
BorderDet: Border Feature for Dense Object
Detection

Han Qiu1,2∗, Yuchen Ma1∗, Zeming Li1, Songtao Liu1, and Jian Sun1

1 MEGVII Technology
{qiuhan, mayuchen, lizeming, liusongtao, sunjian}@megvii.com

2 Xian Jiaotong University
qiuhan@stu.xjtu.edu.cn

Abstract. Dense object detectors rely on the sliding-window paradigm
that predicts the object over a regular grid of image. Meanwhile, the fea-
ture maps on the point of the grid are adopted to generate the bounding
box predictions. The point feature is convenient to use but may lack the
explicit border information for accurate localization. In this paper, We
propose a simple and efficient operator called Border-Align to extract
“border features” from the extreme point of the border to enhance the
point feature. Based on the BorderAlign, we design a novel detection
architecture called BorderDet, which explicitly exploits the border infor-
mation for stronger classification and more accurate localization. With
ResNet-50 backbone, our method improves single-stage detector FCOS by
2.8 AP gains (38.6 v.s. 41.4). With the ResNeXt-101-DCN backbone, our
BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art
approaches.

Keywords: Dense Object Detection, Border Feature

1 Introduction

Sliding-window object detector [5, 13, 19, 20, 22, 23, 28, 37], which generates
bounding-box predictions over a dense and regular grid, plays an essential role
in modern object detection. Most sliding-window object detectors like SSD [20],
RetinaNet [19] and FCOS [28] adopt a point-based feature representation of the
bounding box, where the bounding box is predicted by the feature on each point
of the grid, shown as the “Single Point” in Fig. 1. This single point feature is
convenient to be used for object localization and object classification because no
additional feature extraction is conducted.

However, the point feature may contain insufficient information for represent-
ing the full instance with its limited receptive field. Meanwhile, it may also lack
the information of the object boundary to precisely regress the bounding box.

* The first two authors contributed equally to this work.

2 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

1

(b) Dense prediction (c) RoIAlign (d) Deformable Conv

(Guided Anchor)

(e) BorderAlign

(Ours)
(a) Image

Fig. 1. Different feature extraction strategy. The red pentagram represents the current
point that predicts the bounding box. The black rectangle denotes the bounding box
predicted on the red pentagrams. And the blue point indicates where the features
are extracted. Different from the deformable Convolution and RoIAlign which densely
extract the features from the whole bounding box, Our BorderAlign only extracts the
features from five points for the current single point and four extreme points of the
borders respectively. The orange points in (a) are the extreme points

Many studies have been focused on the feature representation of the object,
such as the GA-RPN [3], RepPoints [35] and Cascade RPN [31], or pooling
based methods like RoI pooling [8] and RoIAlign [10]. As shown in Fig. 1,
these methods extract more representative features than the point features.
However, there are two limitations of implementing these methods for dense
object detection: (1) The feature extracted within the whole boxes may involve
unnecessary computation and easily be affected by the background. (2) These
methods extract the border features implicitly and indirectly. Since the features
are discriminated and extracted adaptively within the whole boxes, no specific
extraction on the border features is conducted in these methods.

In this work, we propose a powerful feature extraction operator called Bor-
derAlign, which directly utilizes the border features pooled from each boundary
to enhance the original point feature. It differs from the other feature extraction
operators as shown in Fig. 1, which densely extracts the feature from the whole
box. Our proposed BorderAlign focuses on the object border and is designed
to adaptively discriminate the representative part of the object border, e.g. the
extreme point [38], which is shown in Fig. 1(e).

We design BorderDet which utilizes Border Alignment Modules (BAM) to
refine the classification score and bounding box regression. Our BorderDet uses
less computation than similar feature enhancement methods and achieves better
accuracy. Moreover, our method can be easily integrated into any dense object
detectors with/without anchors.

To summarize, our contribution is three-fold as follows:

1 We analyze the feature representation for the dense object detector and demon-
strate the significance of supplementing the single-point feature representation
with the border feature.

2 We propose a novel feature extraction operator called BorderAlign to enhance
features by the border features. Based on BorderAlign, we present an efficient
and accurate object detector architecture named BorderDet.

BorderDet: Border Feature for Dense Object Detection 3

3 We achieve state-of-the-art results on COCO dataset without bells and whistles.
Our method leads to significant improvements on both single-stage method
FCOS and two-stage method FPN, by 2.8 AP and 3.6 AP respectively. Our
ResNext-101-DCN based BorderDet yields 50.3 AP , outperforming the existing
state-of-the-art approaches.

2 Related Works

Sliding-window Paradigm. Sliding-window Paradigm is widely used in object
detection. For the one-stage object detectors, Densebox [13], YOLO [22, 23],
SSD [20], RetinaNet [19], and FCOS [28] have demonstrated the effectiveness
to densely predict the classification and localization scores. For the two-stage
object Detectors, R-CNN series ([8–11, 17, 18, 24]) adopt the region proposal
network (RPN) that based on the sliding-window mechanism to generate the
initial proposals, and then a refinement stage that consists of a RoIAlign [10] and
R-CNN is performed to warp the feature maps of the region-of-interests (RoI)
and generate the accurate predictions.

Feature Representation of Object. Typical sliding-window object detectors
adopt a point-based feature representation. However, it is difficult for the point
feature to maintain the powerful feature representation for both classification
and location. Recently, some works [31, 32, 35] attempt to improve the feature
representation of object detection. Guided Anchor [32] is proposed to enhance
the single point feature representation by utilizing the deformable convolution.
Cascade-RPN [31] presents adaptive convolution to align the features maps to
their corresponding object bounding box predictions. Reppoints [35] formulate
the object bounding box as a set of representative points and extract the repre-
sentative point feature by deformable convolution. However, the feature maps
proposed in these methods are extracted from the whole object, thus the feature
extraction is redundant and easily affected by the background feature maps. In
contrast to the above methods, our BorderDet directly enhances the single point
feature by the border feature, which enables the feature map to have a high
response to the extreme points of the object borders and does not involve the
background noise.

Border Localization. There are several methods that search on each row and
column of the region or bucket to accurately locate the boundary of the object.
LocNet [7] and SABL [33] adopt an additional object localization stage which
aggregates the RoI feature maps along with X-axis and Y-axis to locate the
object borders and generate the probability for each object border prediction.
However, such border localization pipelines rely heavily on the high-resolution
RoI feature maps, thus the implementation of these methods in the dense object
detector may be restricted. In this work, we aim to efficiently exploit the border
feature for accurate object localization.

4 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

(a) single point (b) region (c) border (d) middle border (e) ours

Fig. 2. Different feature representations of the bounding box. (a) denotes point feature
on each point of the grid. (b) indicates the region features extracted from the whole
bounding box by RoIAlign [10]. (c) denotes the border features extracted from the
border of the bounding box. (d) indicates the border-middle features which are extracted
from the center point of each border. (e) denotes our BorderAlign feature extractor

3 Our Approach

In this section, we first investigate the feature representation of the bounding box
in sliding-window object detectors. Then, we propose a new feature extractor
called BorderAlign, which extracts the border features to enhance the original
point-based feature representation. Based on the BorderAlign, we present the
design of BorderDet and discuss its mechanism for extracting boundary features
efficiently.

3.1 Motivation

Sliding-window object detectors usually generate bounding box predictions over
a dense, regular grid of feature maps. As shown in Fig. 2, the feature on each
point of the grid is generally used to predict the category and location of the
objects. This point-based feature representation is hard to contain the effective
border feature and it may limit the localization ability of the object detectors. As
for the two-stage object detectors, the object is described by the region features
which are extracted from the whole bounding box, which is shown in Fig. 2
(b). This region-based feature representation is able to provide more abundant
features than the point-based feature representation for object classification and
localization.

In Table. 1, we provide a deeper analysis of the feature representation of
the bounding box. Firstly, we adopt a simple dense object detector(FCOS) as
our baseline to generate the coarse bounding box predictions. Next, we will
re-extract the features as shown in Fig. 2 from the second-to-last feature map
of FCOS. Then we gradually supplement the single point feature with different
features to refine the coarse predictions. We make the following observations on
these experiments. (1) Region features are more representative than the point
feature. Enhancing the single point feature with the region features leads to
an improvement of 1.3 AP. (2) The border features play a major role in the
region features when the region features are used to enhance the single point
feature. Performance only reduces 0.3 AP if we ignore the inner part of the

BorderDet: Border Feature for Dense Object Detection 5

Table 1. Comparison of different feature representation of the bounding box. The first
row is the baseline. The Fpoint indicates the feature used in the first prediction. F

′
point,

Fregion, Fborder and Fmiddle indicate the features used in the second prediction. The
specific illustration of these features are shown in Fig. 2. The final column “N” denotes
how many points are sampled to extract feature in the second prediction where “N”
equals 5 in these experiments

Fpoint F
′
point Fregion Fborder Fmiddle AP AP50 AP75 APS APM APL N

X 38.6 57.2 41.7 23.5 42.8 48.9 0

X X 38.9 57.7 42.1 23.7 43.1 49.3 1
X X X 39.9 58.9 43.4 24.6 44.1 50.8 n2 + 1
X X X 39.6 58.5 43.2 24.2 43.8 50.4 4n+ 1
X X X 39.9 58.7 43.4 24.8 44.0 50.4 4 + 1

bounding box and only introduce the border features. (3) Extracting the border
features effectively leads to further improvement than densely extracting the
border features. The experiment in the fourth column of Table. 1 shows that the
middle border features is 0.3 AP higher than border features and reaches the
same performance to the region features with fewer sample points.

In consequence, for the feature representation in the dense object detector, the
point-based feature representation is lack of the explicit feature of the whole object
and the feature enhancement is requisite. However, extracting the feature from the
whole boxes is unnecessary and redundant. Meanwhile, a more efficient extraction
strategy of the border features will lead to better performance. Based on these
conceptions, we explore how to boost the dense object detector performance by
using border feature enhancement in the next section.

3.2 Border Align

Owing to our observation above, the border features are important in achiev-
ing better detection performance. However, it is inefficient to extract features
intensively on the borders since there is usually very little foreground and lots
of background on the borders of the object(e.g. the person in Fig. 1). We thus
propose a novel feature extractor, called BorderAlign to effectively exploit the
border feature.

The architecture of the BorderAlign is illustrated in Fig. 3. Inspired by the R-
FCN [17], our BorderAlign take the border-sensitive feature maps I with (4+1)C
channels as the input. The 4C channels of the feature maps correspond to the
four borders (left, top, right, bottom), while the other C channels corresponds to
the original single point features as shown in Fig. 2. Then, each border is evenly
subdivided into N points and the feature values of these N points are aggregated
by the max-pooling. N denotes the pooling size and is set to 10 in this paper as
default. The proposed BorderAlign could adaptively exploit the representative
border features from the extreme points of the borders.

6 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

Coarse

Cls Score

Pyramid

Feature

Border

Cls Score

Cls

Score

Box

Regδ

∏

Border

Alignment

Module

Border

Alignment

Module
H×W×256

×4

×4

Border

Align

Border Alignment Module

H×W×5C

conv

1×1

H×W×5C

5C

C

top

left

right

bottom

origin

BorderAlign

H×W×256 H×W×256

conv

1×1

5C

Coarse

Box Reg

H×W×256

Coarse

Box Reg

Border

Box Reg

Fig. 3. The architecture of BorderDet. Firstly, we adopt a regular single-stage object
detector to generate the coarse predictions of the classification score and bounding
box location. Then the Border Alignment Module is applied to refine the coarse
predictions with the border features. The π indicates multiplication and the δ denotes
the combination of the two bounding box locations

It is worth noting that our BorderAlign adopts a channel-wise max-pooling
scheme that the four borders are max-pooled independently within each C
channels of the input feature maps. Assuming the input feature maps are in the
order of (single point, left border, top border, right border and bottom border),
the output feature maps F can be formulated as the following equation:

Fc(i, j) =



Ic(i, j) 0 ≤ c < C
max

0≤k≤N−1
(Ic(x0, y0 + kh

N
)) C ≤ c < 2C

max
0≤k≤N−1

(Ic(x0 + kw
N
, y0)) 2C ≤ c < 3C

max
0≤k≤N−1

(Ic(x1, y0 + kh
N

)) 3C ≤ c < 4C

max
0≤k≤N−1

(Ic(x0 + kw
N
, y1)) 4C ≤ c < 5C

(1)

Here Fc(i, j) is the feature value on the (i, j)-th point for the c-th channel
of the output feature maps F , (x0, y0, x1, y1) is the bounding box prediction on
the point (i, j), w and h are the width and height of (x0, y0, x1, y1). To avoid the
quantization error, the exact value Ic is computed by bilinear interpolation [14]
with the nearby feature value on the feature maps.

In Figure. 4, we visualize the maximum value on each C channels of the
border-sensitive feature maps. It reveals that the bank of (4 + 1)C feature maps
are guided to activated in their corresponding location of the object. For example,
the first C channels of the show strong response over the whole object. Meanwhile,
the second C exhibits a high response near the left border of the object. These
border-sensitive feature maps facilitate our BorderAlign to extract the border
feature in a principle way.

BorderDet: Border Feature for Dense Object Detection 7

Image Single Point Left Border

Top Border Bottom Border Right Border

Fig. 4. Visualization of the border-sensitive feature maps. The orange circle on the
border indicate the extreme points. The feature maps of ’Single Point’, ’Left Border’,
’Top Border’, ’Right Border’ and ’Bottom Border’ are the maximum feature value on
each C channels of the border-sensitive feature maps

3.3 Network Architecture

BorderDet. We now present the network architecture of our BorderDet. In
our experiments, we adopt a simple anchor-free object detector FCOS as our
baseline. Since the border extraction procedure in BorderAlign requires border
location as input, our BorderDet adopts two prediction stages as shown in Fig. 3.
Taken the pyramid feature maps as input, the BorderDet first predicts the
coarse classification scores and coarse bounding box locations. Then the coarse
bounding box locations and the feature maps are fed into the Border Alignment
Module (BAM) to generate the feature maps which contain explicit border
information. Finally, we apply a 1× 1 convolutional layers to predict the border
classification score and border locations. The above two predictions will be unified
to form the final predictions. It is to note that the border classification score
is category-aware to avoid ambiguous predictions when there is an overlapping
among different category boundaries.

It is worth noting that although our BorderDet adopts two extra predictions
for both object classification and object localization, the additional computation
is negligible due to the effective structure and layer sharing. In addition, the
proposed method can be integrated into other object detectors in a plug-and-play
manner, including RetinaNet [19], FCOS [28] and so forth.

Border Alignment Module. The structure of Border Alignment Module (BAM)
is illustrated in the green box of Fig. 3. BAM takes the feature maps with C chan-
nels as input, followed by a 1× 1 convolutional layer with instance normalization
to output the border-sensitive feature maps. The border-sensitive feature maps
composed of five feature maps with C channels for each border and the single
point. Thus the channels of the output feature maps have (4 + 1)C channels. In
our experiments, C is set to 256 for the classification branch and to 128 for the

8 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

Pyramid

Feature
Border

Alignment

Module

Border

Alignment

Module

δ

Cls

Score

Box

Reg
Border

Box Reg

Dilated

Conv

H×W×256

Coarse

Box Reg

H×W×256

Fig. 5. The architecture of BorderRPN. We use the BAM to enhance the origin feature
of the RPN, and combine the coarse bounding box locations and the border locations
by δ. Meanwhile, we use the border classification score as the classification score of
BorderRPN

regression branch. Finally, we adopt BorderAlign module to extract the border
feature from the border-sensitive feature maps, and apply a 1× 1 convolutional
layer to reduce the (4 + 1)C channels back to C.

BorderRPN. Our method can also be served as a better proposal generator for
the typical two-stage detectors. We add the border alignment module to RPN
and denote the new structure as BorderRPN. The architecture of BorderRPN is
shown in Fig. 5. We remain the regression branch in RPN to predict the coarse
bounding box locations. The first 3× 3 convolution in RPN is replaced with a
3× 3 dilated convolution to increase the effective receptive field.

3.4 Model Training and Inference

Target Assignment. We adopt FCOS [28] as our baseline to predict the coarse
classification scores and coarse bounding box prediction (x0, y0, x1, y1). Then, in
the second stage, a coarse bounding box prediction will be assigned to the ground-
truth box (xt0, y

t
0, x

t
1, y

t
1) by using an intersection-over-union (IoU) threshold of

0.6. And its regression targets (δx0, δy0, δx1, δy1) are computed as following:

δx0 =
xt
0−x0

w∗σ δy0 =
yt0−y0
h∗σ δx1 =

xt
1−x1

w∗σ δy1 =
yt1−y1
h∗σ , (2)

where w, h are the width and height of the coarse bounding box prediction, and
σ is the variance to improve the effectiveness of multi-task learning (σ equals to
0.5 by default).

Loss Function. The proposed BorderDet is easy to optimize in an end-to-end
way using a multi-task loss. Combining the output of the BorderDet, we define
our training loss function as follows:

L =LCcls + LCreg +
1

Npos

∑
x,y

LBcls(PB , C∗) + LBreg{C∗>0}(∆,∆
∗), (3)

where LCcls and LCreg are the coarse classification loss and coarse regression loss.
In the implementation, focal loss [19] and IoU loss are used as the classification

BorderDet: Border Feature for Dense Object Detection 9

loss and regression loss respectively, which are the same as FCOS [28]. LBcls is the
focal loss computed between the border classification and its assigned ground
truth C∗, the loss is averaged by the number of the positive samples Npos. We
use L1 loss as our corner regression loss. PB represents the predicted border
classification scores and ∆ is the predicted border offset.

Inference. BorderDet predicts classification scores and box locations for
each pixel on the feature maps, while the final classification score is obtained by
multiplying the coarse score and border score. The bounding boxe location is
computed in a simple transformation as illustrated above. Finally, the predictions
from all levels are merged and non-maximum suppression(NMS) with a threshold
of 0.6.

4 Experiments

4.1 Implementation Details

Following the common practice, our ablation experiments are trained on COCO
trainval35k set (115K images) and evaluated on COCO minival set (5K images).
To compare with the state-of-art approaches, we report COCO AP on the test-dev
set (20K images). We use ResNet-50 with FPN as our backbone network for
all the experiments, if not otherwise specified. We use synchronized stochastic
gradient descent(SGD) over 8 GPUs with a total of 16 images per minibatch
(2 images per GPU) for 90k iterations. With an initial learning rate of 0.01, we
decrease it by a factor of 10 after 60k iterations and 80k iterations respectively.
We use horizontal image flipping as the only form of data augmentation. Weight
decay of 0.0001 and momentum of 0.9 are used. We initialize our backbone
network with the weights pre-trained on ImageNet. Unless specified, the input
images are resized to ensure their shorter edge being 800 and the longer edge
less than 1333.

4.2 Ablation Study

We gradually add the Border Alignment Module (BAM) to the baseline to
investigate the effectiveness of our proposed BorderDet. We first apply the BAM
on the classification branch. As shown in the second row of Table. 2, the BAM
leads to a gain of 1.1 AP. It is worth noting that the improvement mainly occurs
in the AP with a low threshold and the improvement decays along with the
increase of IoU threshold. The improvement at low IoU threshold is because
the BAM can rescore the bounding boxes according to their border features,
and maintain the predictions with both high classification score and localization
accuracy. And the performance at a high IoU threshold is restricted by a lack of
high-quality detected bounding boxes.

As opposed to BAM on the classification branch, the improvement made by
the BAM on the regression branch is mainly concentrated on the AP with the
high IoU threshold. The third row in Table. 2 shows that conducting the BAM

10 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

Table 2. Ablation studies of BorderDet. The ’cls’ and ’reg’ denote the implementation
of the Border Alignment Module (BAM) on the classification branch and the regression
branch respectively

Cls-BAM Reg-BAM AP AP50 AP60 AP70 AP80 AP90

38.6 57.2 53.3 46.7 35.3 16.0

X 39.7 58.4 54.8 48.5 36.2 15.9
X 39.7 57.3 53.3 47.3 36.9 18.6

X X 41.4 59.4 55.4 49.4 38.6 19.5

Table 3. Ablation studies on the pooling size of the BorderAlign. Considering the
speed/accuracy trade-off, pooling size equals to 10 in all our experiments

Size 0 2 4 6 8 10 16 32

AP 39.0 40.5 41.2 40.9 41.0 41.4 41.3 41.4
fps 18.3 17.0 17.0 16.9 16.9 16.7 16.6 15.9

on the regression branch boosts the performance from 38.6 to 39.7. The BAM
on the regression branch can significantly raise the localization accuracy of the
detected bounding boxes, and lead to a gain of 2.6 AP90.

Finally, as shown in the last row in Table. 2, the implementation of the BAM
on both branches can further improve the performance from 38.6 to 41.4. And
the improvements are achieved over all IoU thresholds (from AP50 to AP90), with
AP50 increasing by 2.2 and AP90 by 3.5. It is worth mentioning that the AP90 has
been improved by 20% compared with the baseline. This dramatic performance
improvement demonstrates the effectiveness of our proposed BorderDet, especially
for the detection with high IoU thresholds.

4.3 Border Align

Pooling Size. As described in Sec. 3.2, the BorderAlign first subdivides each
border into several points and then pools over each border to extract the border
features. One new hyper-parameter, the pooling size, is introduced during the
procedure of BorderAlign. We compare the detection performance of different
pooling size in BorderAlign. Results are shown in Table. 3. When the pooling
size equals 0, the experiment is equivalent to iteratively predict the bounding
box. The experiments show that the results are robust to the value of pooling
size in a large range. As a large pooling size expenses extra computation, while a
small pooling size leads to unstable results, the pooling size is set to 10 as our
default setting.
Border-Sensitive Feature Maps. To analyse the impact of the border-sensitive
feature maps as described in Sec. 3.2, we also apply the BorderAlign on border-
agnostic feature maps with C channels. All the features in BorderAlign will be
extracted from the same C feature maps. As shown in Table. 4, border-sensitive

BorderDet: Border Feature for Dense Object Detection 11

Table 4. Ablation studies on the border-sensitive feature maps. ‘border sensitive’
indicates that the extractions of border features and original single point feature are
conducted on the different feature maps, while ‘border agnostic’ means the feature
extractions are conducted on the single feature map

AP AP50 AP75 APS APM APL

border agnostic 40.8 59.1 44.0 23.7 44.7 52.7
border sensitive 41.4 59.4 44.5 23.6 45.1 54.6

Table 5. Ablation studies on border feature aggregation strategy in BorderAlign.
For the “Border-Wise” strategy, firstly, the feature maps are aggregate along channel
dimension by different pooling methods to generate the feature maps with channel
equals 1. Then, a max-pooling is conducted on each border of the object to explore the
extreme point, and the feature maps on the extreme points are extracted to form the
border features. For the “Channel-Wise” strategy, the border feature of each channel is
aggregated along the border by average-pooling or max-pooling independently

Aggregation Strategy AP AP50 AP75 APS APM APL

Border-Wise
average-pooling 39.9 58.8 43.0 23.0 43.8 51.9

max-pooling 39.5 58.2 42.7 22.6 43.3 51.3

Channel-Wise
average-pooling 40.6 58.9 43.8 23.8 44.4 52.7

max-pooling 41.4 59.4 44.5 23.6 45.1 54.6

feature maps improve the AP from 40.8 to 41.4. This is because the border-
sensitive feature maps could be highly activated on the extreme points of different
borders on different channels, thus facilitate the border feature extraction.
Border Feature Aggregation Strategy. In BorderAlign, we adopt a channel-
wise max-pooling strategy that the border feature of each channel is aggregated
along the border independently. We investigate the influence of the aggregation
strategy from both the channel-wise and border-wise. As illustrated in Table. 5,
the channel-wise max-pooling strategy achieves the best performance of 41.4 AP .
Compare to the other methods, the proposed channel-wise max-pooling strategy
could extract the representative border feature without involving the background
noise.
Comparison with Other Feature Extraction Operators. Cascade-RPN [31]
and GA-RPN [32] proposed to ease the misalignment between the prediction
bounding boxes and their corresponding feature. Both the two methods adopt
some irregular convolutions, like deformable convolution [3] and adaptive convolu-
tion [31] to extract the feature of the bounding boxes. These irregular convolutions
can also extract the border feature implicitly. To further prove the effectiveness
of our proposed BorderAlign, we directly replace the BorderAlign and the second
convolution in Border Alignment Module (BAM) (Fig. 3) with the adaptive
convolution and deformable convolution respectively. For the fair comparison,
we remain the first 1 × 1 convolution with Instance Nornalization [30] in the
BorderDet. Meanwhile, we also compare the BorderAlign with the RoIAlign by

12 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

Table 6. Comparison of different feature extraction strategies. All the fps of the
extraction strategies are tested on a single NVIDIA 2080Ti GPU

Method AP AP50 AP75 APS APM APL fps

FCOS [28] 38.6 57.2 41.7 23.5 42.8 48.9 18.4

w/Iter-Box [6] 39.0 58.0 42.0 21.8 42.9 50.7 18.3
w/Adaptive Conv [31] 39.6 58.5 42.8 22.0 43.5 51.3 16.8
w/Deformable Conv [3] 39.5 58.5 42.9 22.0 43.5 52.0 16.8
w/RoIAlign [10] 40.4 58.6 43.6 22.6 44.1 53.1 12.6
w/BorderAlign 41.4 59.4 44.5 23.6 45.1 54.6 16.7

0.0

1.0

2.0

3.0

4.0

5.0

-1.00 -0.5 0 0.5 1.00

5k iter
30k iter
90k iter

-1.00 -0.97 -0.93 -0.90 -0.86 -0.83 -0.80 -0.76 -0.73 -0.69 -0.66 -0.63 -0.59 -0.56 -0.53 -0.49 -0.46 -0.42 -0.39 -0.36 -0.32 -0.29 -0.25 -0.22 -0.19 -0.15 -0.12 -0.08 -0.05 -0.02 0.02 0.05 0.08 0.12 0.15 0.19 0.22 0.25 0.29 0.32 0.36 0.39 0.42 0.46 0.49 0.53 0.56 0.59 0.63 0.66 0.69 0.73 0.76 0.80 0.83 0.86 0.90 0.93 0.97 1.00

1st shot 0.945610873016 0.946725727513 0.946250623583 0.951456795635 0.964406040564 0.977435436508 1.01570543651 1.04537210317 1.09546638889 1.14463888889 1.20506 1.28427 1.37416 1.47295 1.57441 1.69812 1.82183 1.94465 2.04967 2.16003 2.2695 2.37274 2.47954 2.575662.65932 2.69759 2.71539 2.73764 2.74921 2.74031 2.72785 2.69403 2.6433 2.58189 2.51603 2.47687 2.43504 2.37363 2.31578 2.24992 2.16092 2.07281 1.97224 1.86989 1.76398 1.6376 1.51745 1.40353 1.28961 1.1926 1.10805 1.03734444444 0.978826944444 0.930258373016 0.887241706349 0.868146340388 0.849839632937 0.836473866213 0.827552843915 0.815063412698 0.815063412698

2st shot 0.69303452381 0.699052619048 0.70862718254 0.72182329932 0.738673511905 0.760923511905 0.811264136905 0.867352678571 0.935890625 1.01515625 1.108328125 1.212625 1.32109375 1.43790625 1.533859375 1.63815625 1.761921875 1.892640625 2.028921875 2.165203125 2.3306875 2.50590625 2.718671875 2.927265625 3.096921875 3.25684375 3.391734375 3.522453125 3.597546875 3.639265625 3.608671875 3.553046875 3.505765625 3.416765625 3.30134375 3.14003125 2.977328125 2.813234375 2.654703125 2.490609375 2.31121875 2.14434375 2.001109375 1.880125 1.759140625 1.636765625 1.544984375 1.46015625 1.37115625 1.2905 1.202890625 1.1125 1.03184375 0.960723214286 0.872186755952 0.796258630952 0.759027721088 0.720511507937 0.684388809524 0.658017261905

3st shot 0.503344444444 0.518425 0.527473333333 0.548338888889 0.580477777778 0.612616666667 0.642777777778 0.687277777778 0.749083333333 0.801 0.870222222222 0.983944444444 1.12733333333 1.25836111111 1.39680555556 1.55008333333 1.69347222222 1.80472222222 1.93822222222 2.12611111111 2.32141666667 2.5365 2.79608333333 3.11994444444 3.40425 3.64405555556 3.89869444444 4.14344444444 4.32886111111 4.45247222222 4.53652777778 4.57608333333 4.53158333333 4.42775 4.28436111111 4.05691666667 3.79980555556 3.50066666667 3.19905555556 2.89497222222 2.57852777778 2.28186111111 2.04205555556 1.84180555556 1.64155555556 1.43141666667 1.26577777778 1.14463888889 0.991361111111 0.857861111111 0.751555555556 0.679861111111 0.605694444444 0.529055555556 0.484555555556 0.445988888889 0.417558333333 0.400203333333 0.389004166667 0.390116666667

0.0

3.0

6.0

9.0

12.0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

baseline BorderDet

x10
4

nu
m

 o
f

m
ax

 v
al

ue
 s

am
pl

e
po

in
t x10

3

normalized distance from the extreme point IoU

nu
m

 o
f t

he
 p

os
 b

ox
es

(a) (b)

�1

Fig. 6. (a) The statistical analysis of the border extraction. The horizontal axis indicates
the normalized distance from the extreme point to the point with max feature value in
BorderAlign. (b) The IoU histogram of output bounding boxes. Both the quality and
quantity of the output boxes have been greatly improved by the BorderDet

replacing the BorderAlign with RoIAlign. Table. 6 reveals that the BorderAlign
outperforms other feature extraction operators by 1.0 AP at least.

Our proposed BorderAlign can concentrate on the representative part of the
border, like the extreme points, and extract the border features explicitly and
efficiently. On the contrary, the other operators which extract the feature from
the whole boxes will introduce the redundant features and limit the detection
performance.

4.4 Analysis of BorderDet

Border Feature Representation. BorderAlign is accomplished by a channel-
wise max-pooling along the border that guarantees the feature extraction process
is conducted around the representative extreme points on the borders. We
demonstrate this perspective by a quantitative method. Concretely, we first use
the annotations of the instance segmentation to yield the locations of the extreme
points (top-most, left-most, bottom-most, right-most). Then, we calculate the
counts of the normalized distances from the BorderAlign sample points to the

BorderDet: Border Feature for Dense Object Detection 13

Table 7. Results of combining BorderDet with one-stage detector (RetinaNet) and
two-stage detector (Faster R-CNN, FPN based)

Method AP AP50 AP75 APS APM APL

Retinanet [19] 36.1 55.0 38.4 19.1 39.6 48.2
BD-Retinanet 38.4 56.5 55.5 22.4 41.6 51.0

FPN [24] 37.1 58.7 40.3 21.1 40.3 48.6
BD-FPN 40.7 57.8 44.3 21.9 43.7 54.8

extreme points in each response maps during the training(5k iteration, 30k
iterations and 90k iterations), which is shown in Fig.6. The mean value of the
normalized distance is almost equal to zero. Meanwhile, the variance of the
distance decreased gradually during the training. It means that our BorderDet
can adaptively learn to extract the feature near the extreme point. These results
further demonstrate the effectiveness of the proposed BorderDet for border feature
extraction.

Regression Performance. To further investigate the benefit of the border
feature in object localization, we count the number of bounding box predictions
with different IoU thresholds separately. Fig. 6 shows the comparison of the
distributions of the bounding box predictions in the FCOS and BorderDet. We
can see the localization accuracy of the bounding boxes is improved significantly.
The number of valid prediction boxes (IoU greater than 0.5) increased by about
30%. In particular, the number of boxes with IoU greater than 0.9 has nearly
doubled. This observation can also explain the significant improvement in AP90

as shown in Table. 2.

4.5 Generalization of BorderDet

Our BorderDet can be easily integrated with the many popular object detectors,
e.g. RetinaNet and FPN. To prove the generalization of the BorderDet, we
first add the proposed border alignment module to the RetinaNet. For a fair
comparison, without modifying any setting of RetinaNet, we directly select the
one with the highest score from the nine prediction boxes of each pixel to refine.
As shown in Table 7, BorderDet can consistently improve the RetinaNet by 2.3
AP . For the two-stage method FPN, our experiments show that the proposed
BorderRPN gains 3.6 AP improvement.

4.6 Comparisons with State-of-the-art Detectors

The BorderDet, based on FCOS and ResNet-101 backbone, is compared to the
state-of-the-art methods in Table 8 under standard setting and advanced setting.
The standard setting is the same as the setting in Sec. 4.1. The advanced setting
follows the setting that using the jitter over scales {640, 672, 704, 736, 768, 800},
and number the training iterations are doubled to 180K. Table. 8 shows the

14 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

comparison with the state-of-the-art detectors on the MS-COCO test-dev set.
With the standard setting, the proposed BorderDet achieves an AP of 43.2. It
surpasses the anchor-free approaches including GuidedAnchoring, FSAF and
CornerNet. By adopting advanced settings, BorderDet reaches 50.3 AP, the state
of the art among existing one-stage methods and two-stage methods.

Table 8. BorderDet vs. the state-of-the-art mothods (single model) on COCO test-dev
set. “†′′ indicates multi-scale training. “‡” indicates the multi-scale testing

Method Backbone Iter. AP AP50 AP75 APS APM APL

FPN [18] ResNet-101-FPN 180k 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [10] ResNet-101-FPN 180k 38.2 60.3 41.7 20.1 41.1 50.2
Cascade R-CNN [1] ResNet-101 280k 42.8 62.1 46.3 23.7 45.5 55.2

RefineDet512 [36] Resnet-101 280k 41.8 62.9 45.7 25.6 45.1 54.1
RetinaNet [19] ResNet-101-FPN 135k 39.1 59.1 42.3 21.8 42.7 50.2
FSAF [39] ResNet-101-FPN 135k 40.9 61.5 44.0 24.0 44.2 51.3
FCOS [28] ResNet-101-FPN 180k 41.5 60.7 45.0 24.4 44.8 51.6
FCOS-imprv [28] ResNet-101-FPN 180k 43.0 61.7 46.3 26.0 46.8 55.0
CornerNet [16] Hourglass-104 500k 40.6 56.4 43.2 19.1 42.8 54.3
CenterNet [4] Hourglass-104 500k 44.9 62.4 48.1 25.6 47.4 57.4

BorderDet ResNet-101-FPN 90k 43.2 62.1 46.7 24.4 46.3 54.9
BorderDet† ResNet-101-FPN 180k 45.4 64.1 48.8 26.7 48.3 56.5
BorderDet† ResNeXt-32x8d-101 180k 45.9 65.1 49.7 28.4 48.6 56.7
BorderDet† ResNeXt-64x4d-101 180k 46.5 65.7 50.5 29.1 49.4 57.5
BorderDet† ResNet-101-DCN 180k 47.2 66.1 51.0 28.1 50.2 59.9
BorderDet† ResNeXt-64x4d-101-DCN 180k 48.0 67.1 52.1 29.4 50.7 60.5
BorderDet‡ ResNeXt-64x4d-101-DCN 180k 50.3 68.9 55.2 32.8 52.8 62.3

5 Conclusion

In this work, we present the BorderDet, a simple yet effective network architecture
that extracts border features in both the classification and regression procedure
to improve the localization ability of the object detector. The introduced border
features are extracted by a novel operation called BorderAlign. Through Border-
Align, the object detector is able to adaptively learn to extract the features of the
extreme point on each borders. Extensive experiments are conducted to validate
the BorderAlign has higher performance than the previous feature refinement
operations.

Acknowledgement

This work was supported in part by the National Key Research and Development
Program of China under Grant 2017YFA0700800.

BorderDet: Border Feature for Dense Object Detection 15

References

1. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 6154–6162 (2018)

2. Chen, Y., Han, C., Wang, N., Zhang, Z.: Revisiting feature alignment for one-stage
object detection (2019)

3. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable con-
volutional networks. In: The IEEE International Conference on Computer Vision
(ICCV) (Oct 2017)

4. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: Keypoint triplets
for object detection. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 6569–6578 (2019)

5. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: Deconvolutional single
shot detector. arXiv preprint arXiv:1701.06659 (2017)

6. Gidaris, S., Komodakis, N.: Attend refine repeat: Active box proposal gener-
ation via in-out localization. In: Richard C. Wilson, E.R.H., Smith, W.A.P.
(eds.) Proceedings of the British Machine Vision Conference (BMVC). pp.
90.1–90.13. BMVA Press (September 2016). https://doi.org/10.5244/C.30.90,
https://dx.doi.org/10.5244/C.30.90

7. Gidaris, S., Komodakis, N.: Locnet: Improving localization accuracy for object
detection. In: Computer Vision and Pattern Recognition (CVPR), 2016 IEEE
Conference on (2016)

8. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1440–1448 (2015)

9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 580–587 (2014)

10. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: The IEEE International
Conference on Computer Vision (ICCV) (Oct 2017)

11. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: European Conference on Computer Vision. pp.
346–361. Springer (2014)

12. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,
Wojna, Z., Song, Y., Guadarrama, S., et al.: Speed/accuracy trade-offs for modern
convolutional object detectors. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 7310–7311 (2017)

13. Huang, L., Yang, Y., Deng, Y., Yu, Y.: Densebox: Unifying landmark localization
with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)

14. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer
networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 28, pp. 2017–2025. Cur-
ran Associates, Inc. (2015), http://papers.nips.cc/paper/5854-spatial-transformer-
networks.pdf

15. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confidence
for accurate object detection. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 784–799 (2018)

16. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: The
European Conference on Computer Vision (ECCV) (September 2018)

16 H. qiu, Y. Ma, Z. Li, S. Liu and J. Sun

17. Li, Y., He, K., Sun, J., et al.: R-fcn: Object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing Systems.
pp. 379–387 (2016)

18. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: CVPR. vol. 1, p. 4 (2017)

19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 2999–3007. IEEE (2017)

20. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: European Conference on Computer Vision. pp.
21–37. Springer (2016)

21. Pinheiro, P.O., Collobert, R., Dollar, P.: Learning to segment object candidates.
In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 28, pp. 1990–1998. Curran Asso-
ciates, Inc. (2015), http://papers.nips.cc/paper/5852-learning-to-segment-object-
candidates.pdf

22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 779–788 (2016)

23. Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 6517–6525. IEEE
(2017)

24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
The IEEE International Conference on Computer Vision (ICCV) (Oct 2017)

26. Shrivastava, A., Sukthankar, R., Malik, J., Gupta, A.: Beyond skip connections:
Top-down modulation for object detection. arXiv preprint arXiv:1612.06851 (2016)

27. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2014)

28. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. arXiv preprint arXiv:1904.01355 (2019)

29. Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural networks.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2014)

30. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing
Ingredient for Fast Stylization. arXiv e-prints arXiv:1607.08022 (Jul 2016)

31. Vu, T., Jang, H., Pham, T.X., Yoo, C.D.: Cascade RPN: Delving into High-
Quality Region Proposal Network with Adaptive Convolution. arXiv e-prints
arXiv:1909.06720 (Sep 2019)

32. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided
anchoring. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2019)

33. Wang, J., Zhang, W., Cao, Y., Chen, K., Pang, J., Gong, T., Shi, J., Change Loy,
C., Lin, D.: Side-Aware Boundary Localization for More Precise Object Detection.
arXiv e-prints arXiv:1912.04260 (Dec 2019)

34. Xu, H., Lv, X., Wang, X., Ren, Z., Chellappa, R.: Deep regionlets for object
detection. arXiv preprint arXiv:1712.02408 (2017)

BorderDet: Border Feature for Dense Object Detection 17

35. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation
for object detection. In: The IEEE International Conference on Computer Vision
(ICCV) (October 2019)

36. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refine-
ment neural network for object detection. CoRR abs/1711.06897 (2017),
http://arxiv.org/abs/1711.06897

37. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network
for object detection. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2018)

38. Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection by
grouping extreme and center points. CoRR abs/1901.08043 (2019),
http://arxiv.org/abs/1901.08043

39. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot
object detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 840–849 (2019)

