
Appendix: Targeted Attack for Deep Hashing
based Retrieval

A Proof of Theorem 1

Theorem 1. Anchor code ha calculated by Algorithm 1 is the binary code achiev-
ing the minimal sum of Hamming distances with respect to hi, i = 1, . . . , nt, i.e.,

ha = arg min
h∈{+1,−1}K

nt∑
i=1

dH(h,hi). (1)

Proof. We only need to prove that for any h ∈ {+1,−1}K and h 6= ha, the
following inequality holds.
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Denote D = {j1, j2, . . . , jK0
}, 1 ≤ K0 ≤ K, as the index set where h and ha
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=

nt∑
i

dH(h,hi), (6)

where (a) holds since anchor code ha is obtained through a voting process (as
shown in Algorithm 1 in the main manuscript), i.e., ∀j ∈ D,

nt∑
i=1

I(hj
a = hj

i ) ≥
nt∑
i=1

I(hj = hj
i ). (7)
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B Threat Models

All experiments are implemented on the PyTorch framework [8]. The detailed
training settings are shown as follows.

Image Hashing. We adopt VGG-11 [10] as the backbone network pre-trained
on ImageNet to extract features, then replace the last fully-connected layer of
softmax classifier with the hashing layer. We fine-tune the base model and train
the hash layer from scratch through the pairwise loss function in [12]. We employ
stochastic gradient descent (SGD) [13] with momentum 0.9 as the optimizer. The
weight decay parameter is set to 0.0005. The learning rate is fixed at 0.01 and
the batch size is 24.

Video Hashing. We extract frame features using AlexNet [6] pretrained on the
ImageNet dataset. Then we employ the objective function in [7] to train LSTM
[3] with the hash layer from scratch. The parameter in the objective function to
balance discriminative loss and quantization loss is set to 0.0001. SGD is used
to optimize model parameters, with the momentum 0.9 and the fixed learning
rate 0.05. The weight decay parameter is set to 0.0001. The batch size is set to
100 and the maximum length of input videos is 40. Due to different video sizes
for two video datasets, we adopt different strategies to sample video frames. For
the JHMDB dataset, we select all frames of a video whose length is smaller than
40 and top-40 frames otherwise. For the UCF-101 dataset, we select frames with
equal stride (set to 3) for each video.

C Datasets Description

Four retrieval benchmark datasets are adopted in our experiments. The first
two datasets are used for image retrieval, while the last two are used for video
retrieval. These datasets are described in details as follows.

– ImageNet [9] consists of 1.2M training samples and 50,000 testing samples
with 1000 classes. We follow [1] to build a subset containing 130K images
with 100 classes. We use images from the training set as the database, and
images from the testing set as the queries. We sample 100 images per class
from the database for training the deep hashing model.

– NUS-WIDE [2] dataset contains 269,648 images from 81 classes. We only
select a subset of images with the 20 most frequent labels. We randomly
sample 5000 images as the query set and take the remaining images as the
database, following [14]. Besides, we randomly sample 10,000 images from
the database to train the hashing model.

– JHMDB [5] consists of 928 videos in 21 categories. We randomly choose 10
videos per category as queries, 10 videos per category as training samples,
and the rest as retrieval database.

– UCF-101 [11] is an action recognition dataset, which contains 13,320 videos
categorized into 101 classes. We use 30 videos per category for training,
30 videos per category for querying and the remaining 7,260 videos as the
database.
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(a) JHMDB
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(b) UCF-101

Fig. 1. Visualization examples of generated adversarial examples in video hashing.
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Label: ‘restaurant’

Target: ‘coho’
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Target: ‘crash helmet’
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Adversarial Top-10 Retrieved Images
Queries

Fig. 2. Examples of image retrieval with adversarial query on ImageNet. All target
labels are randomly selected from the out-of-sample class labels. Retrieved objects
with top-10 similarity are shown on the right. The tick and cross indicate whether the
retrieved object is consistent with the target label.

D Visualization

In this section, we provide some visual examples of DHTA in video hashing and
open-set scenario.

Video Hashing. Some examples of generated adversarial videos and their cor-
respondingly benign videos are shown in Figure 1. Specifically, we present frames
with indexes ∈ {3, 6, 9, 12, 15, 18, 21} for each video due to the limitation of the
space. Similar to the image scenario, these visual results show that the adver-
sarial queries are very similar to their original versions. In other words, the
generated adversarial objects of our proposed DHTA are human-imperceptible.

Open-set Targeted Attack. We demonstrate some generated adversarial ex-
amples and their corresponding retrieved images under an open-set scenario in
Figure 2. Even if this setting is tougher, there still exist some images with tar-
geted label in the top-10 retrieved images. This result reveals that our proposed
DHTA can successfully fool deep hashing model to return objects from out-of-
sample class.

E Further Discussion

Attack Towards the Advanced Model. To verify the effectiveness of the
proposed method in attacking the advanced deep hashing based retrieval model,
we conduct experiments against HashNet [1] on the NUS-WIDE dataset. Eval-
uation settings are the same as those used in Section 4.2. As shown in Table 1,
DHTA can successfully attack HashNet with the high t-MAP. Compared with
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Table 1. t-MAP (%) of targeted attack methods and MAP (%) of query with benign
objects (‘Original’) with various code lengths on NUS-WIDE dataset.

Method Metric 16bits 32bits 48bits 64bits

Original t-MAP 43.28 41.88 43.44 43.55
Noise t-MAP 42.67 39.86 42.50 41.56
P2P t-MAP 78.10 81.79 81.74 82.68

DHTA t-MAP 86.95 89.02 89.68 90.49

Original MAP 79.95 81.88 83.11 84.96

Table 2. t-MAP (%) of DHTA with different ε under 32-bits code length on ImageNet
and JHMDB dataset.

ε 0.01 0.02 0.03 0.04 0.05

ImageNet 25.39 61.32 75.06 79.01 79.17

JHMDB 51.08 60.20 61.23 61.75 62.76

Table 3. t-MAP (%) of different attack methods on ImageNet and JHMDB dataset.

Method
ImageNet JHMDB

16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

Feature-based Attack 23.80 28.47 34.24 33.05 30.47 44.95 42.48 57.54
DHTA 63.68 77.76 82.31 82.10 56.47 62.04 63.02 66.06

P2P, the t-MAP improvement of DHTA is over 7% in all cases. Moreover, the t-
MAP value of DHTA is significantly higher than the MAP value of the ‘Original’.
These results also verify the high effectiveness of our DHTA method.

Effect of the Maximum Perturbation Strength. To analyze the effect of
the maximum perturbation strength (i.e., ε), we examine the t-MAP of DHTA
under different values of ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Table 2 presents the
t-MAP of DHTA under 32-bits code length on ImageNet and JHMDB datasets.
It can be seen that the attack performance (t-MAP) improves as the increase
of ε, which demonstrates the trade-off between the perceptibility of adversarial
perturbations and attack performance.

Comparison with Feature-based Attack. Although many adversarial at-
tacks in the image recognition are proposed, most of them cannot be directly
adopted due to the property of the retrieval. The feature-based attack [4], as an
exception, can be naturally extended to attack deep hashing models. The main
idea of feature-based attack is to make the adversarial image closed to an im-
age of the target class in the feature space. We choose the intermediate feature
before the hashing layer to perform the feature-based attack. The comparison
between feature-based attack and DHTA on the ImageNet and JHMDB datasets
is shown in Tabel 3. There exists a large gap (around 40% for ImageNet and
20% for JHMDB) between the feature-based attack and DHTA. Such a superior
result of DHTA reveals that, manipulating in Hamming space is more effective
than feature space for attacking deep hashing model.
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