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Abstract. In silicon sensors, the interference between visible and near-
infrared (NIR) signals is a crucial problem. For all-day video surveillance,
commercial camera systems usually adopt NIR cut filter, and auxiliary
NIR LED illumination to selectively block or enhance NIR signal ac-
cording to the surrounding light conditions. This switching between the
daytime and the nighttime mode inevitably involves mechanical parts,
and thus requires frequent maintenance. Furthermore, images captured
at nighttime mode are in shortage of chrominance, which might hinder
human interpretation and high-level computer vision algorithms in suc-
cession. In this paper, we present a deep learning based approach that
directly generates human-friendly, visible color for video surveillance in
a day. To enable training, we capture well-aligned video pairs through
a customized optical device and contribute a large-scale dataset, video
surveillance in a day (VSIAD). We propose a novel multi-task deep net-
work with state synchronization modules to better utilize texture and
chrominance information. Our trained model generates high-quality vis-
ible color images and achieves state-of-the-art performance on multiple
metrics as well as subjective judgment.

Keywords: Video Surveillance in a Day, Color Recovery, State Syn-
chronization Network

1 Introduction

In recent years, surveillance cameras have been widely used for security and
scientific purposes. Most commercial surveillance cameras are based on silicon
sensors, usually equipped with an RGB color filter array, which are sensitive to
light with a wavelength from about 400 nm to 1000 nm [37], covering both the
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Fig. 1. (a) The spectrum response of the Bayer silicon sensor; and (b) Our integrated
pipeline for video surveillance in a day.

visible and near-infrared (NIR) spectrum (as shown in Figure 1 (a)). During
daytime, because of the mixture of visible and NIR signal, the captured visible
and near-infrared (VNIR) imagery suffers from severe color and contrast degra-
dation [35], as shown in Figure 1 (b). While at nighttime, due to the deficient
level of illumination, getting visible color imagery is pretty challenging [44].

For all-day surveillance, the industry practice is to adopt a switchable infrared
cut filter (IRCF) to physically block NIR signal at daytime, and to use NIR
LEDs, usually centered at 850 nm for illumination during nighttime [40]. This
switching mechanism is troubled with frequent maintenance of the mechanical
parts. Besides, even NIR shares many properties with visible light, NIR imagery
contains less color or texture information, which might hinder human interpre-
tation as well as high-level computer vision applications, e.g., visual tracking [8]
and object recognition [19].

To resolve the first drawback, dual-sensor camera systems adopt a beam
splitter to split the light and then capture visible and NIR images independently
[30]. These systems are free from moving parts, and can directly generate paired
visible and NIR images without further image processing steps. Another choice
is to use a multispectral filter array (MSFA), which separately records visible
and NIR signals in a specially mosaiced sensor [28, 20]. The MSFA system can
get rid of the mechanical IR cut filter and produce visible as well as NIR images
simultaneously through specialized demosaicing [35]. These two solutions capture
NIR images independently, which can be used for further visible color image
enhancement, such as denoising [10], deblurring [24], and dehazing [38]. However,
these two solutions, especially the dual-sensor systems, are relatively expensive
and limited to professional usage.
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Rather than adding an extra set of imaging sensors or modifying the color
filter array, we propose a software solution by training deep convolutional net-
works (DCN) to realize the automatic translation from the VNIR or NIR input
to visible color output. With our proposed model, visible color information can
be extracted from the mixed VNIR imagery during the daytime. While at night-
time, NIR images will be colorized into visible color images. To train such a
model, it is a big challenge to get sufficient data with ground truth image pairs,
i.e., paired VNIR&VC images of daytime, and NIR&VC images of nighttime.
Currently, publicly available datasets partially contain either VNIR&VC [34] or
NIR&VC [7, 6] image pairs. They are limited to small-scale static scenes only[29],
thus inappropriate for surveillance usages, for which moving objects like vehicles
and pedestrians are of central importance. Besides, because these paired im-
ages are captured from different light sources or view angles, there are obvious
distortions and misalignments in each pair [11]. To address these problems, we
propose a novel optical system with a beam splitter followed by two geometri-
cally aligned and temporally synchronized sensors. We add a NIR cut filter to
capture VNIR&VC video pairs and a NIR bandpass filter to capture NIR&VC
video pairs. We also introduce large-scale video surveillance in a day (VSIAD)
dataset, which is likely to boost other researches.

In order to fully exploit the potential of the dataset, efficient and general-
ized algorithms are very critical. In recent years, deep convolutional networks
(DCNs), including various generative adversarial networks (GANs), have shown
promising results for various image-to-image translation tasks [14, 48]. Among
them, there is a relatively similar topic termed image colorization, which aims
to colorize low chrominance images into visible color images. Since texture infor-
mation is well provided, chrominance recovery is the only issue to be addressed
[45, 12]. However, in our task, due to the complexity of light sources, only learn-
ing chrominance is not sufficient. Hence, we propose a novel multi-task fully
convolutional network with state synchronization modules, to learn proper tex-
ture and chrominance information from multispectral inputs. To evaluate our
approach, we conduct comparison experiments on the newly captured VSIAD
dataset. Inspired by the existing researches [21, 23], peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) [43], learned perceptual image patch sim-
ilarity (LPIPS) [46] as well as human judgment are used for our image quality
evaluation. The results demonstrate that the proposed network achieves consid-
erable translation accuracy in both VNIR2VC and NIR2VC tasks, and outper-
forms the state-of-the-art image colorization techniques.

The main contributions of this study can be summarized as follows:

– We design a novel optical system to capture well-aligned VNIR&VC and
NIR&VC image pairs and contribute a large-scale dataset, video surveillance
in a day (VSIAD).

– We demonstrate a software solution of recovering visible color for all-day
video surveillance, in contrast to existing hardware solutions that require
switchable filters, multispectral filter arrays, or dual sensors.
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– We propose a novel multi-task fully convolutional network with state syn-
chronization modules to ensure the consistency of the generated texture and
chrominance information.

2 Related work

To our best knowledge, there is no other research at present trying to handle
both VNIR2VC and NIR2VC in a unified network for video surveillance in a
day. Instead, several similar studies are working on each topic separately.
VINR2VC. VNIR2VC is a typical imaging problem that aims to extract vivid
visible color images from multispectral VNIR images. Zhang et al.[47] proposed
a dual-camera system using a 45◦ hot mirror to separate visible from NIR light,
and then captured them independently. Additionally, Kise et al.[18] designed
a triple camera system equipped with interchangeable optical filters. Rather
than using two or more camera systems, multispectral filter arrays (MSFA) offer
an alternative option. Lu et al.[28] presented a customized 4×4 CFA through
spatial-domain optimization, which enables the extraction of visible and NIR
image pairs from single RAW measurements. Similarly, Chen et al.[4] introduces
a four-channel bayer pattern (i.e.. R, G, B, and NIR) to record visible and NIR
signal independently.

Nevertheless, the above-mentioned solutions, which require customized hard-
ware, are relatively expensive and limited to professional usage.
NIR2VC. NIR2VC is slightly different from grayscale image colorization. In
grayscale image colorization, the grayscale input and corresponding color output
are derived from the same visible color image. Texture information from input
and output are almost identical, and chrominance is the only factor to be learned
[5, 22]. Zhang et al.[45] turned grayscale image colorization as classification of
chrominance values. Further, Iizuka et al.[12] proposed a multi-task network
that combines color prediction and scene classification to achieve more natural
results.

Different from grayscale image colorization, NIR2VC is also subject to tex-
ture recovering from NIR to visible light (as shown in Figure 1 (a) and Figure 2
(c)). Recently, Berg et al.[1] utilized an additional structure loss that can min-
imize the texture difference between thermal infrared (TIR) and grayscale. To
avoid misalignments between images pairs, Mehri et al.[31] and Nyberg et al.[33]
adopt modified CycleGANs [48] for unpaired thermal infrared to visual color
(TIR2VC) translation. Because of the loose connection between texture and
chrominance, their result suffers from severe blurring as well as mismatching of
texture and chrominance.
Deep learning based low light enhancement. Low light enhancement,
which aims to enhance image quality under deficient illuminance condition, is
significant in video surveillance. Chen et al.[3] built a See-in-the-Dark (SID)
dataset captured by various exposure time for training a model to brighten ex-
treme dark images. To see motion in the dark, Chen et al.[2] and Jiang et al.[15]
introduced learning-based pipelines to recover texture and chrominance informa-
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tion from dynamic scenes. Theoretically, these approaches can also be applied
for video surveillance in a day without NIR illuminant. However, in practice,
RAW images or videos required as input in their systems, are not available in
the majority of existing surveillance cameras.
Image-to-image translation. Both VNIR2VC & NIR2VC can also be viewed
as a specific form of image-to-image translation that enables the mapping be-
tween an input image and a corresponding output image. Isola et al.[14] built
a general image-to-image translation framework using conditional adversarial
networks. Zhu et al.[48] introduced cycle-consistent adversarial networks (cycle-
GAN) to get rid of aligned image pairs. For high-resolution image synthesis,
Wang et al.[42] proposed novel adversarial loss, as well as new multi-scale gen-
erator and discriminator architectures. Due to the texture difference between
NIR and VC, the NIR2VC task can not be properly addressed with general
image-to-image translation methods.

Very recently, Lv et al.[29] introduced an integrated enhancement solution
for 24-hour colorful imaging. However, their approach is mainly based on indoor
static scenes that are inappropriate for surveillance usages, for which moving
objects like vehicles and pedestrians are of central importance.

3 Dataset

To enable training, we introduce a novel dataset, video surveillance in a day
(VSIAD), which contains ground-truth image pairs of both VNIR&VC and
NIR&VC, taken with our co-axis optical imaging system. For data preprocess-
ing, we registered the captured image pairs with feature matching and geometric
transformation.

3.1 Data Capturing

The optical imaging system mainly consists of one beam splitter, and two IRCF-
free CCD cameras (FLIR GS3-U3-15S4C). A key feature of our system is that
we can switch between daytime and nighttime mode easily.

– Daytime mode. As shown in Figure 2 (a), light is firstly divided into
two branches by a beam splitter. One beam goes to the bayer sensor that
yields color imagery containing both visible and NIR information (VNIR).
The other one will first pass through the NIR-cut filter to filter out NIR
information and then reach the sensor to generate an image of visible color
(VC).

– Nighttime mode. Note that it is impossible to capture moving objects in
low light condition by an ordinary camera. Therefore, we capture NIR and
VC pairs at daylight. As shown in Figure 2 (b), nighttime mode utilizes
a similar architecture to daytime. To simulate the NIR image captured by
a surveillance camera with 850 nm LED illumination, we use an 850 nm
bandpass filter, with an FWHM of 50 nm, to filter out visible information.
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Fig. 2. Overview of the co-axis optical system. (a) The architecture of the daytime
mode; (b) The architecture of the nighttime mode; (c) The physical devices; (d) The
spectral response of the CCD camera; (e) The spectral response of the CMOS camera;
and (f) The spectral distributions of sunlight, sunlight with 850 nm bandpass filter,
and 850 nm LED illuminant.

The rationale of this choice is verified by the similarity between the spectral
distribution of the conventional 850 LED illuminants and the daylight spec-
trum filtered by the aforementioned NIR bandpass filter, as shown in Figure
2 (f). Because of the various distributions of light sources (i.e., sunlight at
daytime, and LED illuminant at nighttime), there is a slight difference as
compared to real-world conditions.

With the proposed imaging system, 80 video clips (40,000 images) were cap-
tured from several street spots. All images are saved in 8-bit BMP format with
1384×1032 pixels. The numbers of video clips of VNIR&VC from daytime and
NIR&VC from nighttime are set to be equal for the daytime-nighttime balancing.

3.2 Data Preprocessing

Although the two imaging sensors are well-aligned with similar positions, there
are inevitably pixel-level rotation or translation misalignments. To address this
issue, we employ projective transformation to wrap the VC image based on scale-
invariant feature transform (SIFT)[27] features of corresponding VNIR or NIR
images. The window with a size of 1200×900 is used to crop the center area of
overlapping registered image pairs to eliminate boundary aliases and artifacts.
Later, the cropped images are resized to 640×480 to reduce storage.

Figure 3 shows sample image pairs from our VSIAD dataset. The upper
row contains four sets of VNIR&VC image pairs taken by the daytime mode.
Because of interference of the NIR signal, VNIR images result in apparent color
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Fig. 3. A subset of the VSIAD dataset. The upper row is VNIR&VC image pairs
taken by the daytime mode, while the remaining row is NIR&VC image pairs taken by
nighttime mode.

degradation. Sampled image sets of NIR&VC image pairs taken by the nighttime
mode are presented at the bottom row. Due to the NIR spectrum characteristic,
captured NIR images present a strong signal on green plants but a weak signal
on dyes (e.g., color on clothes, and character of the signpost).

4 State Synchronization Network

Inspired by existing end-to-end fully convolutional networks [26, 25], we design
a novel state synchronization network (SSN), which utilizes parallel decoders
and state synchronization modules (SSMs) to estimate texture and chrominance
information separately. Differing with existing colorization methods that use
grayscale information as input, our model directly uses RGB values of VNIR or
NIR to prevent information loss during the conversion. We note that, although
the camera responses of three color channels around 850 nm (see Figure2 (c))
are quite similar, they are indeed slightly different. Thus, visible color recovery
from NIR (i.e., NIR2VC) is less ill-posed than retrieving chrominance from a
single-channel grayscale image.
Network Architecture. As shown in Figure 4, the proposed SSN consists of
one encoder and two parallel decoders with four state synchronization modules.
The encoder follows the design of the classic ResNet [9] using sequential basic
residual blocks [9] and max-pooling layers. The parallel decoders share the iden-
tical architecture except for the final prediction layer. Similar to the encoder,
the decoder applies sequential deconvolutional layers [32], residual blocks, and
skip connections [36] to refine to original height and width gradually. To avoid
interference within batch samples, batch normalization layers [13] are replaced
by instance normalization [41].
State Synchronization Module (SSM). For an image, the texture and
chrominance information are highly correlated (e.g., tree texture usually cor-
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Fig. 4. Architecture of the proposed state synchronization network (SSN). Input VNIR
or NIR frames will be translated into visible color images by the network.

relates with green color). If we train L and ab independently, consistency of
texture and chrominance will be misconducted.

To avoid this, we design the state synchronization module (SSM) to update
the state of the parallel decoders continuously. As shown in Figure 4, features
from L or ab decoder are denoted as AAA and BBB, respectively. Within the SSM,
the cosine similarly (CSCSCS) followed by 2D convolution with k× k gaussian kernel
(GGG) are applied to the generated state map of both features (SmapSmapSmap). Specifically,

CSCSCS =
AAA •BBB

||AAA|| × ||BBB||
(1)

SmapSmapSmap =
∑
i

∑
j

CSCSCSi:i+k,j:j+k •GGG (2)

Then, SmapSmapSmap is applied to update featureAAA andBBB asAAAsync andBBBsync through
hadamard product by each channel (c) as follows

AsyncAsyncAsync
c = AAAc �SmapSmapSmap (3)

BsyncBsyncBsync
c = BBBc �SmapSmapSmap (4)

Objective function. After parallel decoders with SSMs, predictions of L and
ab are generated separately. Structural dissimilarity (DSSIM) [43] and L1 dis-
tance between these predictions and ground truths are denoted as LL and Lab,
respectively.
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LL =
1−SSIMSSIMSSIM(Lpred − Lgt)

2
(5)

Lab = |abpred − abgt| (6)

Finally, independent predictions of L and ab are concatenated as predicted
Lab. To evaluate the consistency of texture and corresponding chrominance, a
perceptual loss (LLab) [16] is calculated.

LLab =
∑
layer

|V GGV GGV GG(Labpred)− V GGV GGV GG(Labgt)|layer (7)

where layer ∈ [relu1 2, relu2 2, relu3 3, relu4 3] of pre-trained VGG16 net-
work [39]. Thus, the final objective function is formulated as:

Lfinal = α× LL + β × Lab + λ× LLab (8)

In our experiments, the configuration of the parameters are set as: k = 3, α
= 1, β = 1, λ = 10, respectively.

5 Experimental Setup

We split 20,000 image pairs in our VSIAD dataset into training, validation,
and testing. Their ratios are 60:20:20 so that there are 12,000 image pairs for
training, 4000 for validation, and 4000 for testing. The numbers of VNIR&VC
and NIR&VC pairs are set to be equal by each set. We select a batch size
of 8 and randomly crop 256×256 patches from a full-resolution VNIR or NIR
image as input for training. We implement the proposed networks using PyTorch
1.0 (https://github.com/huster-wgm/VSIAD) and train it with NVIDIA Tesla
V100 . The proposed model is trained for 100,000 iterations with 100 validations
performed by every 1,000 iterations. In our experiment, parameters are optimized
by the Adam optimizer [17] using initial learning rate = 1e−4, β1 = 0.9, β2 =
0.999, and ε = 1e−8.

5.1 Baselines

For comparison, we choose several representative image colorization methods:
Iizuka et al.[12], which jointly learns global and local features to exploit classifi-
cation labels for better colorization; Berg et al.[1] that introduces a combination
loss for generated texture and chrominance information; Mehri et al.[31] and
Nyberg et al.[33] which apply modified CycleGANs [48] for unpaired thermal
infared to visual color (TIR2VC) translation; and pix2pixHD [42], a general
high-resolution image-to-image translation framework.

For Iizuka et al.’s model, we first try to fine-tune their model on visible
images in our VSIAD dataset. However, due to the lack of classification labels,
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the performance gained from fine-tuning is minimal (± 0.2 for PSNR). Thus, we
directly use the pre-trained model for comparisons. As for Berg et al.’s model,
we carefully implement and train it from scratch using the standard setup in the
literature. Thanks to the publicly available training code, we fine-tune Mehri et
al.’s, Nyberg et al.’s, and pix2pixHD models using our VSIAD dataset.

6 Results and Discussions

6.1 Quantitative Evaluation

To evaluate our method and the baselines, evaluation metrics, including pixel-
based PSNR, structure-based SSIM, and learning-based LPIPS, are adopted.
Note that the lower score of LPIPS indicates better image quality.

The relative performances of different methods over testing data are listed
in Table 1. In general, values of PSNR, SSIM, and LPIPS in the VNIR2VC task
are higher than those in the NIR2VC task.

Compared with other baselines, pix2pixHD [42] and our SSN present signif-
icantly higher scores in PSNR and SSIM as well as lower scores in LPIPS. As
for pixel-based metrics, pix2pixHD has a higher PSNR value in the VNIR2VC
task. However, in the NIR2VC task, our model performs as good as pix2pixHD.
For more generalized metrics, SSIM and LPIPS, our model outperforms all
baselines in both VNIR2VC and NIR2VC tasks. These numbers are consistent
with our qualitative observation (see details in Section 6.2). Besides, comparing
with pix2pixHD, our model shows a relatively smaller performance gap between
VNIR2VC and NIR2VC tasks. These results indicate that our proposed network
can handle both VNIR2VC and NIR2VC tasks efficiently and accurately.

6.2 Qualitative Results

Qualitative comparison of our model against baselines on both VNIR2VC and
NIR2VC tasks are shown in Figure 5 and 6, respectively. The sequential in-
put images, including VNIR and NIR, are derived from the same location but

Table 1. Performance comparison on both VNIR2VC and NIR2VC tasks. Metric with
’↑’ means the higher the better image quality, while ’↓’ means the opposite.

Method
PSNR ↑ SSIM ↑ LPIPS ↓

VNIR2VC NIR2VC VNIR2VC NIR2VC VNIR2VC NIR2VC

Iizuka et al.[12] 14.812 14.465 0.662 0.513 0.321 0.460
Berg et al.[1] 20.188 16.543 0.755 0.622 0.236 0.370

Mehri et al.[31] 22.359 14.025 0.779 0.491 0.223 0.454
Nyberg et al.[33] 21.096 16.474 0.754 0.573 0.174 0.360
pix2pixHD [42] 25.003 19.654 0.790 0.641 0.139 0.287

Ours 24.336 19.690 0.836 0.698 0.109 0.248
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Fig. 5. Qualitative result from the baselines and our SSN model on the VNIR2VC task.
The sequential frames are derived from the same location but different viewpoints.

different viewpoints. Within these images, moving vehicles and pedestrians are
coarsely presented.

Compared to the baselines mentioned above, our method, as well as the
fine-tuned pix2pixHD model, generates images with higher color fidelity. On the
VNIR2VC task, images generated by pix2pixHD and our model show somewhat
similar chrominance and slight sharpness differences of texture. Generally, images
from pix2pixHD are sharper than those from us. However, their images are too
sharp that perceptually unnatural (e.g., leaves in trees at the 2nd row, Figure
5).

On the NIR2VC task, even with some artifacts, our method shows signifi-
cantly better translated images than pix2pixHD (e.g., cars from the 2nd and 6th

rows, Figure 6). Considering both VNIR2VC and NIR2VC, which is critical for
video surveillance in a day, our method yields the most consistent visual result
using both VNIR and NIR inputs.

6.3 Perceptual Experiments

We evaluate the perceptual quality of the generated images through blind test-
ing. In each inquiry, we present the participant with videos. At every frame,
VNIR&VC (or NIR&VC) image pairs and corresponding images generated from
ours or a baseline model are organized side by side. The participants are asked
to pick up the one that is more close to the original visible color video. In the
experiment, 134 feedbacks are collected and listed in Table 2. Videos generated
by our SSN achieve a significantly higher preference rate under blind, subjective
judgment.
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Fig. 6. Qualitative result from the baselines and our SSN model on the NIR2VC task.
The sequential frames are derived from the same location but different viewpoints.

Table 2. Preference rates of videos generated by different methods.

Tasks
Preference Rate

Ours pix2pixHD [42] No preference

VNIR2VC 73.5% 4.4% 22.1%
NIR2VC 82.3% 1.5% 16.2%

6.4 Generalization Analysis

To evaluate the robustness and generalization capability of the proposed method,
we test our trained model on real-world time-elapse images captured from a static
viewpoint. We also use a CMOS camera (FLIR BFS-U3-63S4C) and remove its
IR-cut filter, which is different from the CCD camera (FLIR GS3-U3-15S4C)
in training data capture. Despite their difference, we can see that their spectral
response curves are quite similar (e.g., Figure 2 (d) and (e)).

As shown in Figure 7, even with some artifacts, our model can generate
proper visible images from VNIR or NIR images captured by the CCD camera
at most times. Because of the difference in spectral response curves, VNIR/NIR
images captured by CMOS show significantly different color style when compared
with those images taken by CCD (1st vs. 3rd row). Despite this, our model can
produce pretty natural visible images during daytime (e.g., at 09:00, 12:00, and
15:00) using the CMOS camera. As for the nighttime (e.g., at 18:00 and 21:00),
CMOS results are less satisfactory. We note that cross-camera color recovery
at night is extremely challenging, because of the inevitable interference by light
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Fig. 7. Time-elapse experiment on both CCD and CMOS cameras. Reference images
are captured using a NIR cut filter at daytime and using long exposure at nighttime.

contamination from street light and image noise, which we plan to study further
as future work.

6.5 Ablation Experiment

To investigate the effectiveness of different components, we conduct ablation
studies on VSIAD. The performance under the different conditions are illustrated
in Table 3 and Figure 8.

State Synchronization Module (SSM). In 1st row, removing SSM leads to
significant performance decline (e.g., the value of LPIPS increases about 15.6%),
which demonstrates the effectiveness and importance of our SSM.

Color. As shown in 2nd row, changing RGB input to grayscale causes perfor-
mance losses of 2.2% in PSNR, 1.7% in SSIM, and 14.3% in LPIPS.

Texture. As presented at 3rd row, while replacing structural dissimilarity (DSSIM)
with L1 distance of LL (Eq. 5), a slight performance degradation can be observed.

Normalization. From the 4rd row, if replacing instance normalization (IN) with
group normalization (GN), the perceptual performance (i.e., LPIPS) gets worse,
while the PSNR and SSIM can be slightly improved.
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Fig. 8. Representative results of the proposed state synchronization network (SSN)
under different conditions.

Table 3. Ablation analysis results. The table reports the mean values of PSNR, SSIM,
and LPIPS.

Conditions PSNR ↑ SSIM ↑ LPIPS ↓

SSM → 0 21.419 0.747 0.212
RGB → Gray 21.535 0.754 0.209
DSSIM → L1 21.910 0.759 0.188
IN → GN 23.145 0.773 0.182

Full model 22.013 0.767 0.179

7 Conclusion

We have demonstrated the effectiveness of our integrated pipeline for video
surveillance in a day. Degraded images, including VNIR and NIR, are directly
translated into visible color images through a learned model. In contrast to
existing hardware solutions that require switchable filters, multispectral filter
arrays, or dual sensors, our approach can directly apply to commercial surveil-
lance cameras that are much more cost-efficient. To enable training, we collect
a new dataset that contains well-aligned VNIR&VC and NIR&VC image pairs,
and introduce a novel parallel network with state synchronization modules that
can keep consistency between texture and chrominance information. We also
notice that slight performance degradation happened during cross-camera color
recovery, which we plan to study further as future work.
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