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Abstract. Virtual Adversarial Training (VAT) has shown impressive re-
sults among recently developed regularization methods called consistency
regularization. VAT utilizes adversarial samples, generated by injecting
perturbation in the input space, for training and thereby enhances the
generalization ability of a classifier. However, such adversarial samples
can be generated only within a very small area around the input data
point, which limits the adversarial effectiveness of such samples. To ad-
dress this problem we propose LVAT (Latent space VAT), which injects
perturbation in the latent space instead of the input space. LVAT can
generate adversarial samples flexibly, resulting in more adverse effect and
thus more effective regularization. The latent space is built by a genera-
tive model, and in this paper we examine two different type of models:
variational auto-encoder and normalizing flow, specifically Glow.
We evaluated the performance of our method in both supervised and
semi-supervised learning scenarios for an image classification task using
SVHN and CIFAR-10 datasets. In our evaluation, we found that our
method outperforms VAT and other state-of-the-art methods.

Keywords: consistency regularization, adversarial training, image clas-
sification, semi-supervised learning, and unsupervised learning.

1 Introduction

One of the goals of training machine learning models is to avoid overfitting.
To address overfitting, we use various regularization techniques. Recently con-
sistency regularization has shown remarkable results to overcome overfitting
problems in deep neural networks. Consistency regularization is also known as
perturbation-based methods, and its basic strategy is to perturb inputs during
the learning process and force the model to be robust against them. Perturba-
tion is defined as randomizing operations such as dropout, introducing Gaus-
sian noise, and data augmentation. Consistency regularization is achieved by
∗Currently working at Lowe’s Services India Pvt. Ltd.
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introducing a regularization term, called consistency cost. Consistency cost is
designed to penalize the discrepancy between the model outputs, with and with-
out perturbations. Thus consistency regularization can work without class labels,
which leads to two attractive features: 1) it can extend most supervised learning
methods to semi-supervised learning methods, which enables us to use unlabeled
data for the model training, and 2) like the techniques such as dropout and data
augmentation, it can be applied to most existing models without modifying the
model architecture.

Among the consistency regularization methods, Virtual Adversarial Training
(VAT) [25,26] has shown promising results. The way of generating perturbation
in VAT is different from other consistency regularization methods. Perturbation
in VAT is not random, instead deliberately generated towards a direction that
causes the most adverse effects on the model output. However, perturbations
in VAT can work only a very small area around the input data points. It is
because those perturbations are generated based on the local sensitivity, i.e., the
gradients of the model outputs w.r.t. the tiny shift in the input space (Section
3.1). We focus on the fact that such local constraint limits the offensive power
of adversarial perturbations, and thus hinders the effectiveness of VAT as a
consistency regularization. Based on this, we aim to overcome this limitation
and develop a method to generate perturbation more flexibly, which would lead
to better generalization.

In this paper, we propose VAT based consistency regularization that utilizes
the latent space. The key idea underlying our method is transforming the space
in which the computation of perturbation is performed. In our method, the input
data is mapped to the latent space, and we compute perturbation and inject it
into the point in the latent space. Then, adversarial examples are generated
by mapping such perturbed latent point back to the point in the input space,
and therefore, there is no local constraint which hinders VAT effectiveness. To
map to and from the latent space, we use a generative model, which we call
transformer, and in this paper we examine two models: variational auto-encoder
(VAE) [16] and normalizing flow, specifically, Glow [17]. We used SVHN and
CIFAR-10 datasets, which are common benchmarking datasets, to demonstrate
that our method improves VAT and outperforms other state-of-the-art methods.
To the best of our knowledge, this work is the first to introduce the latent space
in the context of consistency regularization.

Notation. We consider a classification task. Suppose we haveK classes, taking an
input xi ∈ X , we want to predict the class label yi ∈ {1, 2, . . . ,K}6, where X is
a sample space with data points. Our purpose is to learn K-class classifier model
f : X 7→ RK parameterized by θ, where R denotes real numbers, the k-th element
f(x)k is called logit for class k, and ypred = argmaxk f(x)k ∈ {1, 2, . . . ,K}
corresponds to the model prediction of the class. Also, labeled dataset is denoted
by Dl = {(xi, yi)}Nl

i=1 with Nl samples and unlabeled dataset is denoted by

Du = {xi}Nu
i=1 with Nu samples.

6We write scalars and vectors by non-bold and bold letters, respectively.
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2 Related Work

We focus mainly on state-of-the-art methods that are related to our approach.
These can be broadly categorized as follows: consistency regularization, graph-
based methods, and GAN-based methods.

Consistency Regularization. The VAT and our proposed method LVAT be-
long to this category. The assumption underlying these methods is local consis-
tency [37]: nearby points in the input space are likely to have the same output.
In general, the model predictions for the points near the decision boundaries are
sensitive to perturbations and prone to be misclassified by being perturbed. To
mitigate this sensitivity, this type of method employs the regularizing loss func-
tion, called consistency cost, which aims to train the model so that its outputs
would be consistent for the inputs both with and without perturbation. Because
the consistency cost becomes large at the points near the decision boundaries,
the regularizing effect works so that the decision boundary would be kept far
away from such points, which leads to better generalization in testing time. As
the simplest case, theΠ-Model [20] employs the following consistency cost R(x):

R(x) := ∥f(x̃1, θ)− f(x̃2, θ)∥22 (1)

x̃1 ∼ Perturb(x), x̃2 ∼ Perturb(x) (2)

where ∥·∥2 denotes L2 norm, and Perturb(·) is a function that applies a stochastic
deformation (i.e., data augmentation), random noise addition, and dropout, thus
outputting different x̃i each time.

Dropout, Gaussian noise, and randomized data augmentation have been cho-
sen as perturbations in [1, 2, 20, 28, 31, 34]. [36] has shown that the latest data
augmentation techniques, AutoAugment and Cutout, were quite effective to use
as perturbations. Although in the Π-Model, Perturb(·) is applied to both of x
in R(x), Perturb(·) is applied only to one x in R(x) in VAT and LVAT. Further-
more, perturbations used in VAT and LVAT are not random but are carefully
computed, as we describe it in the next section.

Graph-based Methods. In contrast to the above consistency regularization
methods, graph-based methods assume global consistency [37]: all samples that
map to the same class label should belong to a single cluster. [14] proposed a
method that captures a structure of samples within a mini-batch by means of
label propagation, and then forces samples belonging to the same class to form
compact clusters in the feature space. Smooth Neighbors on Teacher Graphs
(SNTG) [23] computes unsupervised loss function for each mini-batch, in which
attraction force between samples belonging to the same class and repulsion force
between samples belonging to the different classes are realized. Consistency reg-
ularizations focus on the sensitivity of each data point to perturbations, whereas
graph-based methods regularize a whole structure of data points within a mini-
batch. Graph-based methods and consistency regularizations are not mutually
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exclusive, but rather complementary. These two could be implemented at the
same time, and in fact [23] reported that combining with SNTG steadily im-
proved the performance of all consistency regularization methods in their exper-
iments.

GAN-based Methods. Several works have utilized the samples generated in
GAN framework as another kind of perturbation injection [8,21,32,33]. Among
them, BadGAN [5] presented impressive performance. As opposed to the usual
GAN framework, the generator in BadGAN generates unrealistic samples, which
can be viewed as a data augmentation targeting the lower density regions in the
given data distribution. With such data augmentation, BadGAN aims to draw
better decision boundaries, and thus their objective is similar to VAT and our
proposed method. We compare our method with these methods in result section.

Adversarial Examples for Generative Models. We finally note that, in the
filed of adversarial machine learning, there are studies in regard to the latent
space of generative models. However, their objectives are not regularization like
ours. [3] studied attacking the generative models, and [9] derived a fundamental
upper bound on robustness against adversarial perturbations. Our goal is to
achieve better consistency regularization, and to this end, we aim to generate
more effective adversarial examples by utilizing the latent space.

3 Background

3.1 Virtual Adversarial Training and Local Constraint

Perturbations in VAT are deliberately generated so that its direction could cause
the most adverse effects on the model outputs, i.e., classification predictions.
Formally, letting

R(x, r) := KL(f(x, θ) ∥ f(x+ r, θ)), (3)

adversarial perturbation rvat is defined as

rvat := argmax
r
{R(x, r); ∥r∥2 ≤ ϵvat} (4)

where KL(p ∥ q) denotes KullbackLeibler (KL) divergence between distributions
p and q, and ϵvat is a hyper-parameter to decide the magnitude of rvat

7. Once
rvat is computed, the consistency cost is given as:

Lvat := R(x, rvat)

= KL(f(x, θ) ∥ f(x+ rvat, θ)). (5)

7We use the suffix of ‘vat’ to distinguish from the symbols that will be used later in
the description of our proposed method.



Regularization with Latent Space Virtual Adversarial Training 5

This regularizing cost encourages the classifier to be trained so that it outputs
consistent predictions for the clean input x and the adversarially perturbed input
x+ rvat.

Eq. (4) can be rewritten as rvat = ϵvatu, where u is a unit vector in the
same direction as rvat and the maximum magnitude of rvat is given by ϵvat. To
calculate u, [26] has presented following fast approximation method. Under the
assumption that f(x, θ) is twice differentiable with respect to θ, the second-order
Taylor expansion around the point of r = 0 yields

R(x, r) ≈ R(x, 0) +R′(x, 0)r+
1

2
rTHr (6)

=
1

2
rTHr (7)

where H is the Hessian matrix given by H := R′′(x, 0), and R(x, 0) and R′(x, 0)
in the first line are zeros since KL(p ∥ q) takes the minimal value zero when
p = q, i.e., r = 0. Thus, taking the eigenvector of H which has the largest
eigenvalue is required to solve Eq. (4). To reduce the computational cost, a
finite difference power method is introduced. Given a random unit vector d, the
iterative calculation of d← Hd where Hd := Hd/∥Hd∥2, makes the d converge
to u. With a small constant ξ, finite difference approximation follows as

H ≈ (R′(x, 0 + ξd)−R′(x, 0)) /ξd (8)

Hd = R′(x, ξd)/ξ (9)

where we use the fact that R′(x, 0) = 0. Then the repeated application of d ←
R′(x, ξd) yields u. [26] reported that sufficient result was reached by only one
iteration. As a result, with a given ϵvat, Eq. (4) can be computed as:

rvat = ϵvatR′(x, ξd). (10)

The pseudo-code describing the computation of Lvat defined in Eq. (5) is shown
in Algorithm 1, which will be helpful to clarify in which part our proposed
method differs from the VAT.

Local Constraint. As we can see in Eq. (6), VAT algorithm works under the
assumption that r is very small such that Taylor expansion is applicable. This
means that adversarial examples x + rvat are crafted as only a very small shift
from x, which hinders the search for more adverse examples. Our purpose is to
remove this constraint to generate adversarial examples flexibly, and to this end,
we compute rvat in the latent space.

3.2 Transformer

To map to and from the latent space, we use a generative model. In this paper, we
examine two types of model, VAE and normalizing flow. The VAE is approximate
inference and the dimensionality of the latent space is usually much smaller than
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that of the input space. On the other hand, the normalizing flow is exact inference
and the dimensionality of the latent space is kept equal to that of the input space,
i.e., lossless conversion. We will use the term transformer as a generic name to
refer to these two.

Variational Auto-Encoder consists of two networks: the encoder (Enc) that
maps a data sample x to z in latent space, and the decoder (Dec) that maps z
back to a point x̂ in the input space as:

z ∼ Enc(x) = q(z|x), x̂ ∼ Dec(z) = p(x|z). (11)

The VAE regularizes the encoder by imposing a prior over the latent distribution
p(z). Typically p(z) is set as a standard normal distribution N (0, I). The VAE
loss is:

Lvae = −Eq(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
(12)

and it can be written as the sum of the following two terms: the expectation of
negative log likelihood, i.e., the reconstruction error, Eq(z|x) [log p(x|z)], and a
prior regularization term, KL(q(z|x) ∥ p(z)).

Normalizing Flow. Suppose g(·) is an invertible function and let h0 and h1

be random variables of equal dimensionality. Under the change of variables rule,
transformation h1 = g(h0) can be written as the change in the probability
density function: p(h0) = p(h1)|det(dh1/dh0)|. Stacking this transformation L-
times as h1,h2, . . . ,hL yields:

p(h0) = p(hL)
L∏

i=1

|det(dhi/dhi−1)|, (13)

and taking the logarithm results in:

log p(x) = log p(z) +
L∑

i=1

log |det(dhi/dhi−1)| (14)

where we define h0 := x and hL := z. Such a series of transformations can
gradually transform p(x) into a target distribution p(z) of any form. Setting
p(z) = N (0, I) is especially called a normalizing flow [30].

As Eq. (14) is the form of log-likelihood, the learning objective is to max-
imize Ep(x)log p(x) by optimizing g(·). The function g(·) must be designed to
have the tractability to compute its inverse and the determinant of Jacobian
matrix |det(dhi/dhi−1)| in Eq. (14), and several methods have been proposed
in this regard. Autoregressive models [11,18,27] have a powerful expression but
are computationally slow due to non-parallelization. Thus, we use split coupling
models [6, 7], specifically, Glow [17]. For brevity, we refer the reader to [17].

Similarly to the case of VAE, we denote transformation x→ z by z = Enc(x)
and z → x by x = Dec(z), and we call them just Enc() and Dec() as generic
notations, for convenience.
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Fig. 1. Overview of our method. Only during training, we place trained transfomer,
i.e., Enc() and Dec(), in front of classifier f() being trained. While for x ∈ Dl, Du

classifier outputs f(x), predictive class label ypred is produced only for x ∈ Dl. KL
divergence corresponds to the consistency const Llvat.

4 Method

Our proposed method applies Eq. (4), i.e., Eq. (10), to the latent space. It means
that our method generates perturbations based on the gradients of the model
outputs w.r.t. the shift in the latent space, and therefore, the latent space in our
method is required to be a continuous distribution. Thus, vanilla Auto-Encoder
and Denoising Auto-Encoder [35], which do not construct the latent space as a
continuous distribution, are out of our selection. Instead, we choose two different
types of generative models, VAE and Glow, and we build those models so that
the latent space p(z) formsN (0, I). We call our proposed method LVAT standing
for Virtual Adversarial Training in the Latent space, and we refer to LVAT using
VAE and LVAT using Glow as LVAT-VAE and LVAT-Glow, respectively. In Fig.
1, we show the overview of LVAT. We deploy the transfomer in the fore stage
of the classifier that we want to train. During training, by mapping the input
x ∈ Dl, Du to the latent space by Enc(), the latent representation z = Enc(x) is
computed. It is followed by applying Eq. (4) to z and computing the adversarial
perturbation in the latent space, rlvat, and the adversarial latent representation
zadv = z + rlvat is computed. Then, by putting zadv through Dec(), we obtain
adversarial samples xadv = Dec(zadv). Here, we define

Rlvat(x, r) := KL(f(x, θ) ∥ f(x′, θ)) (15)

x′ = Dec(Enc(x) + r) (16)

and the adversarial perturbation rlvat and the consistency cost Llvat are defined
as:

rlvat := argmax
r
{Rlvat(x, r); ∥r∥2 ≤ ϵlvat} (17)

xadv := Dec(Enc(x) + rlvat) (18)

Llvat := Rlvat(x, rlvat) (19)

= KL(f(x, θ) ∥ f(xadv, θ)). (20)

where ϵlvat is a hyper-parameter to decide the magnitude of rlvat. The ϵvat in
VAT gives the L2 distance ∥x−xadv∥2 in the input space, whereas ϵlvat in LVAT
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Algorithm 1 Computation of consistency cost for VAT

Input: X: random mini-batch from dataset
Input: f(): classifier being trained
Input: ϵvat: magnitude of perturbation
Input: ξ: very small constant, e.g., 1e−6
Input: d: random unit vector of same shape of X
Output: Lvat: consistency cost of VAT
1: g← ∇d KL(f(X) ∥ f(X + ξd)
2: rvat ← ϵvatg/∥g∥2
3: Lvat ← KL(f(X) ∥ f(X + rvat))
4: return Lvat

Algorithm 2 Computation of consistency cost for LVAT

Input: X: random mini-batch from dataset
Input: f(): classifier being trained
Input: Enc() and Dec(): encoder and decoder of transfomer
Input: ϵlvat: magnitude of perturbation
Input: ξ: very small constant, e.g., 1e−6
Input: d: random unit vector of same size as latent space
Output: Llvat: consistency cost of LVAT
1: Z ← Enc(X)
2: g← ∇d KL(f(X) ∥ f(Dec(Z + ξd)))
3: rlvat ← ϵlvatg/∥g∥2
4: Llvat ← KL(f(X) ∥ f(Dec(Z + rlvat)))
5: return Llvat

gives the L2 distance between ∥z− zadv∥2 in the latent space. The pseudo-code
to obtain Llvat is shown in Algorithm 2.

The full loss function L is thus given by

L = Lsl(Dl, θ) + αLusl(Dl, Du, θ) (21)

Lusl = Ex∈Dl,Du [Llvat]

where Lusl is the unsupervised loss, i.e., consistency cost, Lsl is a typical su-
pervised loss (cross-entropy for our task), and α is a coefficient relative to the
supervised cost.

5 Experiments

We evaluate our proposed method in an image classification task using SVHN
and CIFAR-10 datasets. Both supervised learning (SL) and semi-supervised
learning (SSL) tests are conducted. The experimental code8 was run with NVIDIA
GeForce GTX 1070.

8https://github.com/geosada/LVAT
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Table 1. Architecture of classifier. BNorm stands for batch normalization [12]. Slopes
of all Leaky ReLU (lReLU) [24] are set to 0.1.

Input: 32× 32 RGB image 8: 2× 2 max-pool, dropout 0.5
1: 3× 3 conv. 128 same padding, BNorm, lReLU 9: 3× 3 conv. 512 valid padding, BNorm, lReLU
2: 3× 3 conv. 128 same padding, BNorm, lReLU 10: 1× 1 conv. 256 BNorm, lReLU
3: 3× 3 conv. 128 same padding, BNorm, lReLU 11: 1× 1 conv. 128 BNorm, lReLU
4: 2× 2 max-pool, dropout 0.5 12: Global average pool 6× 6 → 1× 1
5: 3× 3 conv. 256 same padding, BNorm, lReLU 13: Fully connected 128 → 10
6: 3× 3 conv. 256 same padding, BNorm, lReLU 14: BNorm (only for SVHN)
7: 3× 3 conv. 256 same padding, BNorm, lReLU 15: Softmax

5.1 Datasets

The street view house numbers (SVHN) dataset consists of 32 × 32 pixel RGB
images of real-world house numbers, having 10 classes. The CIFAR-10 dataset
also consists of 32× 32 pixel RGB images in 10 different classes, airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. The numbers of train-
ing/test images are 73, 257/26, 032 for SVHN and 50, 000/10, 000 for CIFAR-10,
respectively.

We also evaluate our method using augmented datasets. We augmented data
using random 2 × 2 translation for both datasets and horizontal flips only for
CIFAR-10 same as previous study [25]. These augmentations are dynamically
applied for each mini-batch. We denote the datasets with data augmentation by
(w/ aug.), and our evaluation is conducted with four datasets, SVHN, SVHN
(w/ aug.), CIFAR-10, and CIFAR-10 (w/ aug.).

In tests in SL, all labels in the training dataset are used, and the results are
averaged over 3 runs. In tests in SSL, 1, 000 and 4, 000 labeled data points are
randomly sampled for SVHN and CIFAR-10, respectively. To evaluate different
combinations of labeled data in tests in SSL, we prepared 5 different datasets
with 5 different seeds for random sampling of labeled data points, and the results
are averaged over them.

5.2 Model Training

The transformer can be modularized in our method, and thus we first train
only the transformer for each dataset separately from the classifier. Once we
build the transformers, then, training the classifier with LVAT using the trained
transformer model follows. We can use the same transformers throughout all
the experiments, which benefits us as it reduces experiment time significantly,
especially when we have to run the experiments many times (e.g., for grid-
searching for hyper-parameters). This can be viewed as a sort of curriculum
strategy that is found for example in [22].

Model Architectures. The architecture of the classifier is the same as that
of the previous works, and the detail is shown in Table 1. The architecture of
the VAE is designed based on DCGAN [29], which is shown in Table 2. The
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Table 2. Architecture of encoder and decoder of VAE. Dimensionality of latent space
is 128. BNorm stands for batch normalization. Slopes of Leaky ReLU (lReLU) are set
to 0.1.

Enc Dec

Input: 32× 32× 3 image Input: 128-dimensional vector
2× 2 conv. 128 valid padding, BNorm, ReLU Fully connected 128 → 512 (4× 4× 32), lReLU
2× 2 conv. 256 valid padding, BNorm, ReLU 2× 2 deconv. 512 same padding, BNorm, ReLU
2× 2 conv. 512 valid padding, BNorm, tanh 2× 2 deconv. 256 same padding, BNorm, ReLU
Fully connected 8192 → 128 2× 2 deconv. 128 same padding, BNorm, ReLU

1× 1 conv. 128 valid padding, sigmoid

architecture of the Glow mainly consists of two parameters: the depth of flow K
and the number of levels L. We set K = 22 and L = 3, respectively9. Refer to
our experimental code for more details.

Hyper-Parameters. For the classifier with LVAT, we fixed the coefficient α =
1 in Eq. (21), like the original VAT. We used the Adam optimizer [15] with the
momentum parameters β1 = 0.9 and β2 = 0.999. The initial learning rate is set
to 0.001 and decays linearly with the last 16,000 updates, and β1 is changed to
0.5 when the learning rate starts decaying. The size of a mini-batch is 32 and
128 for Lsl and Lusl, respectively for both datasets. We trained each model with
48,000 and 200,000 updates for SVHN and CIFAR-10, respectively. The best
hyper-parameter ϵlvat in Eq. (17) was found through a grid search in the SSL
setting. For LVAT-VAE, 1.5 and 1.0 were selected for SVHN and CIFAR-10,
respectively, from {0.1, 0.25, 0.5, 0.75, 3.0, 4.0, ..., 15.0}. For LVAT-Glow, 1.0
was selected for both SVHN and CIFAR-10 from {0.5, 1.0, 1.5}.

Also for a fair comparison, we conduct the test in SL for VAT, since the
results for these were not reported in the original paper except for the one on
CIFAR-10 (w/ aug.). According to the code the original authors provide10, we
set ϵvat to 2.5, 3.5, 10.0, and 8.0 for SVHN, SVHN (w/ aug.), CIFAR-10, and
CIFAR-10 (w/ aug.), respectively. Although these values are provided for SSL
test and we also attempted other values, it was found that the above ones were
better. Regarding ϵlvat and ϵvat, we use these values for LVAT and VAT for all
experiments unless otherwise noted.

The VAE and Glow were trained using the same data that was used for
training the classifier. For the VAE, we also used the Adam optimizer with
β1 = 0.9 and β2 = 0.999, with batch size 256. The learning rate starts with
0.001 and exponentially decays with rate 0.97 at every 2 epochs after the first
80 epochs, and we trained for 300 epochs. For the Glow, the learning rate starts
with 0.0001, and we trained 3, 200 iterations for SVHN and CIFAR-10 and 5, 200
iterations for SVHN (w/ aug.) and CIFAR-10 (w/ aug.).

9We implemented Glow model based on [19].
10https://github.com/takerum/vat tf
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Table 3. Error rates (%) comparing to VAT and other methods. Results with data
augmentation are denoted with (w/ aug.). SSL indicates semi-supervised learning, i.e.,
number of labeled data Nl is 1,000 and 4,000 for SVHN and CIFAR-10, respectively.
SL indicates supervised learning, i.e., all training data are used with label.

SVHN SVHN (w/ aug.) CIFAR-10 CIFAR-10 (w/ aug.)

Methods SSL SL SSL SL SSL SL SSL SL

Consistency Regularization
Sajjadi et al. [31] - - - 2.22 (± 0.04) - 11.29 (± 0.24) -
MT [34] 5.21 (± 0.21) 2.77 (± 0.09) 3.95 (± 0.19) 2.50 (± 0.05) 17.74 (± 0.30) 7.21 (± 0.24) 12.31 (± 0.28) 5.94 (± 0.14)
Π-Model [20] 5.43 (± 0.25) - 4.82 (± 0.17) 2.54 (± 0.04) 16.55 (± 0.29) - 12.36 (± 0.31) 5.56 (± 0.10)
TempEns [20] - - 4.42 (± 0.16) 2.74 (± 0.06) - - 12.16 (± 0.24) 5.60 (± 0.14)
VAT [25] 5.77 (± 0.32) 2.34 (± 0.05) 1 5.42 (± 0.22) 2.22 (± 0.08) 1 16.92 (± 0.45) 2 3 8.175 2 11.36 (± 0.34) 5.81(± 0.02)

Graph-based Methods
LBA 4 [10] 9.25 (± 0.65) 3.61 (± 0.10) 9.25 (± 0.65) 3.61 (± 0.10) 19.33 (± 0.51) 8.46 (± 0.18) 19.33 (± 0.51) 8.46 (± 0.18)
CCLP [14] 5.69 (± 0.28) 3.04 (± 0.05) - - 18.57 (± 0.41) 8.04 (± 0.18) - -

GAN-based Methods
ALI [8] 7.42 (± 0.65) - - - 17.99 (± 1.62) - - -
CatGAN [33] - - - - 19.58 (± 0.58) 9.38 - -
TripleGAN [21] 5.77 (± 0.17) - - - 16.99 (± 0.36) - - -
ImprovedGAN [32] 8.11 (± 1.30) - - - 18.63 (± 2.32) - - -
BadGAN [5] 4.25 (± 0.03) - - - 14.41 (± 0.30) - - -

LVAT-VAE (Ours) 4.44 (± 0.36) 2.26 (± 0.08) 4.20 (± 0.23) 2.02 (± 0.04) 13.90 (± 0.36) 8.05 (± 0.30) 14.64 (± 0.54) 6.54 (± 0.26)
LVAT-Glow (Ours) 4.20 (± 0.45) 2.23 (± 0.07) 3.83 (± 0.37) 2.13 (± 0.07) 9.94 (± 0.22) 5.24 (± 0.20) 7.34 (± 0.24) 3.94 (± 0.05)

1 Results of our experiments with code [25] provided. 2 Results of our experiments with code [25] provided without ZCA.
3 Reported result in [25] is 14.87 (± 0.38) with ZCA. 4 Results of re-implementation by [14].

Table 4. Error rates (%) comparing to combination methods. Notations are same as
those in Table 3.

SVHN SVHN (w/ aug.) CIFAR-10 CIFAR-10 (w/ aug.)

Methods SSL SL SSL SL SSL SL SSL SL

Combination Methods
MT + SNTG [23] - - 3.86 (± 0.27) 2.42 (± 0.06) - - - -
MT + fast-SWA [1] - - - - - - 9.05 (± 0.21) 4.73 (± 0.18)
Π-Model + SNTG [23] 4.22 (± 0.16) - 3.82 (± 0.25) 2.42 (± 0.05) 13.62 (± 0.17) - 11.00 (± 0.13) 5.19 (± 0.14)
Π-Model + fast-SWA [1] - - - - - - 10.07 (± 0.27) 4.72 (± 0.04)
TempEns + SNTG [23] - - 3.98 (± 0.21) 2.44 (± 0.03) - - 10.93 (± 0.14) 5.20 (± 0.14)
VAT + Ent [25] 4.28 (± 0.10) - 3.86 (± 0.11) - 13.15 (± 0.21) - 10.55 (± 0.05) -
VAT + Ent + SNTG [23] 4.02 (± 0.20) - 3.83 (± 0.22) - 12.49 (± 0.36) - 9.89 (± 0.34) -
VAT + Ent + fast-SWA [1] - - - - - - 10.97 -
VAT + LGA [13] 6.58 (± 0.36) - - - 12.06 (± 0.19) - - -

LVAT-VAE (Ours) 4.44 (± 0.36) 2.26 (± 0.08) 4.20 (± 0.23) 2.02 (± 0.04) 13.90 (± 0.36) 8.05 (± 0.30) 14.64 (± 0.54) 6.54 (± 0.26)
LVAT-Glow (Ours) 4.20 (± 0.45) 2.23 (± 0.07) 3.83 (± 0.37) 2.13 (± 0.07) 9.94 (± 0.22) 5.24 (± 0.20) 7.34 (± 0.24) 3.94 (± 0.05)

5.3 Results

We show classification accuracies. Note that some methods in Tables 3 and 4,
including VAT, performed image pre-processing with ZCA on CIFAR-10, which
is not used in our experiments. In terms of the model capacity, it is a fair
comparison as all other methods used the same network architecture as ours.

In Table 3, we compared LVAT to VAT, other consistency regularizations,
and also other approaches introduced in Section 2. We can see that LVAT sub-
stantially improved the original VAT, and moreover, outperformed all of other
methods in all eight experimental settings.

It has been reported that even better results can be obtained by combining
consistency regularizations (MT, Π-Model, TempEns, and VAT) together with
other techniques, such as graph-based method (SNTG). We also compared our
method to those combinations in Table 4. It is noteworthy that LVAT still sur-
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(a) SVHN (b) CIFAR-10

Fig. 2. Histograms of L2 distance between the original input images and the adversarial
images generated by LVAT-Glow with ϵlvat = 1.0. x-axis is ∥x−Dec(Enc(x) + rlvat)∥2
and y-axis is frequency. For each dataset 5,000 samples are randomly sampled. This
indicates that LVAT generates various magnitudes of perturbations.

passed all other methods, except for the result in the SSL testings on SVHN
(VAT + Ent + SNTG) and on SVHN (w/ aug.) (Π-Model + SNTG). In par-
ticular, LVAT-Glow on CIFAR-10 and CIFAR-10 (w/ aug.) showed outstanding
performance. We believe that combining LVAT with other methods (e.g., LVAT
+ SNTG) would also achieve further improved performance, but we leave it as
future works.

6 Discussions

6.1 Adversarial Examples

In this section, we analyze our results focusing on the adversarial examples that
LVAT generates.

Perturbation Magnitude. First, we see the magnitude of perturbation in
the input space. Fig. 2 shows the histograms of L2 distance between the orig-
inal input images and the adversarial images that LVAT generates, i.e., ∥x −
Dec(Enc(x)+rlvat)∥2, which corresponds to ϵvat in the original VAT. It is shown
that LVAT generates adversarial examples in the wide range of magnitude, un-
like in the original VAT where every adversarial example is generated with the
same given magnitude ϵvat. In terms of perturbation magnitude, we can see that
the LVAT can generate various adversarial examples as we aimed.

Visual Appearance. Next, we see the visual appearance of adversarial ex-
amples of LVAT and VAT. Fig. 3 shows that adversarial images of VAT are
tainted with artifacts, whereas the ones of LVAT look realistic. In both trans-
former VAE and Glow, the latent space p(z) is constructed so that the points
in the high-density area in p(z) correspond to the data used during the model
training, i.e., correspond to real images. Thus, unless ϵlvat is not too large, the
perturbed latent representation zadv computed in LVAT still should correspond
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(a) LVAT-VAE on SVHN (b) LVAT-VAE on CIFAR-10

(c) LVAT-Glow on SVHN (d) LVAT-Glow on CIFAR-10

(e) VAT on SVHN (f) VAT on CIFAR-10

Fig. 3. Generated Images. For (a) through (d), first row: original images x, second
row: reconstructed images via transformer without perturbation x̂ = Dec(Enc(x)),
third row: adversarial images xadv = Dec(Enc(x) + rlvat). For (e) and (f), first row: x,
second row: xadv = x+ rvat.

to a realistic image. It has been argued in [36] that these noisy images generated
in VAT seem harmful to further performance improvement. Unlike VAT, there
is no such concern in LVAT.

6.2 Failure Analysis: Limitation of VAE Reconstruction Ability on
CIFAR-10

Our proposed method LVAT achieved good results as we saw, especially LVAT-
Glow on CIFAR-10. However, it also turned out that the error rates of LVAT-
VAE on CIFAR-10 were higher than the other experimental settings. We analyze
the reason of that in this section.

In Fig. 3(b), we can see that the adversarial images (the third row) on
CIFAR-10 are blurred, and more importantly, the images just reconstructed
without perturbation (the second row) are also blurry. This indicates that re-
gardless of perturbation, just passing Enc() and Dec() of VAE will blur the
input image, which can be viewed as the known VAE characteristics [4]. Fig. 4
shows the reconstruction error in VAE: L2 distance between the original images
and the decoded images by VAE for both with and without perturbing, i.e.,
∥x − Dec(Enc(x) + rlvat)∥2 and ∥x − Dec(Enc(x))∥2. It can be seen that the
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(a) w/ perturbation (b) wo/ perturbation

Fig. 4. Distance from x (L2 norm) in LVAT-VAE. (a) is ∥x−Dec(Enc(x)+rlvat)∥2 and
(b) is ∥x − Dec(Enc(x))∥2, i.e., reconstruction error. SVHN is orange and CIFAR-10
is blue. For each dataset 5,000 samples are randomly sampled, and y-axis is frequency.
This indicates regardless of perturbation, the reconstruction error of VAE is larger on
CIFAR-10 than on SVHN.

reconstruction error of VAE is larger on CIFAR-10 than on SVHN, and we think
that it is caused by the difference in the complexity of images contained in each
dataset.

Contrary to the VAE, the Glow reconstructs very sharp images (the second
row in Fig. 3(d)) and the classification performance of LVAT-Glow was very good
on CIFAR-10. Given these observations, we conclude that the reconstruction
ability of the transformer is crucial to the quality of regularization, which caused
the high error rates of LVAT-VAE on CIFAR-10.

7 Conclusion

We focused on the local constraint of VAT: VAT can generate adversarial per-
turbation only within a very small area around the input data point. In order
to circumvent this constraint, we proposed LVAT in which computing and in-
jecting perturbation are done in the latent space. Since adversarial examples
in LVAT are generated via the latent space, they are more flexible than those
in the original VAT, which led to more effective consistency regularization and
better classification performance as a result. To the best of our knowledge, this
work is the first to introduce the latent space in the context of consistency reg-
ularization. We compared LVAT with VAT and other state-of-the-art methods
in supervised and semi-supervised scenarios for a classification task in SVHN
and CIFAR-10 datasets (both with and without data-augmentation). Our eval-
uation indicates that LVAT outperforms state-of-the-art methods in terms of
classification accuracy in different scenarios.
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