ∈ R9, s.t. mat(rrr) ∈
SO(3)
Data matrix, ΩΩΩ ∈ R9×9, ΩΩΩ � 000
Tolerance in perturbation estimate
norm, ε ≤ 10−5

Maximum number of iterations, T ≥ 15

step← 0
r̂rr ← rrr
repeat

HHHr̂rr ← ∂hhh(xxx)
∂xxx

∣∣∣∣
xxx=r̂rr[

δ̂δδ

λ̂λλ

]
←
[
ΩΩΩ HHHT

r̂rr

HHHr̂rr 0006×6

]−1 [−ΩΩΩ r̂rr
−hhh(r̂rr)

]
r̂rr ← r̂rr + δ̂δδ
step← step + 1

until
∥∥∥δ̂δδ∥∥∥ < ε or step > T

return r̂rr̂rrr̂rrr
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4 Experiments

Based on Matlab implementations, we report next results from the comparison
of SQPnP with several prominent PnP methods, namely DLS [17], LHM [34],
RPnP [29], OPnP [51], MLPnP [48], REPPnP [9], EPnP [28] and optDLS [37];
both [17,37] include the three rotations by 90◦ preprocessing to avoid the Cay-
ley singularity. Our investigation focuses primarily on the reprojection error
achieved by these methods for increasing numbers of points n and amounts of
noise. However, acknowledging that execution time is crucial for many practical
applications, we also provide timing measurements with the forewarning that
Matlab implementations are less efficient than implementations in compiled lan-
guages such as C++. We exclude UPnP [24] from our comparison since, as
detailed in [37], it is a suboptimal method worse than optDLS and OPnP.

SQPnP calls for i) the computation of the data matrix ΩΩΩ in eq. (7), which
is linear in the number of points and ii) the search for minima via SQPs which
are bounded by a finite number of iterations and starting points. Therefore, the
execution time of SQPnP has a baseline offset which largely depends on the cost
of the linear system solution required in every SQP iteration (cf. Algorithm 2).
Our current implementation employs Matlab’s general-purpose linear system
solver linsolve. However, this operation can be considerably accelerated by
exploiting the special structure of the system’s matrix and HHHxxx in particular.
The nearest orthogonal approximation problem in eq. (14) is solved without
costly matrix factorizations using the FOAM algorithm, as discussed in [30,31].

4.1 Synthetic experiments

Procedure. In our experiments, Euclidean quantities are expressed in units
of meters. World 3D points were randomly sampled from an isotropic Gaussian

distribution with SD 3, i.e.MMM i ∼ N
(
MMM, 32 III3

)
, where MMM ≡

[
3/4 3/4 12

]T
. Sim-

ilarly, camera poses comprising position bbb and MRP [47] orientation parameters
ψψψ in the world frame are sampled from a zero-mean 6D Gaussian distribution[

bbb
ψψψ

]
∼ N

(
0006,

[
σ2
bbb III3 0003
0003 σ2

ψψψ III3

])
. (15)

The values chosen for the standard deviations were sufficiently small (i.e., σbbb =
0.2 and σψψψ = 0.05) to ensure that the generated points will always be in front
of the simulated camera, assumed to have a focal length f = 1400 pixels and
image size 1800× 1800.

Using six different levels of additive Gaussian noise with σ2
εεε ∈ {2, 5, 8, 11, 14, 17}

squared pixels, we performed experiments summarized in the plots of Fig. 3.
For each noise level, we generated 100 random 3D points. Then, for every
n ∈ {4, . . . , 10} we randomly sampled a population of 500 sets of n 3D points
each, generated a camera pose with eq. (15) for each set, projected all sets on
the image plane and perturbed the projections with noise εεεi ∼ N

(
0002, σ

2
εεε III2

)
.
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(b) σ2
εεε = 5 squared pixels
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(c) σ2
εεε = 8 squared pixels
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(d) σ2
εεε = 11 squared pixels
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(f) σ2
εεε = 17 squared pixels

Fig. 3. Plots of maximum squared reprojection error for 500 executions of each PnP
solver on n random points, 4 ≤ n ≤ 10. For each n, points are repeatedly sampled from
a previously generated point population contaminated with additive Gaussian noise.
Each plot represents the results obtained by points drawn from a different population
and whose projections were contaminated with zero-mean Gaussian noise of variance
σ2
εεε ∈ {2, 5, 8, 11, 14, 17} squared pixels (top left to bottom right). Notice the different

scales in the vertical axes of the plots.

For every set in a certain population, we executed all PnP solvers under com-
parison with default parameters5 and calculated the maximum squared repro-
jection error for each solver across these executions. We also determined the
reprojection error corresponding to the maximum likelihood estimate, obtained
by minimizing the total reprojection error for each set’s noisy points with the
Levenberg-Marquardt (LM) algorithm initiated at the true pose.

The maximum was preferred over the average squared reprojection error
since we are primarily interested in demonstrating the consistency of our solver
in reaching a squared error that is similar to that of the maximum likelihood
estimate. Nevertheless, plots of the average squared reprojection errors corre-
sponding to exactly the same experiments can be found in the supplementary
material. For completeness, the supplementary material also includes plots of
the pose translational and rotational errors for the same experiments.

It is finally noted that our experiments concern relatively small numbers of
points since, in practice, these are the typical sample sizes that yield candidate
solutions in sampling-based camera resectioning [10].
Results. The plots of Fig. 3 illustrate the maximum total squared reprojection
errors (cf. (1)) in terms of n for each PnP solver applied to the samples drawn

5 SQPnP employed maximum iterations T = 15 and tolerance ε = 10−8.
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Table 1. Average and median execution times (ms) of several PnP solvers implemented
in Matlab, computed across all executions for every 4 ≤ n ≤ 10. Time for any additional
non-linear refinement was not taken into account.

(ours) PnP Solver
SQPnP optDLS LHM DLS OPnP MLPnP RPnP EPnP REPPnP

T
im

e Mean 2.7 3.5 4.7 3.5 14.0 2.3 0.7 1.1 2.1
Median 2.0 3.5 4.7 3.5 14.1 2.4 0.8 1.1 2.1

from the populations generated for a certain level of additive noise. The results
obtained by the EPnP and REPPnP were further improved with the LM algo-
rithm. Moreover, the plots incorporate the reprojection error corresponding to
the maximum likelihood estimates (labeled “Ground Truth+LM”).

Using as metric the infinity norm (i.e., maximum) of the reprojection errors
pertaining to the multiple executions of the methods being compared, ensures
that the plots will reflect the repeatability of the methods in approaching the
minimum for a given n. As expected, we observe that SQPnP does not deviate
from the ground truth more than 10−3 in any of the 500 executions, regardless of
the number of points or levels of additive noise. SQPnP consistently approaches
the minimum similarly to the polynomial solvers OPnP, DLS and optDLS that
provide strong theoretical guarantees of finding the global minimizer. In doing
so, SQPnP attains better accuracy compared to DLS and optDLS, and very
similar to that of OPnP. OPnP performs well in all experiments, albeit at a
much higher computational cost in comparison to SQPnP (cf. Table 1). In con-
trast, methods such as EPnP, REPPnP and MLPnP that employ unconstrained
LS formulations, tend to perform equally well for small amounts of noise (cf.
Figs. 3(a), 3(b)), yet give rise to erratic convergence patterns when the noise in-
creases. The execution times of the various PnP methods are in Table 1, showing
that SQPnP is competitive also in terms of computational cost.

5 Conclusion

This paper presented SQPnP, a fast and globally convergent non-polynomial
PnP solver. SQPnP casts the PnP problem as a quadratically constrained quadratic
program and solves it by conducting local searches in the vicinity of special fea-
sible points from which the global minima are located in a few steps. SQPnP
admits a simple implementation that requires standard linear algebra opera-
tions and incurs a low computational cost. Comparative experiments confirm
that SQPnP performs competitively to state-of-the-art PnP solvers and con-
sistently recovers the true camera pose regardless of the noise and the spatial
arrangement of input data. A C++ implementation of SQPnP is available at
https://github.com/terzakig/sqpnp.
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gramme under Grant Agreement No. 826506 (sustAGE).
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