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Abstract. The deep hashing based retrieval method is widely adopted
in large-scale image and video retrieval. However, there is little investi-
gation on its security. In this paper, we propose a novel method, dubbed
deep hashing targeted attack (DHTA), to study the targeted attack on
such retrieval. Specifically, we first formulate the targeted attack as a
point-to-set optimization, which minimizes the average distance between
the hash code of an adversarial example and those of a set of objects
with the target label. Then we design a novel component-voting scheme
to obtain an anchor code as the representative of the set of hash codes
of objects with the target label, whose optimality guarantee is also the-
oretically derived. To balance the performance and perceptibility, we
propose to minimize the Hamming distance between the hash code of
the adversarial example and the anchor code under the `∞ restriction on
the perturbation. Extensive experiments verify that DHTA is effective in
attacking both deep hashing based image retrieval and video retrieval.

Keywords: Targeted Attack, Deep Hashing, Adversarial Attack, Simi-
larity Retrieval

1 Introduction

High-dimension and large-scale data approximate nearest neighbor (ANN) re-
trieval has been widely adopted in online search engines, e.g., Google or Bing, due
to its efficiency and effectiveness. Within all ANN retrieval methods, hashing-
based methods [42] have attracted a lot of attentions due to their compact
binary representations and rapid similarity computation between hash codes
with Hamming distance. In particular, deep learning based hashing methods
[28,2,8,19,35,24] have shown their superiority in performance since they gen-
erally learn more meaningful semantic hash codes through learnable hashing
functions with deep neural networks (DNNs).
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Fig. 1. The comparison between the P2P attack paradigm and proposed P2S paradigm.
There are two object classes (i.e. ‘Cat’ and ‘Dog’) as shown above, where the target
label being attack is ‘Cat’. In the P2P paradigm, a object with the target label is
randomly selected as the reference to generate the adversarial query. But if the selected
object is close to the category boundary (dotted lines in the figure) or is an outlier, the
attack performance will be poor. In this example, the ‘targeted attack success rate’ of
P2P and P2S is 33.3% and 100%, respectively.

Recent studies [39,16,48,14,1,6] revealed that DNNs are vulnerable to ad-
versarial examples, which are crafted by adding intentionally small perturba-
tions to benign examples and fool DNNs to confidently make incorrect predic-
tions. While deep retrieval systems take advantage of the power of DNNs, they
also inherit the vulnerability to adversarial examples [15,25,40,52]. Previous re-
search [52] only paid attention to design a non-targeted attack in deep hashing
based retrieval, i.e., returning retrieval objects with incorrect labels. Compared
with non-targeted attacks, targeted attacks are more malicious since they make
the adversarial examples misidentified as a predefined label and can be used to
achieve some malicious purposes [5,13,32]. For example, a hashing based retrieval
system may return violent images when a child queries with an intentionally per-
turbed cartoon image by the adversary. Accordingly, it is desirable to study the
targeted attacks on deep hashing models and address their security concerns.

This paper focuses on the targeted attack in hashing based retrieval. Different
from classification, retrieval aims at returning multiple relevant objects instead
of one result, which indicates that the query has more important relationship
with the set of relevant objects than with other objects. Motivated by this fact,
we formulate the targeted attack as a point-to-set (P2S) optimization, which
minimizes the average distance between the compressed representations (e.g.,
hash codes in Hamming space) of the adversarial example and those of a set of
objects with the target label. Compared with the point-to-point (P2P) paradigm
[40] which directs the adversarial example to generate a representation similar
to that of a randomly chosen object with the target label, our proposed point-
to-set attack paradigm is more stable and efficient. The detailed comparison
between P2S and P2P attack paradigm is shown in Figure 1. In particular, when
minimizing the average Hamming distances between a hash code and those of
an object set, we prove that the globally optimal solution (dubbed anchor code)
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can be achieved through a simple component-voting scheme, which is a gift
from the nature of hashing-based retrieval. Therefore, the anchor code can be
naturally chosen as a targeted hash code to direct the generation of adversarial
query. To further balance the attack performance and the imperceptibility, we
propose a novel attack method, dubbed deep hashing targeted attack (DHTA),
by minimizing the Hamming distance between the hash code of adversarial query
and the anchor code under the `∞ restriction on the adversarial perturbations.

In summary, the main contribution of this work is four-fold:

– We formulate the targeted attack on hashing retrieval as a point-to-set op-
timization instead of the common point-to-point paradigm considering the
characteristics of retrieval tasks.

– We propose a novel component-voting scheme to obtain an anchor code as
the representative of the set of hash codes of objects with the target label,
whose theoretical optimality of proposed attack paradigm with average-case
point-to-set metric is discussed.

– We develop a simple yet effective targeted attack, the DHTA, which effi-
ciently balances the attack performance and the perceptibility. This is the
first attempt to design a targeted attack on hashing based retrieval.

– Extensive experiments verify that DHTA is effective in attacking both deep
hashing based image retrieval and video retrieval.

2 Related Work

2.1 Deep Hashing based Similarity Retrieval

Hashing methods can map semantically similar objects to similar compact bi-
nary codes in Hamming space, which are widely adopted to accelerate the ANN
retrieval [42]. The classical version of data-dependent hashing consists of two
parts, including hash function learning and binary inference [26,29,43,34].

Recently, more and more deep learning techniques were introduced to the tra-
ditional hashing-based retrieval methods and reach state-of-the-art performance,
thanks to the powerful feature extraction of deep neural networks. The first deep
hashing method was proposed in [47] focusing on image retrieval. Recent works
showed that learning hashing mapping in an end-to-end manner can greatly im-
prove the quality of the binary codes [23,28,3,2]. The above-mentioned methods
can be easily extended to multi-label image retrieval, e.g., [54,44]. Depending on
the availability of unlabeled images, other researchers devoted to design novel
hashing methods to cope with the lack of labeled images, e.g., unsupervised
deep hashing method [51], and semi-supervised one [50]. Different from deep
image hashing methods, deep video hashing usually first extract frame features
by a convolutional neural network (CNN), then fuse them to learn global hash-
ing function. Among various kinds of fusion methods, recurrent neural network
(RNN) architecture is the most common choice, which can well model the tem-
poral structure of videos [17]. Moreover, some of the unsupervised video hashing
methods were also proposed [46,27], which organize the hash code learning in a
self-taught manner to reduce the time and labor consuming labeling.
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2.2 Adversarial Attack

DNNs can be easily fooled to confidently make incorrect predictions by inten-
tional and human-imperceptible perturbations. The process of generating ad-
versarial examples is called adversarial attack, which was initially proposed by
Szegedy et al. [39] in the image classification task. To achieve such adversarial
examples, the fast gradient sign method (FGSM) [16] aims to maximize the loss
along the gradient direction. After that, projected gradient descent (PGD) [22]
was proposed to reach better performance. Deepfool finds the smallest pertur-
bation by exploring the nearest decision boundary [31]. Except for the afore-
mentioned attacks, many other methods [4,10,53,45] have also been developed
to find the adversarial perturbation in the image classification problem.

Besides, there are also other DNN based tasks that inherit the vulnerabil-
ity to adversarial examples [49,11,30,12]. Especially for the deep learning based
similarity retrieval, it raises wide concerns on its security issues. For feature-
based retrieval, Li et al. [25] focused on non-targeted attack by adding universal
adversarial perturbations (UAPs), while targeted mismatch adversarial attack
was explored in [40]. In [15], adversarial queries for deep product quantization
network are generated by perturbing the overall soft-quantized distributions.
However, for hashing based retrieval, one of the most important retrieval meth-
ods, its robustness analysis is left far behind. There is only one previous work
in attacking deep hashing based retrieval [52], which paid attention to the non-
targeted attack, i.e., returning retrieval objects with the incorrect label. The
targeted attack in such retrieval a system remains unaddressed.

3 The Proposed Method

3.1 Preliminaries

In this section, we briefly review the process of deep hashing based retrieval.
Suppose X = {(xi,yi)}Ni=1 indicates a set of N sample collection labeled with
C classes, where xi indicates the retrieval object, e.g., a image or a video,
and yi ∈ {0, 1}C corresponds to a label vector. The c-th component of indi-
cator vector yci = 1 means that the sample xi belongs to class c. Let X(t) =
{(x,y) ∈X | y = yt} be a subset of X consisting of those objects with label yt.
Deep Hashing Model. The hash code of a query object x of deep hashing
model is generated as follows:

h = F (x) = sign (fθ(x)) , (1)

where fθ(·) is a DNN. In general, fθ(·) consists of a feature extractor followed by
the fully-connected layers. Specifically, the feature extractor is usually specified
by a CNN for image retrieval [3,2,7], while CNN stacked with RNN is widely
adopted for video retrieval [17,37,27]. In particular, the sign(·) function is ap-
proximated by the tanh(·) function during the training process in deep hashing
based retrieval methods to alleviate the gradient vanishing problem [3].
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Similarity-based Retrieval. Given a deep hashing model F (·), a query object
x and a object database {xi}Mi=1, the retrieval process is as follows. Firstly, the
query x is fed into the deep hashing model and binary code F (x) can be obtained
through Eq. (1). Secondly, the Hamming distance between the hash code of
query x and that of each object xi in the database is calculated, denoted as
dH(F (x), F (xi)). Finally, the retrieval system returns a list of objects, which is
produced by sorting their Hamming distances.

3.2 Deep Hashing Targeted Attack

Problem Formulation. In general, given a benign query x, the objective of
targeted attack in retrieval is to generate an attacked version x′ of x, which
would cause the targeted model to retrieve objects with the target label yt. This
objective can be achieved through minimizing the distance between the hash
code of the attacked sample x′ and those of the object subset X(t) with the
target label yt, i.e.,

min
x′

d (F (x′) , F (X(t))), (2)

where F (X(t)) = {F (x)|x ∈X(t))}, and d(·, ·) denotes a point-to-set metric.
Once the problem is formulated as objective (2), the remaining problem is

how to define the point-to-set metric. In this paper, we use the most widely used
point-to-set metric, the average-case metric, as shown in Definition 1.

Definition 1. Given a point h0 ∈ {−1,+1}K and a set of points A in {−1,+1}K
and point-to-point metric dH , the average-case point-to-set metric is defined as
follows:

dAve (h0,A) ,
1

|A|
∑
h∈A

dH(h0,h). (3)

Remark 1. If average-case point-to-set metric is adopted, the objective function
(2) is specified as

min
h′

1

|A|
∑

h∈F (X(t))

dH(h′,h), (4)

where h′ is the hash code corresponding to the adversarial example x′.

In particular, there exists an analytical optimal solution (dubbed anchor
code) of the optimization problem (4) obtained through a component-voting
scheme, which is a property arising from the nature of Hamming distance of
hashing-based retrieval. The component-voting scheme is shown in Algorithm 1,
and the optimality of anchor code is verified in Theorem 1. The proof is shown
in the Appendix.

Theorem 1. Anchor code ha calculated by Algorithm 1 is the binary code achiev-
ing the minimal sum of Hamming distances with respect to hi, i = 1, . . . , nt, i.e.,

ha = arg min
h∈{+1,−1}K

nt∑
i=1

dH(h,hi). (5)
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Algorithm 1 Component-voting Scheme

Input: K-bits hash codes {hi}nt
i=1 of objects with the target label t.

Output: Anchor code ha.

1: for j = 1 : K do
2: Conduct voting process through counting up the number of +1 and −1, denoted

by N j
+1 and N j

−1, respectively. For the j-th component among {hi}nt
i=1, i.e.,

N j
+1 =

nt∑
i

I(hj
i = +1), N j

−1 =

nt∑
i=1

I(hj
i = −1), (6)

where I(·) is an indicator function.
3: Determine the j-th component of anchor code hj

a as

hj
a =

{
+1, if N j

+1 > N j
−1

−1, otherwise
. (7)

4: end for
5: return Anchor code ha.

Overall Objective Function. Due to the optimal representative property of
anchor code for the set of hash codes of objects with the target label (Theorem
1), we can naturally choose the anchor code as a targeted hash code to direct the
generation of the adversarial query. However, the attacked object corresponding
to the anchor code may be far different from the original one visually, which
would cause the attacked object to be easily detectable. To solve this problem,
we introduce the `∞ restriction on the adversarial perturbations by minimizing
the Hamming distance between the hash code of attacked object and that of the
anchor code as follows:

min
x′

dH(sign(fθ(x
′)),ha) s.t. ||x′ − x||∞ ≤ ε, (8)

where ε denotes the maximum perturbation strength, ha is the anchor code of
object set with the target label.

Besides, given a pair of binary codes hi and hj , since dH(hi,hj) = 1
2 (K −

h>i hj), we can equivalently replace Hamming distance with inner product in
the objective function. In particular, similar to deep hashing methods [3], we
adopt the hyperbolic tangent (tanh) function to approximate sign function for
the adversarial generation. Similar to [52], we also introduce the factor α to
address the gradient vanishing problem. In summary, the overall optimization
objective of proposed method is as follows:

min
x′
− 1

K
h>a tanh(αfθ(x

′)) s.t. ||x′ − x||∞ ≤ ε, (9)

where the hyper-parameter α ∈ [0, 1], ha is the anchor code.
The overall process of proposed DHTA is shown in Figure 2.
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Fig. 2. The pipeline of proposed DHTA method, where the gray and orange arrows
indicate forward and backward propagation, respectively. The adversarial query is gen-
erated through minimizing the loss calculated by its hash code and the anchor code of
the set of objects with the target label. The anchor code ha is calculated through the
component-voting scheme (i.e. an entry-wise voting process). In this toy example, h1,
h2 and h3 are three 4 bits hash codes of objects with the target label “Cat”.

4 Experiments

4.1 Benchmark Datasets and Evaluation Metrics

Four benchmark datasets, including ImageNet [33], NUS-WIDE [9], JHMDB
[20], and UCF-101 [38], are adopted in our experiments. The first two datasets
are used for image retrieval, while the last two are used for video retrieval. More
details about datasets are described in the Appendix.

For the evaluation of targeted attacks, we define the targeted mean average
precision (t-MAP) as the evaluation metric, which is similar to mean average
precision (MAP) widely used in information retrieval [55]. Specifically, the refer-
enced label of t-MAP is the targeted label instead of the original one of the query
object in MAP. The higher the t-MAP, the better the targeted attack perfor-
mance. In image hashing, we evaluate t-MAP on top 5,000 and 1,000 retrieved
images on NUS-WIDE and ImageNet, respectively. We evaluate t-MAP on all
retrieved videos in video hashing. Besides, we also present the precision-recall
curves (PR curves) of different methods for more comprehensive comparison.

4.2 Overall Results on Image Retrieval

Evaluation Setup. For image hashing, we adopt VGG-11 [36] as the backbone
network pre-trained on ImageNet to extract features, then replace the last fully-
connected layer of softmax classifier with the hashing layer. The detailed settings
of training image hashing models are illustrated in the Appendix. For each
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Table 1. t-MAP (%) of targeted attack methods and MAP (%) of query with benign
objects (‘Original’) with various code lengths on two image datasets.

Method Metric
ImageNet NUS-WIDE

16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

Original t-MAP 3.80 1.36 1.64 1.98 37.62 36.03 38.32 38.69
Noise t-MAP 3.29 1.24 1.89 2.10 37.34 36.15 38.25 38.57
P2P t-MAP 44.35 58.32 62.50 65.61 75.45 78.59 81.40 81.28
DHTA t-MAP 63.68 77.76 82.31 82.10 82.35 85.66 86.80 88.84

Original MAP 51.02 62.70 67.80 70.11 76.93 80.37 82.06 81.62

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

ImageNet

0.00 0.25 0.50 0.75 1.00
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

NUS-WIDE

200 400 600 800 1000
Number of Top Ranked Samples

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

ImageNet

200 400 600 800 1000
Number of Top Ranked Samples

0.7

0.8

0.9

Pr
ec

isi
on

NUS-WIDE

Original
P2P
DHTA

Fig. 3. Precision-recall and precision curves under 48 bits code length in image re-
trieval. P2P attack and DHTA are evaluated based on the target label, while the result
of ‘Original’ is calculated based on the label of query object.

dataset, we randomly select 100 samples from the query set as benign queries
to evaluate the performance of attack. For each generation, we randomly select
a label as the target label different from the label of query. When generating an
anchor code, we randomly sample images from objects in the database with the
target label to form the hash code set. For all adversarial examples, the pertur-
bation magnitude ε of normalized data and nt is set to 0.032 and 9, respectively.
We adopt PGD [22] to optimize the proposed attack. We attack image hashing
models with learning rate 1 and the number of iterations is set to 2,000. Follow-
ing [52], the parameter α is set as 0.1 during the first 1,000 iterations, and is
updated every 200 iterations according to [0.2, 0.3, 0.5, 0.7, 1.0] during the last
1,000 iterations. We compare DHTA with targeted attack with P2P paradigm
[40], which is specified as DHTA with nt = 1. We also show the t-MAP results
of images with additive noise sampled from the uniform distribution U(−ε,+ε).
Results. The general attack performance of different methods is shown in Table
1. The t-MAP values of query with benign objects (dubbed Original) or query
with noisy objects (dubbed Noise) are relatively small on both ImageNet and
NUS-WIDE datasets. Especially on ImageNet dataset, the t-MAP values of two
aforementioned methods are closed to 0, which indicates that query with benign
images or images with noise can not successfully retrieve objects with the target
labels as expected. In contrast, designed targeted attack methods (i.e. P2P and
DHTA) can significantly improve the t-MAP values. For example, compared
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Benign Query

Label: ‘pencil box’

Adversarial Query
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Fig. 4. An example of image retrieval with benign query and its adversarial query on
ImageNet. Retrieved objects with top-10 similarity are shown in the box. The tick and
cross indicate whether the retrieved object is consistent with the desired label (the
original label for benign query and the target label for adversarial query).

Table 2. t-MAP (%) of targeted attack methods and MAP (%) of query with benign
objects (‘Original’) with various code lengths on two video datasets.

Method Metric
JHMDB UCF-101

16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

Original t-MAP 6.73 6.26 6.48 6.89 1.69 1.67 1.79 1.86
Noise t-MAP 6.67 6.13 6.50 6.94 1.69 1.72 1.87 1.85
P2P t-MAP 39.67 42.37 44.78 44.38 55.57 53.49 55.27 51.88
DHTA t-MAP 56.47 62.04 63.02 66.06 67.84 66.18 69.72 67.83

Original MAP 35.18 42.46 45.80 45.50 55.16 55.25 56.56 56.79

with the t-MAP of benign query on ImageNet dataset, the improvement of P2P
methods is over 40% in all cases. Especially under the relatively large code
length (64 bits), the improvement even goes to 63%. Among two targeted attack
methods, the proposed DHTA method achieves the best performance. Compared
with P2P, the t-MAP improvement of DHTA is over 16% (usually over 19%) in all
cases on the ImageNet dataset. Moreover, the t-MAP values of targeted attacks
increase as the number of bits, which is probably caused by the extra information
introduced in the longer code length. In particular, an interesting phenomenon
is that the t-MAP value of DHTA is even significantly higher than the MAP
value of ‘Original’, which suggests that the attack performance of DHTA is not
hindered by the performance of the original hashing model (i.e. threat model)
to some extent. An example of the results of query with a benign image and an
adversarial image is displayed in Figure 4.

Furthermore, we also provide the precision-recall and precision curves for a
more comprehensive comparison. As shown in Figure 3, the curves of DHTA
are always above all other curves, which demonstrates that the performance of
DHTA does better than all other methods.
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Fig. 5. Precision-recall and precision curves under 48 bits code length in video retrieval.
P2P attack and DHTA are evaluated based on the target label, while the result of
‘Original’ method is calculated based on the label of query object.
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Fig. 6. An example of video retrieval with benign query and its adversarial query on
JHMDB. Retrieved objects with top-10 similarity are shown in the box. The tick and
cross indicate whether the retrieved object is consistent with the desired label (the
original label for benign query and the target label for adversarial query).

4.3 Overall Results on Video Retrieval

Evaluation Setup. According to model architectures of the state-of-the-art
deep video retrieval methods [17,37,27], we adopt AlexNet [21] to extract spatial
features and LSTM [18] to fuse the temporal information. The detailed settings
of training video hashing model are presented in the Appendix. For attacking
video hashing, the number of iterations is 500, and the parameter α is fixed at
0.1. Other settings are the same as those used in Section 4.2.
Results. The attack performance in video retrieval is shown in Table 2. Similar
to the image scenario, query with benign videos or videos with noise can not
successfully retrieve objects with the target label, thus fails to attack the deep
hashing based retrieval. In contrast, deep hashing based video retrieval can be
easily attacked by designed targeted attacks, especially the DHTA proposed in
this paper. For example, the t-MAP value of DHTA is 59% over query with
benign videos, and 21% over P2P attack paradigm on the JHMDB dataset with
code length 64 bits. The precision-recall and the precision curves also verify the
superiority of DHTA over other methods, as shown in Figure 5. Especially on
JHMDB dataset, there exists a significantly large gap between the PR curve of
DHTA and those of other methods. In addition, the t-MAP value of DHTA is
again significantly larger than the MAP of the benign query (the ‘Original’). An
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Fig. 7. t-MAP (%) of DHTA and MAP (%) of query with benign objects (‘Original’)
with different nt and code length on ImageNet and JHMDB.

example of the results of query with a benign video and an adversarial video is
displayed in Figure 6.

4.4 Discussion

Effect of nt. To analyze the effect of the size of object set for generating the
anchor code (i.e., nt), we discuss the t-MAP of DHTA under different values of
nt ∈ {1, 3, 5, 7, 9, 11, 13}. Other settings are the same as those used in Section
4.2-4.3. We use ImageNet and JHMDB as the representative for analysis.

As shown in Figure 7, the t-MAP value increase as the increase of nt under
different code lengths. The MAP of corresponding query with benign objects (i.e.
the ‘Original’) can be regarded as the reference of the retrieval performance. We
observe that the t-MAP is higher than the MAP of its corresponding ‘Original’
method in all cases when nt ≥ 3. In other words, DHTA can still have satisfying
performance with relatively small nt. This advantage is critical for attackers,
since the bigger the nt, the higher the cost of data collection and adversarial
generation for an attack. It is worth noting that the attack performance de-
grades significantly when nt = 1, which exactly corresponds to the P2P attack
paradigm.

Effect of the Number of Iterations. Table 3-4 present the t-MAP of DHTA
with different iterations on ImageNet and JHMDB datasets. Except for the it-
erations, other settings are the same as those used in Section 4.2-4.3.

As expected, the t-MAP values increase with the number of iterations. Even
with relatively few iterations, the proposed DHTA can still achieve satisfying
performance. For example, with 100 iterations, the t-MAP values are over 50%
under all code lengths. Especially on the ImageNet dataset, the t-MAP is over
70% with relatively larger code length (≥48 bits). These results consistently
verify the high-efficiency of our DHTA method.
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Table 3. t-MAP (%) of DHTA with dif-
ferent iterations on ImageNet.

Iteration 16bits 32bits 48bits 64bits

100 52.99 66.29 70.65 72.43
500 55.18 68.30 74.47 76.15
1000 56.96 68.36 75.03 76.25
1500 62.81 74.11 79.28 78.71
2000 63.68 77.76 82.31 82.10

Table 4. t-MAP (%) of DHTA with dif-
ferent iterations on JHMDB.

Iteration 16bits 32bits 48bits 64bits

10 28.51 23.88 22.84 23.21
50 48.69 48.18 47.01 48.97
100 53.21 54.91 55.94 58.28
500 56.47 62.04 63.02 66.06

Table 5. MAP (%) of different methods on ImageNet and JHMDB. The best results
are marked with boldface, while the second best results are marked with underline.

Method
ImageNet JHMDB

16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

Original 51.02 62.70 67.80 70.11 35.18 42.46 45.80 45.50
Noise 50.94 62.52 66.69 69.85 35.04 42.15 45.67 45.63
P2P 3.36 2.48 2.45 3.93 7.71 8.20 8.14 10.19
HAG 1.88 4.96 3.89 2.34 3.52 3.58 3.42 3.34
DHTA 0.54 5.64 2.30 1.70 6.76 7.23 6.56 7.55

Evaluation from the Perspective of Non-targeted Attack. Targeted at-
tack can be regarded as a special non-targeted attack, since the target label is
usually different from the one of query object. In this part, we compare the tar-
geted attacks (P2P and DHTA) with other methods, including additive noise and
HAG [52] (which is the state-of-the-art non-targeted attack), in the non-targeted
attack scenario.

The MAP results of different methods are reported in Table 5. The lower the
MAP, the better the non-targeted attack performance. As shown in the table, al-
though targeted attacks are not designed for the non-targeted scenario, they still
have competitive performance. For example, the MAP values of DHTA are 50%
smaller than those of ‘Original’ under all code length on ImageNet. Especially
for the proposed DHTA, it even has better non-targeted attack performance (i.e.
smaller MAP) compared with HAG on ImageNet in most cases.

Perceptibility. Except for the attack performance, the perceptibility of adver-
sarial perturbations is also important. Following the setting suggested in [39,41],
given a benign query x, the perceptibility of its corresponding adversarial query

x′ is defined as
√

1
n ‖x′ − x‖22, where n is the size of the object and pixel values

are scaled to be in the range [0, 1].

For each dataset, we calculate the average perceptibility over all generated ad-
versarial objects. The perceptibility value of ImageNet and NUS-WIDE datasets
is 8.35 × 10−3 and 9.07 × 10−3, respectively. In video retrieval tasks, the value
is 5.81× 10−3 and 7.72× 10−3 on JHMDB and UCF-101 datasets, respectively.
These results indicate that the adversarial queries are very similar to their orig-
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(b) NUS-WIDE

Fig. 8. Visualization examples of generated adversarial examples in image hashing.

inal versions. Some adversarial images are shown in Figure 8, while examples of
video retrieval are shown in the Appendix.

4.5 Open-set Targeted Attack

Evaluation Setup. In the above experiments, the target label is selected from
those of training set. In this section, we use ImageNet dataset as an example to
further evaluate the proposed DHTA under a tougher open-set scenario, where
the out-of-sample class will be assigned as the target label. This setting is more
realistic since the attacker may probably not be able to access the training set
of the attacked deep hashing model. For example, the deep hashing model may
be downloaded from a third-party open-source platform where the training set
is unavailable.

Specifically, we randomly select 10 additional classes different from those
used for training a deep hashing model in Section 4.1. These selected images
from 10 additional classes will be treated as an open set for our evaluation.
When generating the anchor code of objects with the target label (within the
open set), we remain our deep hashing model trained on the previous 100 classes.
Results. As shown in Table 6, DHTA still has a certain attack effect even if
the target label is out-of-sample. Especially when the nt and the code length
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Table 6. t-MAP (%) of DHTA with out-of-sample target label on ImageNet.

Method 16bits 32bits 48bits 64bits

DHTA (nt = 5) 33.67 46.34 48.91 48.27
DHTA (nt = 7) 34.77 50.92 51.68 49.18
DHTA (nt = 9) 37.34 54.13 55.12 52.17
DHTA (nt = 11) 38.00 54.05 56.93 54.12

tend larger, the t-MAP values of DHTA are over 50%. This phenomenon may
reveal that the learned feature extractor did learn some useful low-level features,
which represents those objects with the same class in some similar locations in
Hamming space, no matter the class is learned or not. In addition, the attack
performance is also increasing with the nt and code length.

5 Conclusion and Future Work

In this paper, we explore the landscape of the targeted attack for deep hashing
based retrieval. Based on the characteristics of the retrieval task, we formulate
the attack as a point-to-set optimization, which minimizes the average distance
between the hash code of the adversarial example and those of a set of objects
with the target label. Theoretically, we propose a component-voting scheme to
obtain the optimal representative, the anchor code, for the code set of point-to-
set optimization. Based on the anchor code, we propose a novel targeted attack
method, the DHTA, to balance the performance and perceptibility through min-
imizing the Hamming distance between the hash code of adversarial example and
the anchor code under the `∞ restriction on the adversarial perturbation. Ex-
tensive experiments are conducted, which verifies the effectiveness of DHTA in
attacking both deep hashing based image retrieval and video retrieval. To alle-
viate the proposed threat, we will discuss how to generalize existing adversarial
training based methods from P2P to the P2S scheme for the defense. The specific
approaches will be further demonstrated in our future works.
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