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In this supplementary file, we first provide proofs of the theoretical results in
the main paper, including Corollary 4.1 and Proposition 4.2, and then present
some additional experiments.

A1. Proof of Corollary 4.1

Corollary 4.1: Suppose that SGD (or SGDM) with GC is used to update the
weight vector w, for any input feature vectors x and x + γ1, we have

(wt)Tx− (wt)T (x + γ1) = γ1Tw0 (1)

where w0 is the initial weight vector and γ is a scalar.

Proof. First we show below a simple property of P:

1TP = 1T (I− eeT ) = 1T − 1

M
1T11T = 0T ,

where M is the dimension of e.

For each SGD step with GC, we have:

wt+1 = wt − αtP∇wtL.

It can be easily derived that:

wt = w0 −P

t−1∑
i=0

α(i)∇w(i)L,

? This research is supported by the Hong Kong RGC GRF grant (PolyU 152216/18E).



2 H. Yong et al.

where t is the number of iterations. Then for the output activations of x and
x + γ1, there is

(wt)Tx−(wt)T (x + γ1) = γ1Twt

= γ1T (w0 −P

t−1∑
i=0

α(i)∇w(i)L)

= γ1Tw0 − γ1TP

t−1∑
i=0

α(i)∇w(i)L

= γ1Tw0.

(2)

Therefore,

(wt)Tx− (wt)T (x + γ1) = γ1Tw0. (3)

For SGD with momentum, the conclusion is the same, because we can obtain
a term γ1TP

∑t−1
i=0 α

(i)mi in the third row of Eq.(2), where mi is the momentum
in the ith iteration, and this term is also equal to zero.

The proof is completed. �

A2. Proof of Proposition 4.2

Proposition 4.2: Suppose ∇wL is the gradient of loss function L w.r.t. weight
vector w. With the ΦGC(∇wL) defined in Eq.(2), we have the following conclu-
sion for the loss function and its gradient, respectively:

{
||ΦGC(∇wL)||2 ≤ ||∇wL||2,
||∇wΦGC(∇wL)||2 ≤ ||∇2

wL||2.
(4)

Proof. Because e is a unit vector, there is eTe = 1. We can easily prove that:

PTP = (I− eeT )T (I− eeT )

= I− 2eeT + eeTeeT

= I− eeT

= P.

(5)
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Table 1. Testing accuracies of different weight decay on CIFAR100 with ResNet50.

Weight decay 0 1e−4 2e−4 5e−4 1e−3

w/o GC 71.62±0.31 73.91±0.35 75.57±0.33 78.23±0.42 77.43±0.30

w/ GC 72.83±0.29 76.56±0.31 77.62±0.37 79.14±0.33 78.10±0.36

Table 2. Testing accuracies of different learning rates on CIFAR100 with ResNet50
for SGDM and Adam.

Algorithm SGDM SGDM SGDM Adam Adam Adam

Learning rate 0.05 0.1 0.2 0.0005 0.001 0.0015

w/o GC 76.81±0.27 78.23±0.42 76.53±0.32 73.88±0.46 71.64±0.56 70.63±0.44
w/ GC 78.12±0.33 79.14±0.33 77.71±0.35 74.32±0.55 72.80±0.62 71.22±0.49

Then for ΦGC(∇wL), we have:

||ΦGC(∇wL)||22 = ΦGC(∇wL)TΦGC(∇wL)

= (P∇wL)T (P∇wL)

= ∇wLTPTP∇wL
= ∇wLTP∇wL
= ∇wLT (I− eeT )∇wL
= ∇wLT∇wL −∇wLTeeT∇wL
= ||∇wL||22 − ||eT∇wL||22
≤ ||∇wL||22.

(6)

For ∇wΦGC(∇wL), we also have

||∇wΦGC(∇wL)||22 = ||P∇2
wL||22

= ∇2
wLTPTP∇2

wL
= ∇2

wLTP∇2
wL

= ||∇2
wL||22 − ||eT∇2

wL||22
≤ ||∇2

wL||22.

(7)

The proof is completed. �

A3. More Experiments

Different hyper-parameter settings: In order to illustrate that GC can
achieve consistent improvement with different hyper-parameters, we present the
results of GC with different settings of weight decay and learning rates on the
CIFAR100 dataset. ResNet50 is used as the backbone.

Table 1 shows the testing accuracies with different settings of weight decay,
including 0, 1e−4, 2e−4, 5e−4 and 1e−3. The optimizer is SGDM with learning
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rate 0.1. Other settings are the same as those in the manuscript. It can be seen
that the performance of weight decay is consistently improved by GC.

Table 2 shows the testing accuracies with different learning rates for SGDM
and Adam. For SGDM, the learning rates are 0.05, 0.1 and 0.2, and for Adam,
the learning rates are 0.0005, 0.001 and 0.0015. The weight decay is set to 5e−4.
Other settings are the same as those in the manuscript. We can see that GC
consistently improves the performance.


