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Abstract. Few-shot learning is an important research problem that
tackles one of the greatest challenges of machine learning: learning a
new task from a limited amount of labeled data. We propose a model-
agnostic method that improves the test-time performance of any few-shot
learning models with no additional training, and thus is free from the
training-test domain gap. Based on only the few support samples in a
meta-test task, our method generates the samples adversarial to the base
few-shot classifier’s boundaries and fine-tunes its embedding function in
the direction that increases the classification margins of the adversarial
samples. Consequently, the embedding space becomes denser around the
labeled samples which makes the classifier robust to query samples. Ex-
perimenting on miniImageNet, CIFAR-FS, and FC100, we demonstrate
that our method brings significant performance improvement to three
different base methods with various properties, and achieves the state-
of-the-art performance in a number of few-shot learning tasks.
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1 Introduction

One of the greatest challenges for machine intelligence to meet human intelligence
is the ability to quickly adapt to novel tasks. Humans learn how to solve new
tasks with only a small amount of training, by taking advantage of the prior
information they have learned for lives. Few-shot learning [11, 28] is a research
problem to make the most of knowledge gained during training to deal with
novel tasks with a limited number of labeled samples. Its core difficulty lies in
the data deficiency for novel tasks.

In the few-shot learning problem, the base classes in training and novel classes
in test are disjoint. The test phase consists of multiple tasks where each contains
a small labeled support set and an unlabeled query set. The goal of each task
is to predict the labels of the query data based on the support data. The meta-
learning scheme [36, 12], which forms batches of tasks for the training as well,
has become dominant in this field of research. Thus, the training and test phases
are often called the meta-training and meta-test phases. Also, many of modern
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few-shot learning methods use embedding functions (or feature extractors) such
as ResNet-12 and handle the data in the embedding space.

With a recent surge of interest in few-shot learning, there have been various
approaches proposed, including distance metric methods [45, 40], meta-learning
methods [12, 38], and data augmentation methods [17, 39]. Among them, the
data augmentation (or hallucination) methods augment the support set by gener-
ating fake labeled data for few-shot learning methods (referred to as base models
or base classifiers) [7, 17, 39, 46, 51]. The key merit of this approach is applica-
bility to a wide range of base classifiers since it can directly generate fake labeled
data. However, most previous approaches have some limitations. (i) Such meth-
ods learn to generate additional examples with the meta-training set, and thus
may not be effective if meta-test domains are far from the meta-training domain.
(ii) Since they do not update the trained parameters of the base classifier mod-
els at test time, they have no chance to correct the errors that exist in the base
classifiers (e.g . overfitting of the embedding functions to the meta-training set).
(iii) These methods need to be re-trained for each base classifier to generate fake
labeled data optimal for the base model.

In this work, we propose a novel model-agnostic sample generation approach
for few-shot learning that does not suffer from the aforementioned limitations.
The keys to our method named MABAS (Model-Agnostic Boundary-Adversarial
Sampling) are to perform no training for data generation and to generate sam-
ples for embedding function fine-tuning. Given only the few labeled data (i.e.
support samples) in a meta-test task, it creates samples adversarial to the classi-
fication boundaries of the base model targeting every meta-test class using each
support sample. It then updates the embedding function in the direction that
increases the classification margins of the adversarial samples; as a result, the
embedding space becomes denser around the labeled samples, which makes the
classifier robust to query samples. For sample generation in the embedding space
is more advantageous rather than in image space for generalization to unseen
classes, since adversarial gradients in the embedding space can directly attack
the classification margins.

Finally, we can summarize the main contributions of this work as follows.

1. To the best of our knowledge, our approach is the first pure test-time method
for few-shot learning that generates samples for embedding function fine-
tuning without learning how to create samples. It simply creates samples
adversarial to the classification boundaries of the base few-shot model and
fine-tunes the embedding function using the new samples to improve the
few-shot generalization performance.

2. Our approach is free from the training-test domain gap and integrable with
any base classifier models. We apply our approach to three representative
few-shot learning methods, including MetaOptNet [22], Few-Shot without
Forgetting (FSwF) [16] and standard transfer learning (STL) [6, 42].

3. Our experiments demonstrate that MABAS provides all of the three few-shot
learners with significant performance gains and achieves the state-of-the-art
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performance in a number of tasks on three benchmarks: miniImageNet [45],
CIFAR-FS [3] and FC100 [34].

2 Related Work

2.1 Few-shot Learning

We review a large body of existing few-shot learning methods in three categories:
distance metric, meta-learning, and data augmentation methods as follows.

Distance metric methods tackle the few-shot learning problem by learning
distance metrics to measure more similar images closer. Matching networks [45]
and Prototypical networks [40] predict the labels of the query data based on
their learned distances to the support samples in the embedding space. Relational
networks [43] propose the embedding and relation module to learning to compare
query data with support samples.

Meta-learning methods deal with the problem using the learning to learn
paradigm, in which an outer loop optimizes meta-variables that controls the
optimization of model parameters in an inner loop. MAML [12] proposes the
objective of the outer-loop that can learn a good initialization for the inner-loop
few-shot learners. LEO [38] introduces latent meta-variables for neural network
parameters and take gradient steps within the low-dimensional latent space in-
stead of the high-dimensional parameter space. MetaOptNet [22] uses a convex
learner such as multi-class SVMs in the inner loop and update the embedding
function in the outer loop to be optimal for the inner loop. MTL [42] utilizes scal-
ing and shifting parameters to adapt the learned embedding parameters to each
task differently. LGM-Net [23] encodes prior knowledge of tasks into the context
encoder to generate task-specific function weights of embedding networks.

Data augmentation methods learn to augment data to resolve the prob-
lem of few-shot learning that lacks enough labeled data. Hariharan and Girshick
[17] use the modes of intra-class variation of the base training classes to generate
additional samples for the novel classes. 4-encoder [39] employs auto-encoders
that learn to extract transferable intra-class deformations from training data.
Zhang et al . [51] introduce a saliency map extractor that separates foregrounds
with backgrounds to hallucinate datapoints. Chen et al . [7] propose a deforma-
tion network that fuses few-shot images with unlabeled images. Wang et al . [46]
combine a meta-learner with a generative model to produce imaginary examples
from an anchor example. The existing data augmentation methods share the
limitations introduced in Section 1. Our method is free from the issues since
it does not rely on learning from training data to generate samples. That our
method generates samples for embedding function fine-tuning instead of simply
enlarging support sets, is also a fundamental difference.

2.2 Adversarial Learning

Since neural network classifiers were known to be vulnerable to even small input
perturbations [44], adversarial learning has been actively studied. Adversarial
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attack methods aim at generating adversarial examples by adding perturbations
to samples to fail the classifier [25, 31, 21, 5, 4, 48, 41]. Few-shot adversarial
learning methods exploit adversarial signals from discriminators and generators
to augment the few-shot classes [27, 1, 8, 2, 35, 53, 47, 30, 10]. Mottian et
al . [32] design a multi-class adversarial discriminator to address the supervised
adaptation problem in the few-shot domain. Zhang et al . [52] employ a generative
adversarial network (GAN) that produces fake samples to make sharper decision
boundaries. Gao et al . [14] model the latent distribution of novel classes with
adversarial networks by preserving the covariance information.

Compared to the existing few-shot adversarial learning approaches, we pro-
pose to generate adversarial samples purely in test time with no training of
additional models. Consequently, our method is orthogonal and easily adaptable
to any other few-shot learning methods.

3 MABAS: Boundary-Adversarial Sample Generation

We briefly review the formulation of the few-shot classification (Section 3.1) and
the idea of test-time fine-tuning of embedding functions (Section 3.2). We then
propose MABAS as an adversarial learning approach to adaptively fine-tuning
the embedding function to each meta-test task (Section 3.3).

3.1 The Few-Shot Classification Problem

We begin with the formulation of few-shot classification following previous work
[22, 36]. The meta-test phase of the few-shot classification problem is comprised
of I tasks (i.e. episodes): Dtest = {T test

i }Ii=1. The i-th task T test
i = (Stest

i ,Qtest
i )

consists of two sets of data: the support set Stest
i and the query set Qtest

i . Each
task is a K-way M -shot classification problem; the support Stest

i consists of K
different classes, each of which contains M labeled samples (i.e. |Stest

i | = KM).
The meta-training dataset Dtrain consists of the classes disjoint with the meta-
test set Dtest. For a classifier C trained with Dtrain, the meta-test accuracy is
defined as

∑I
i=1

∑
(x,y)∈Qtest

i
1 (C (x|Stest

i ) = y).

3.2 Test-time Fine-tuning of Embedding Functions

Since each meta-test task consists of the classes that are never seen during meta-
training, it is a common approach in few-shot learning to fine-tuning the learned
parameters using the support samples of the novel task. For instance, MAML [12]
and LEO [38] use the trained model as initialization and fine-tuning it to meta-
test tasks, and MTL [42] applies scaling and shifting to the learned parameters
for each meta-test task differently, which could be better than direct update of
parameters to reduce the overfitting to a small number of samples.

Likewise, our approach aims at fine-tuning the learned parameters of the
base few-shot learner adaptively to novel tasks. However, we limit to update
the parameters of the embedding function (or the feature extractor). It is a
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universally applicable idea since most recent few-shot learning models employ
CNNs as their embedding functions that extract features from images [22, 29].

We formulate the iterative fine-tuning procedure of the embedding func-
tion fφ with parameter φ ∈ ψ for the classifier C defined by C (x|Stest) =
argmaxk h (fφ(x), k|ψ,Stest), as follows. For a given fine-tuning loss function
Lfine-tune(S, φ), we update the classifier C as

C
(
x|Stest

)
= argmax

k
h
(
fφ′(x), k|ψ′,Stest

)
(1)

where φ′ ∈ ψ′. The fine-tuning loss Lfine-tune(S, φ) and the score function h
differ according to the base models, and their definitions will be described in
Section 4. For simplicity, we denote z = fφ(x). The new parameter φ′ is obtained
by multiple updates via gradient descent:

φi = φi−1 − β · ∇φi−1

(
Lfine-tune(Stest, φi−1)

)
, (2)

for i = 1, . . . , U where U is the number of updates and β is a fine-tuning step
size. We initialize φ0 = φ with the parameter learned during meta-training and
finally set φ′ = φU .

3.3 Fine-tuning by Boundary-Adversarial Samples

We assume that a base few-shot classifier is chosen and trained with training
data. Our approach solely focuses on meta-test time; it first generates samples
adversarial to the classification boundaries defined by the few-shot classifier in
the embedding space, and use them to fine-tune only the parameter φ of the
embedding function. Figure 1 intuitively visualizes how our approach works. For
the success of few-shot learning, it is important to transfer the embedding func-
tion to the domain that lacks labeled samples. We generate boundary-adversarial
samples by moving every support sample toward each of the classification bound-
aries. The embedding function is fine-tuned in the direction that increases the
margins of the adversarial samples. After the update, the data embeddings are
denser around the support embeddings, and thus the recomputed classification
boundaries better separate the queries from different classes.

Generation of adversarial samples. We first define the classification mar-
gin for sample z between classes k and k′ as

m (z, k, k′|ψ,S) := h (z, k|ψ,S)− h (z, k′|ψ,S) . (3)

For every support sample (x, y) ∈ S and each attack target class k′ ∈ {1, . . . ,K}\
y, we create a boundary-adversarial sample zadv

y,k′ by moving z = fφ(x) in the
direction that minimizes its margin against k′ in the embedding space:

zadv
y,k′ := z − δ · ∇z m (z, y, k′|ψ,S) (4)

where δ is a step size. zadv
y,k′ is obtained by applying single-step gradient descent

to z in the direction that minimizes the margin (or score gap) of the embedding
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Fig. 1. Conceptual visualization of our MABAS approach in the embedding space.
The solid circles, triangles, and yellow circles are the support, query, and boundary-
adversarial samples, respectively. Each shaded area represents a region to which most
samples from the class are mapped by the embedding function. The black lines are the
classification boundaries computed from the supports. Left : The boundary-adversarial
samples are generated by moving each support sample toward the classification bound-
aries (Equation (4)). Middle: The embedding function is updated in the direction that
increases the margins of the adversarial samples (Equation (6)) while holding the sup-
port embeddings (Equation (5)). Right : After the fine-tuning of the embedding func-
tion, data embeddings are denser around the support embeddings, and the classification
boundaries are updated to better separate queries from different classes.

between y and k′. The single-step update is sufficient for the generation as the
fine-tuning process is alternation between the adversarial sample generation and
the embedding function update. The resulting zadv

y,k′ is an adversarial sample
based on z against the target class k′. It can be regarded as an augmented
data of class y located near to the classification boundary between y and k′.
When deriving the adversarial gradient in Equation (4), we fix h even in the
case of differentiable base learners. We will elaborate it with some examples of
differentiable base models in Section 4.

In the meta-test task, for every (x, y) ∈ S, K − 1 adversarial samples are
generated one for each target class ({1, . . . ,K} \ y), and thus |S|(K − 1) =
MK(K − 1) adversarial samples are created in total at each fine-tuning step.

Fine-tuning of the embedding function. With the adversarial samples,
we update the parameter φ of the embedding function via the gradient descent
in Equation (2). The fine-tuning loss Lfine-tune is defined as

Lfine-tune(S, φ) := Ladv(S, φ) + η · 1

|S|
∑

(x,y)∈S

‖fφ(x)‖2, (5)

whose first term is the adversarial loss term and second term is the regularizer
with a coefficient η. We define Ladv as

Ladv(S, φ) :=
1

|S|
∑

(x,y)∈S

[
1

K − 1

∑
k′ 6=y

{
αx,y −min

k 6=y
m
(
zadv
y,k′ , y, k|ψ,S

)}
+

]
(6)
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where αx,y = 1
K−1

∑
k 6=ym(z, y, k|ψ,S). The objective Ladv chooses the mini-

mum margin per adversarial sample and increases the margin but not larger than
the anchor αx,y. The anchor αx,y is the average margin for (x, y) and provides
a reasonable upper limit for the adversarial samples’ margins. We treat αx,y as
a constant threshold rather than letting fine-tuning gradients flow through αx,y,
since otherwise it might dominate the objective and disturb the pushing of the
adversarial samples against the boundaries.

The second regularization term in Equation (5) not only prevents the exces-
sive expansion of the supports’ embedding space but also stabilizes the updates
of the embedding space.

4 Application to Various Few-Shot Methods

To show the flexibility and generality of our MABAS approach, we apply it
to three representative few-shot learning methods, including MetaOptNet [22],
Few-Shot without Forgetting (FSwF) [16] and the standard transfer learning
(STL) method [6, 42]. These methods show diverse characteristics; MetaOptNet
and FSwF have differentiable base learners while the STL does not. Also, the
classifiers of MetaOptNet and STL are linear, whereas FSwF is not. In this
section, we present the key ideas of each base method and how our approach is
integrated with them.

4.1 MetaOptNet

Original methodology. MetaOptNet [22] uses a differentiable SVM solver for
few-shot classification. In each meta-training or meta-test task, MetaOptNet
solves the multi-class SVM problem for the support data to make predictions
for the query data. More specifically, given a task with support S and query Q,
it solves the K-class SVM problem [9] for support samples (xn, yn) ∈ S, n =
1, . . . , N , whose objective is defined by

minimize
w1,...,wK ,ξ1,...,ξN

1

2

∑
k

‖wk‖22 + C
∑
n

ξn (7)

s.t. (wyn −wk)>fφ(xn) ≥ 1− 1(yn = k)− ξn, ∀n, k.
The score function for the task is defined using the SVM solution w1, . . . ,wK :

h (fφ(x), k|ψ,S) := w>k fφ(x). (8)

The parameter φ of the embedding function fφ is trained with the classification
loss in the meta-training phase, and not updated in the meta-test time.

Boundary-adversarial fine-tuning. By plugging Equation (8) into Equa-
tions (4) and (6), we obtain zadv

y,k′ and Ladv for MetaOptNet as

zadv
y,k′ = z − δ · ∇z

(
(wy −wk′)

>z
)

= z − δ · (wy −wk′), (9)

Ladv(S, φ) =
1

|S|
∑

(x,y)∈S

[
1

K − 1

∑
k′ 6=y

{
αx,y −min

k 6=y

(
(wy −wk)>zadv

y,k′
)}

+

]
.
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As mentioned in Section 3.3, although w1, . . . ,wK are differentiable with re-
spect to z, we assume they are fixed constants to derive the attack gradient as
∇z((wy −wk′)

>z) = wy −wk′ in Equation (9). Only the embedding function
parameter φ is fine-tuned iteratively, as described in Section 3.

Variation. We also apply our approach to a modified version of MetaOptNet,
which uses the SVM solution for {( 1

M

∑
n:yn=k fφ(xn), k)| for k = 1, . . . ,K}

instead of {(fφ(x), y)|(x, y) ∈ S}. The difference is that K class prototypes (i.e.
per-class average embeddings of the supports) are used instead of KM support
embeddings as input to the multi-class SVM solver, inspired by [40]. Except it,
the derivation is the same. This variation solves the multi-class SVM problem
with fewer samples but still shows competitive results. We refer to this variation
as MetaOptNet-Proto for the rest of this paper.

Setting of δ. Although fixing an adversarial step size δ in Equation (9)
works well with MetaOptNet(-Proto), we can formulate δ so that the change of
the margin per adversarial step is fixed at λ, using the fact that the multi-class
SVM is linear and the maximum margin is 1:

zadv
y,k′ = z − δy,k′ · (wy −wk′), where δy,k′ =

λ

‖wy −wk′‖2
. (10)

With this definition, m(z, y, k′|ψ,S) − m(zadv
y,k′ , y, k

′|ψ,S) = λ regardless of y
and k′ during all fine-tuning updates.

4.2 Few-Shot without Forgetting

Original methodology. The Few-Shot without Forgetting (FSwF) [16] learns
not only the embedding function fφ but also the attention-based classification
weight generator. The role of the weight generator G with parameter θ is to
compute the classification weight vector wk for the novel class k using two types
of input: (i) the classification weights for the B base classes (i.e. v1, . . . ,vB)
trained from Dtrain and (ii) the support of novel class k (i.e. Sk = {(x, y)|y =
k, ∀(x, y) ∈ S}) in each few-shot task:

Gθ(S, k,v1, . . . ,vB) = θavg �wavg
k + θatt �watt

k , (11)

wavg
k =

1

|Sk|
∑

(x,y)∈Sk

fφ(x)

‖fφ(x)‖ , (12)

watt
k =

1

|Sk|
∑

(x,y)∈Sk

B∑
b=1

Att(θatt
fφ(x)

‖fφ(x)‖ ,θ
key
b ) · vb‖vb‖

, (13)

where � is the element-wise product and Att() is the attention kernel. The

learnable parameters include φ and θ = {θavg, θatt,θkey1 , . . . ,θkeyB }, where θ is
trained on meta-training tasks and not updated in the meta-test phase. Finally,
the novel class weight vector is wk = Gθ(S, k,v1, . . . ,vB).
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The score function of FSwF for the task becomes

h (fφ(x), k|ψ,S) :=
w>k fφ(x)

‖wk‖‖fφ(x)‖ . (14)

Boundary-adversarial fine-tuning. By applying the definition of h from
Equation (14) to Equations (4) and (6), zadv

y,k′ for FSwF is defined by

zadv
y,k′ = z − δ · ∇z

((
wy

‖wy‖
− wk′

‖wk′‖

)>
z

‖z‖

)

= z − δ ·
(
Id
‖z‖ −

zz>

‖z‖3
)(

wy

‖wy‖
− wk′

‖wk′‖

) (15)

where z ∈ Rd, and the adversarial loss Ladv becomes

Ladv(S, φ) =
1

|S|
∑

(x,y)∈S

[
1

K − 1

∑
k′ 6=y

(16)

{
αx,y −min

k 6=y

(
wy

‖wy‖
− wk

‖wk‖

)> zadv
y,k′

‖zadv
y,k′‖

}
+

]
.

Similarly to the derivation for MetaOptNet in Section 4.1, the adversarial gradi-
ent in Equation (15) is derived while fixing the classification weights of wy and
wk′ with respect to z.

4.3 Standard Transfer Learning

Original methodology. STL [6, 42] is a standard transfer learning approach
to the few-shot classification problem. It learns the embedding function fφ dur-
ing meta-training, and obtains the linear classification weight matrix W =
[w1; . . . ;wK ] ∈ Rd×K per meta-test task using fφ for z ∈ Rd:

[w1; . . . ;wK ] = argmin
[w′1;...;w′K ]

1

|S|
∑

(x,y)∈S

− log

(
exp(w′y

>
fφ(x))∑

k exp(w′k
>fφ(x))

)
(17)

for the support S. The STL computes [w1; . . . ;wK ] using the gradient descent
on Equation (17), and the procedure is not differentiable.

Finally, the score function h of STL for the given task becomes

h (fφ(x), k|ψ,S) := w>k fφ(x). (18)

Boundary-adversarial fine-tuning. By the definition of h from Equa-
tion (18), the boundary-adversarial sample generation for STL is derived as

zadv
y,k′ = z − δ · ∇z

(
(wy −wk′)

>z
)

= z − δ · (wy −wk′), (19)

and Ladv is

Ladv(S, φ) =
1

|S|
∑

(x,y)∈S

[
1

K − 1

∑
k′ 6=y

{
αx,y −min

k 6=y

(
(wy −wk)>zadv

y,k′
)}

+

]
.
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5 Experiments

We conduct experiments to evaluate the few-shot classification performance of
our MABAS approach. We first present experimental setup (Section 5.1) and
discuss the quantitative and qualitative results (Sections 5.2 and 5.3). Please
refer to Appendix for additional experimental results including evaluation on
tieredImageNet [37].

5.1 Experimental Setup

Datasets. We use three benchmark datasets for evaluation of few-shot classifica-
tion. (1) miniImageNet [45] consists of 100 classes each of which has 600 images
with a size of 84× 84× 3. We adopt the same class split used by [36, 22]: 64, 16
and 20 classes for training, validation and the test, respectively. (2) CIFAR-FS
[3] splits all of the classes in CIFAR100 [20] into 64 training, 16 validation and
20 test sets, respectively. (3) FC100 [34] is another CIFAR100-based dataset.
Classes are split into 60, 20 and 20 for training, validation and test, respectively.
This class split is designed to minimize the overlap of information between all
three subsets, to be more challenging than CIFAR-FS for few-shot learning.

Embedding functions. We employ ResNet-12, which is one of the popu-
lar choices for few-shot learning research [29, 34, 22]. For the experiments of
MetaOptNet [22] and STL [6, 42], we use the same architecture of ResNet-12
as [22]. The only architectural difference for STL from MetaOptNet is that an
average pooling is applied to the last residual block. For FSwF experiments, we
use the architecture in [29] following [16].

Meta-training and meta-validation phase. For the MetaOptNet, FSwF
and STL models, we follow the training and validation protocol in the original
papers [22, 16, 6] with some minor modifications as follows. For MetaOptNet-
Proto, we use a learning decay rate of 0.1 with a decay period of 15 epochs for
simplicity. For the STL models, we train for 100 epochs with a batch size of 256
and a learning rate of 0.001 using the cosine annealing decay [18].

Meta-test phase. We test all the models on the 5-way 5-shot and 5-way
1-shot classification tasks. For a fair comparison, all of the meta-test results are
obtained using the same setup with the previous works [16, 42, 12]. Each meta-
test run consists of 600 tasks sampled from Dtest, and a single task contains 15
query samples per each of the 5 classes.

Boundary-adversarial fine-tuning. For all the four base methods, we fine-
tune only the last (i.e. the fourth) block of the ResNet-12 embedding function,
since it preserves most of the representation power of the embedding function.
We use Adam [19] optimizer for fine-tuning, and maintain a single set of hyper-
parameters per base method across all datasets. In all experiments, we update
the embedding function for 150 steps and use the step-based learning rate decay
with a decay rate of 0.8 and a period of 5. For MetaOptNet(-Proto), we use
η = 0.0005 as its regularization coefficient and use an initial learning rate of
0.000025. We set the adversarial step size δ to fix the change of margin to λ = 1,
as in Section 4.1. Since FSwF uses the cosine similarity, which is a measure
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Table 1. Meta-test accuracies (%) of the four base methods before and after applying
our MABAS method with the 95% confidence interval. We also report the accuracy
gains (%p) by MABAS. We obtain all results using the source codes provided by the
original authors to precisely measure the accuracy improvements by our method.

Method
miniImageNet, 5-way CIFAR-FS, 5-way FC100, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

STL [6, 42] 55.98 ± 0.78 76.19 ± 0.60 64.32 ± 0.92 83.62 ± 0.61 38.83 ± 0.70 54.54 ± 0.72
+ Ours 60.19 ± 0.79 79.34 ± 0.57 67.41 ± 0.91 84.29 ± 0.65 40.76 ± 0.68 58.16 ± 0.78

Gain (%p) 4.21 3.15 3.09 0.67 1.93 3.62

FSwF [16] 55.64 ± 0.82 69.94 ± 0.68 69.23 ± 0.90 82.52 ± 0.68 37.91 ± 0.77 49.75 ± 0.72
+ Ours 60.45 ± 0.82 78.28 ± 0.61 70.71 ± 0.89 85.25 ± 0.65 40.63 ± 0.75 54.95 ± 0.75

Gain (%p) 4.81 8.34 1.48 2.73 2.72 5.20

MetaOptNet [22] 62.25 ± 0.82 78.55 ± 0.58 72.11 ± 0.96 84.32 ± 0.65 40.15 ± 0.71 54.92 ± 0.75
+ Ours 64.21 ± 0.82 81.01 ± 0.57 73.24 ± 0.95 85.65 ± 0.65 41.74 ± 0.73 57.11 ± 0.75

Gain (%p) 1.96 2.46 1.13 1.33 1.59 2.19

MetaOptNet-Proto 61.68 ± 0.85 78.36 ± 0.59 72.46 ± 0.91 84.02 ± 0.67 40.60 ± 0.75 55.04 ± 0.75
+ Ours 65.08 ± 0.86 82.70 ± 0.54 73.51 ± 0.92 85.49 ± 0.68 42.31 ± 0.75 57.56 ± 0.78

Gain (%p) 3.40 4.34 1.05 1.47 1.71 2.52

invariant to scaling of inputs, we set η = 0. Its initial learning rate is 0.0003
and the adversarial step size is δ = 10. In the STL experiments, we perform the
fine-tuning with an initial learning rate of 0.0001, η = 0.01 and δ = 10.

5.2 Quantitative Evaluation

Table 1 reports the test-time accuracies of the four base methods with or without
MABAS on the six tasks. We also summarize the accuracy gains by our method.
Table 2 compares our method with the state-of-the-art models from the original
papers. Here are some important observations to emphasize:

1. Our method achieves the new state-of-the-art performance on four of the six
tasks (miniImageNet 5-shot, CIFAR-FS 1-shot and 5-shot, and FC100 5-shot
settings) if we exclude the methods with WRN-28-10 [50], which consumes
about three times more parameters than ResNet-12 [22].

2. Our method improves the accuracy in every experiment of the four base
methods on three datasets in Table 1, where only a single set of fine-tuning
hyperparameters is used for all experiments per base method.

3. The largest accuracy improvement brought by our method is 8.34%p, and
the average improvement is ≈ 2.80%p.

4. These results demonstrate that our approach is effective for solving the la-
beled data scarcity problem of few-shot learning. Also, our method is uni-
versal enough to improve various base methods with different properties.

Effects of embedding function architectures. FSwF [16] is tested with
three ConvNet and one ResNet-12 embedding functions in the original paper.
In its experiments on 5-way miniImageNet tasks, the accuracies on Dtrain are
the highest with ResNet-12, while its accuracies on Dtest are worse than those
of the ConvNet architectures. Inspired by this observation, we experiment the
fine-tuning accuracy of our approach with different embedding functions.
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Table 2. Comparison with the state-of-the-art few-shot learning methods. We present
the average meta-test accuracy with its 95% confidence interval. ‡ denotes the results
from [36, 22, 42], while all the other baseline scores are referred to their original papers.
The numbered superscripts denote the architecture of fφ: 1Conv-4, 2Conv-4+MetaNet,
3ResNet-12, 4WRN-28-10, 5Conv4+MetaGAN. Note that WRN-28-10 involves three
times more parameters than ResNet-12.

Method
miniImageNet, 5-way CIFAR-FS, 5-way FC100, 5-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Meta-LSTM1 [36] 43.44 ± 0.77 60.60 ± 0.71 - - - -

MatchingNets1‡ [45] 43.56 ± 0.84 55.31 ± 0.73 - - - -

MAML1‡ [12] 48.70 ± 1.84 63.11 ± 0.92 58.9 ± 1.9 71.5 ± 1.0 38.1 ± 1.7 50.4 ± 1.0

ProtoNets1‡ [40] 49.42 ± 0.78 68.20 ± 0.66 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6

RelationNets1‡ [43] 50.44 ± 0.82 65.32 ± 0.70 55.0 ± 1.0 69.3 ± 0.8 - -
R2D21 [3] 51.20 ± 0.60 68.80 ± 0.10 65.30 ± 0.20 79.40 ± 0.10 - -
FSwF1 [16] 56.20 ± 0.86 73.00 ± 0.64 - - - -
FSwF3 [16] 55.45 ± 0.89 70.13 ± 0.68 - - - -
Bilevel Program3 [13] 50.54 ± 0.85 64.53 ± 0.68 - - - -
MetaGAN5 [52] 52.71 ± 0.64 68.63 ± 0.67 - - - -
SNAIL3 [29] 55.71 ± 0.99 68.88 ± 0.92 - - - -
AdaResNet3 [33] 56.88 ± 0.62 71.94 ± 0.57 - - - -
TADAM3 [34] 58.5 ± 0.3 76.7 ± 0.3 - - 40.1 ± 0.4 56.1 ± 0.4

ProtoNets3‡ [40] 59.25 ± 0.64 75.60 ± 0.48 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
MTL3 [42] 61.2 ± 1.8 75.5 ± 0.8 - - 45.1 ± 1.8 57.6 ± 0.9
TapNet3 [49] 61.65 ± 0.15 76.36 ± 0.10 - - - -
MetaOptNet3 [22] 62.64 ± 0.61 78.63 ± 0.46 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.5 ± 0.6
LEO4 [38] 61.76 ± 0.08 77.59 ± 0.12 - - - -
CC+rot4 [15] 62.93 ± 0.45 79.87 ± 0.33 76.09 ± 0.30 87.83 ± 0.21 - -
S2M2R

4 [26] 64.93 ± 0.18 83.18 ± 0.11 74.81 ± 0.19 87.47 ± 0.13 - -
LGM-Net2 [23] 69.13 ± 0.35 71.18 ± 0.68 - - - -

STL + Ours3 60.19 ± 0.79 79.34 ± 0.57 67.41 ± 0.91 84.29 ± 0.65 40.76 ± 0.68 58.16 ± 0.78
MetaOptNet +Ours3 64.21 ± 0.82 81.01 ± 0.57 73.24 ± 0.95 85.65 ± 0.65 41.74 ± 0.73 57.11 ± 0.75

–Proto + Ours3 65.08 ± 0.86 82.70 ± 0.54 73.51 ± 0.92 85.49 ± 0.68 42.31 ± 0.75 57.56 ± 0.78

Table 3. Meta-test accuracy of FSwF
with different embedding functions
with or without MABAS. All ConvNets
share the same hyperparameters.

fφ FSwF + MABAS

Conv32 70.01 ± 0.66 70.05 ± 0.65
Conv64 71.89 ± 0.67 72.15 ± 0.66
Conv128 72.59 ± 0.65 72.79 ± 0.63
ResNet-12 69.94 ± 0.68 78.28 ± 0.61

Table 4. Comparison of meta-test ac-
curacy between naive fine-tuning and
MABAS using FSwF on the miniIma-
geNet dataset.

Method
miniImageNet, 5-way
1-shot 5-shot

FSwF 55.64 ± 0.82 69.94 ± 0.68
+ Naive FT 55.73 ± 0.82 70.14 ± 0.67
+ Ours 60.45 ± 0.82 78.28 ± 0.61

Table 3 shows that our method increases the fine-tuning accuracy of ResNet-
12 much larger than ConvNet architectures. The accuracy gains with ConvNets
are less than 1%p, while the gain becomes 8.34%p with the ResNet-12 on the
5-way 5-shot miniImageNet task. This result hints that ResNet-12 has high ca-
pacity and thus suffers from overfitting, more seriously in few-shot tasks. Our
method helps each embedding function to maximize its representation ability
even with only a few examples of novel classes.

Comparison with naive fine-tuning. To highlight the effectiveness of
MABAS, we compare MABAS with the naive fine-tuning of the embedding func-
tion, which is fine-tuning using support samples only (i.e. no adversarial sample).
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Fig. 2. Average classification margin with FSwF + Ours for support (left), adversarial
(middle) and query (right) samples on 5-way tasks. The x-axis and y-axis denote the
number of fine-tuning updates and the average classification margin, respectively. The
margin values are averaged over all the meta-test tasks.

Table 4 shows that the naive fine-tuning provides only small performance gains
whereas MABAS brings significant improvements.

Evolution of support, adversarial, and query sample margins. Fig-
ure 2 shows the evolution of average classification margin for support, adversarial
and query samples with FSwF on 5-way meta-test tasks. In each fine-tuning up-
date step, MABAS generates adversarial samples and update the embedding
space by increasing the classification margins for those samples. As the fine-
tuning progresses, the embedding space becomes denser around the support
samples and the margins for novel query samples increase as in (c), due to the
changes in the embedding space. It indicates that their classification confidences
increase too, which results in accuracy improvement.

5.3 Qualitative Evaluation

Figure 3 illustrates how the embeddings of the support and query change ac-
cording to fine-tuning updates. Using t-SNE [24], we visualize the embeddings
computed by MetaOptNet-Proto and FSwF for the 5-way 5-shot and 1-shot
miniImageNet problems. As FSwF uses the cosine similarity in its score func-
tion, its `2-normalized embeddings are taken as input to t-SNE. Before applying
our method, the embeddings from different classes are distributed in a mixed
way with no clear class separation. As the boundary-adversarial fine-tuning pro-
ceeds, not only the support embeddings but also most query embeddings are
condensed, and samples from distinct classes become distant.

6 Conclusion

We presented MABAS, a novel model-agnostic approach to generating adver-
sarial samples in the embedding space at test time for few-shot generalization.



14 J. Kim et al.

Black-footed ferret
African hunting dogs
Hourglass
School bus
Theater curtain

<latexit sha1_base64="lrCdV6jnYAMErkIirVit1s8n2w4="></latexit>

MetaOptNet-Proto, 5-shot
<latexit sha1_base64="vXVpf8g/i3wZWWPOwFMm3fRafLg="></latexit>

African hunting dogs
Cuirass
Crate
Trifle
School bus

<latexit sha1_base64="rMKOmWejwJNc9UDINOuLEsq7ZSA=">AAACe3icbVBbSyMxGE3Hy7p11eo+LkKwCItImemy7D56AfFR0arQKSWT+aYN5jLksrUM84/8Nb4t+lcEM21BrX6Q5HDO9+UkJ8k5MzYM/9eChcWl5S8rX+ur39bWNxqbW1dGOU2hQxVX+iYhBjiT0LHMcrjJNRCRcLhObo8r/fofaMOUvLTjHHqCDCTLGCXWU/3GSSwVkylIiw8z7WmJh05aJgc4VQMTx/VjxzQxE6SJBX9eapbxClzQoVIcJ870G82wFU4KfwTRDDTRrM76m7XtOFXUCe9Mub+/G4W57RVEW0Y5lPXYGcgJvSUD6HooiQDTKyYfLvGuZ1KcKe2Xf/mEfTtREGHMWCS+UxA7NPNaRX6mdZ3N/vYKJnNnQdKpUeY4tgpX6eGUaaCWjz0gVDP/VkyHRBNqfcbvXBLxaiBhRJUQRKZFnIi7stqLu7KcV0ZTZeQVH2g0H99HcNVuRb9a7fN28+BoFu0K+oF20E8UoT/oAJ2iM9RBFN2jB/SInmrPQTPYC/anrUFtNvMdvavg9wvPbsPY</latexit>

MetaOptNet-Proto, 1-shot
<latexit sha1_base64="q2oDfXZ8WzCEuDPiIGaKJ0lVgE0=">AAADgnicfZJNbxMxEIbdbIFSPprCBYnLQoSEKhpl0wMcOFTQAxKUBkTaStko8jqTxIo/VvYsSbCWX8MV/g//Bm+ypSRtGMnWo3lfz3hnnaSCW2w0fm9Ugs0bN29t3d6+c/fe/Z3q7oNTqzPDoM200OY8oRYEV9BGjgLOUwNUJgLOkvHbQj/7CsZyrb7gLIWupEPFB5xR9Kle9dExID1J8SPgfsto1C/CaN+ONPaqtUa9MY/wKkQl1EgZrd5u5XPc1yyToJAJam0naqTYddQgZwLy7TizkFI2pkPoeFRUgu26+Sfk4TOf6YcDbfxSGM6z/55wVFo7k4l3Sooju6oVyeu0ToaDV13HVZohKLZoNMhEiDos5hH2uQGGYuaBMsP9XUM2ooYy9FNb6pLIywYKJkxLSVXfxYmc5sXupnm+qkwWyqRQjsCPxcCxr3CSgqGozZ6LqRlKrvI5xE/igv9npdNLq+drrc7/B5m7Ylunczr0dRCm6Oa8tqe/D5f8G+TuL6210umF9YKWx9Efi9wd9cq+7z/kq/MS2tq8KIQjRoXzBv8Ko9U3dxVOm/XooN781Kwdvinf4xZ5TJ6S5yQiL8kheUdapE0Y+U5+kJ/kV7AZ7AVRcLCwVjbKMw/JUgSv/wAvviyC</latexit>

Nematode
Ant
Black-footed ferret
Mixing bowl
Crate

<latexit sha1_base64="e34k/iaLxi3MCxfxsB0cyYEove4="></latexit>

FSwF, 5-shot
<latexit sha1_base64="7BDjnr5A6Db7Ml86OEsM3w9AN8Y="></latexit>

Before
fine-tuning

<latexit sha1_base64="ijptyfVablbo9CYe+v26G5sSyRc=">AAADiXicfVJNbxMxEHWzfJQUaApHDixESAiJKBsOVJyqtgckQBRE2krZKJp1ZjdWbO/K9pIEy0d+DVf4MfwbvElKSdowkq2nec9vZmcnKTjTpt3+vVULbty8dXv7Tn3n7r37u429B6c6LxXFLs15rs4T0MiZxK5hhuN5oRBEwvEsGR9V/NlXVJrl8ouZFdgXkEmWMgrGpwaNxzFFaVAxmdUPMc0VxnE99WYvTSl9ctBotlvteYRXQbQETbKMk8Fe7XM8zGkpvC3loHUvahemb0EZRjm6elxqLICOIcOehxIE6r6df4kLn/nMMPRt+CNNOM/++8KC0HomEq8UYEZ6nauS13G90qT7fctkURqUdFEoLXlo8rAaSzhkCqnhMw+AKuZ7DekIFFA/m9UqibgsIHFCcyFADm2ciKmrbjt1bp2ZLJhJxRyjH4vCD97hY4EKTK5e2BhUJph0cxA/iSv8PylML6UeXyu1/j8IZ6trE88g8z4Gp8bO8caavh8m2Dd09i/aKIXphfQCrY5jOObOHg+Wdd+9d+vz4rnWrjIyIwrceoHfwmh9566C004retXqfOo0Dw6X+7hNHpGn5DmJyGtyQN6SE9IllHwnP8hP8ivYCaJgP3izkNa2lm8ekpUIjv4A1HEv3A==</latexit>

After
10 updates

<latexit sha1_base64="ymbjkwGPeCCRKsgJquTHrEAZ6dU=">AAADh3icfZJNbxMxEIbdLB9t+GgKR4S0ECEhDmE3SNBjCz0gAaIg0lbKRtGsd5JYsb0r20sSLJ/4NVzh1/Bv8CYpJWnDSLYezft6xjvrtOBMmyj6vVULrl2/cXN7p37r9p27u429eyc6LxXFDs15rs5S0MiZxI5hhuNZoRBEyvE0Hb+p9NOvqDTL5RczK7AnYCjZgFEwPtVvPEwoSoOKyWH9cOAhSepxFJZFBgZ1v9GMWtE8wssQL6FJlnHc36t9TrKclsIXpRy07sZRYXoWlGGUo6snpcYC6BiG2PUoQaDu2fl3uPCJz2ThIFd+SRPOs/+esCC0nonUOwWYkV7XquRVWrc0g/2eZbIoDUq6aDQoeWjysBpKmDGF1PCZB6CK+buGdAQKqB/IapdUXDSQOKG5ECAzm6Ri6qrdTp1bVyYLZVIpR+jHovCDr/CxQAUmV89sAmoomHRzSB4lFf/PCtMLq+crrdb/B+FstW3SGQx9HYNTY+e8sae/DxPsGzr7lzZaYXpuPafVcWRj7uxRf9n33Xu3Pi+ea+2qQmZEgVtv8K8wXn9zl+Gk3YpftNqf2s2D18v3uE0ekMfkKYnJK3JA3pJj0iGUfCc/yE/yK9gJngcvg/2Ftba1PHOfrERw+Ad7gy56</latexit>

After
20 updates

<latexit sha1_base64="AZrdfxJ3xwDH/AjY4g2lFztahGc="></latexit>

After
60 updates

<latexit sha1_base64="F99bqcY9BWh1MHyMY4HQmbcRQAw=">AAADh3icfZJNbxMxEIbdLB9t+ErhiJAWIiTEIWyCVHpsoQckQBRE2krZKJr1TjZWbO/K9pIEyyd+DVf4NfwbvElKSdowkq1H876e8c46KTjTJop+b9WCa9dv3Nzeqd+6fefuvcbu/ROdl4pil+Y8V2cJaORMYtcww/GsUAgi4XiajN9U+ulXVJrl8ouZFdgXkEk2ZBSMTw0aj2KK0qBiMqsfDj3EcX0vCssiBYN60GhGrWge4WVoL6FJlnE82K19jtOclsIXpRy07rWjwvQtKMMoR1ePS40F0DFk2PMoQaDu2/l3uPCpz6ThMFd+SRPOs/+esCC0nonEOwWYkV7XquRVWq80w/2+ZbIoDUq6aDQseWjysBpKmDKF1PCZB6CK+buGdAQKqB/IapdEXDSQOKG5ECBTGydi6qrdTp1bVyYLZVIpR+jHovCDr/CxQAUmV89tDCoTTLo5xI/jiv9nhemF1fOVVuv/g3C22jbpDDJfx+DU2Dlv7OnvwwT7hs7+pY1WmJ5bz2l1HOmYO3s0WPZ9996tz4vnWruqkBlR4NYb/Ctsr7+5y3DSabVftjqfOs2D18v3uE0ekifkGWmTV+SAvCXHpEso+U5+kJ/kV7ATvAj2gv2Ftba1PPOArERw+AeKyS5/</latexit>

Fig. 3. t-SNE [24] visualization of the support embeddings (circles) and query embed-
dings (triangles) obtained by MetaOptNet-Proto and FSwF before and after fine-tuning
updates at meta-test time for 5-way miniImageNet tasks.

MABAS is a practical method that works with no additional training and is inte-
grable with any few-shot learning methods. Our results on three few-shot bench-
mark datasets – miniImageNet, CIFAR-FS, and FC100 – showed that MABAS
significantly enhanced the performance of the base methods with various charac-
teristics, and consequently achieved the state-of-the-art performance in several
tasks. We believe this work provides a low-effort add-on method for performance
enhancement with existing and future few-shot learning methods.
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