The Phong Surface:
Efficient 3D Model Fitting using Lifted Optimization
- Supplementary Material

Jingjing Shen, Thomas J. Cashman, Qi Ye, Tim Hutton, Toby Sharp, Federica Bogo,
Andrew Fitzgibbon, and Jamie Shotton

Microsoft Mixed Reality & Al Labs, Cambridge, UK
{j inshen, tcashman, yeqi, tihutt, tsharp, febogo,
awf, jamiesho}@microsoft.com

1 Lifting vs. point-to-plane ICP

Here we show that lifted optimization is related to point-to-plane ICP, but is mathemati-
cally richer.

We use the rigid alignment of a 2D curve C'to a set of data points {x; }¥ ; to illustrate
point-to-plane ICP updates, see Fig. 1. As point-to-plane ICP finds correspondences
between the data and the tangent space of the model, in the 2D case we will be performing
‘point to tangent line’ updates. Let 6 parametrize the translation and rotation of the curve,
which are the parameters we want to solve for.

Both point-to-plane ICP and lifting first need to select the point-to-curve correspon-
dences between N data points and the posed curve C'(6). There are many point-matching
variants [3], and Fig. 1a depicts simple closest-point correspondences, but our analysis
extends to any initial correspondence proposals. Let us denote these correspondences
by curve parameter positions {¢;}¥ |, and thus data point x; is paired with curve point
C(t;,0).

The tangent line at model point C/(¢;) is {C(t;) + vC(t;)|y € R}, where C(t;)
denotes the unit-length tangent vector at ¢;. Then one completely unconstrained point-to-
plane ICP update (Fig. 1b) finds #* that minimizes the distance of point-to-tangent-line:

6 = argmin » _min [[x; — (C(t;,0) +%C(t:,0))[|, (1)
0 P Vi

where (C(t;,0) +~v:C(t;,0)) is the projection of the data point on the tangent line when
evaluated at the position ~; that minimizes the distance to x;, i.e., the footpoint. Note that
this is a 2D version of the original point-to-plane method by Chen and Medioni [1], and
it is equivalent to using the distance metrics based on the normal at C(¢;, #) described
by Low [2]. As shown in Fig. 1b, this could lead to a bad update when the starting point
is not close enough.

To do better, a regularized version of point-to-plane ICP (Fig. 1¢) could be to find 6*
that minimizes the distance of both point-to-point and point-to-tangent-line:

0" = argmianin i — (C(ti, 0) + % C(ts, 0)) 1> + Ml 2)
[; Vi

2 J. Shen et al.

Here the inner minimization over {7;}¥.; can be solved separately as a series of least-
squares problems, and 6 solved afterwards in each iteration.
Finally, lifted optimization (Fig. 1d) simultaneously finds 6* and T = {t,}; that
minimizes
0", T* = argminz x; — C(ts,0)|)? 3)
0.7

o e

(b) Single unconstrained Point-to-Plane ICP up-
(a) Initial point-matching. date.

(c) Single regularized Point-to-Plane ICP update. (d) Single lifted update.

Fig. 1: Illustration of point-to-plane ICP and lifted optimization.

We can see that point-to-plane ICP shares similarities with a lifted update; both allow
a model to slide against the data in each iteration, improving convergence. While lifting
achieves the sliding by simultaneously optimizing € and T in the update, point-to-plane
ICP achieves the sliding by projection onto the model tangent plane. However, point-
to-plane ICP addresses this for only one energy formulation (point-to-model distances)
whereas a lifted optimizer generalizes to arbitrary differentiable objectives. Recall that
we include a normal disparity term in our energy (Eq. 4 in main paper), which is critical
for faster convergence as shown in the experiment described in Sec. 3.1 and Fig. 7 of the
main paper; point-to-plane ICP cannot minimize this objective.

2 Efficiency of lifting vs. ICP

As shown in Fig. 6 (right) and Fig. 12 in main paper, our actual runtime for ICP is
slower than for lifting in terms of wall-clock timing on PC. While we believe our

Phong surface model 3

implementations for both are reasonable, this efficiency comparison could still be unfair
in many ways.

Instead, let us use FLOP (Floating Point Operation) counts to theoretically compare
the two in the context of hand tracking. Note that in the extreme low-power case we
discuss (1% of an iPhone 7), we assume the programmer is already optimizing cache hit
rates etc. In our code for hand tracking on HoloLens 2, for example, our tightest loop is
running at 75% of theoretical peak FLOPS.

Several of the steps of ICP are comparable to lifting:

1. A major component of the cost is determining the point-to-mesh correspondences
between N data points (less than 200 for our hand tracking examples), and M
sampled mesh points. For lifting, M can be relatively small (e.g. 300), as most
correspondences accept their lifted update. We might hope that a spatial index over
mesh samples would accelerate this per-data-point query, but as the mesh changes at
every iteration, a KD-tree or other spatial data structure would need to be rebuilt at
every iteration, and for M ~ 300 this cost is never recouped. The cost is therefore
O(M N) FLOPs, although the constant factor can be small with efficient SIMD
usage.

For ICP, as the correspondences are held fixed, convergence depends on finding good
matches at every iteration. The mesh samples therefore either need to be numerous,
say M = 3000, where a KD-tree can achieve asymptotic complexity O(N log M)
but with a constant overhead that makes the incurred cost greater when amortized
per query. Or else ICP can use smaller M but needs at least one Newton step per
closest-point query, involving the solution of NV 2 x 2 linear systems adding to the
O(MN) cost above.

Parallelization is trivial for this step, but does not reduce the number of operations,
and therefore cannot help to address the power constraints of a mobile device. The
impact on latency is important but it does not change the FLOP count analysis here.

2. The second major component is the cost of solving for the 6 update (P params), and

the N correspondence updates in the case of lifting. For ICP this involves a P x P
linear system solve per sub-iteration at a cost of O(P?3). In lifting, the system is
more complex but still quite sparse, adding O(PN) operations.
Taylor et al. [4] also point out in their Section 3.3.1 that lifted optimization scales
linearly with IV; in fact, the extra floating-point multiplications required for lifting
to solve Af (their Eq. 22) and AU are about (18 + 4P)N, which with N = 128
and P = 28 as in our HoloLens hand tracking example gives only ~ 16K additional
floating-point multiplications per iteration (<2MFLOPS overall).

So iteration timings are very comparable, and from our convergence figures, we
emphasize that the second-order convergence of lifted optimization is much faster than
the linear convergence observed for ICP. For example, Fig. 6 (left) in the main paper
shows that Lifted Phong/Subdiv (red/green solid line in (a)) converges within ~ 13
iterations, while the ICP Phong/Subdiv (red/green dashed line) within ~ 50 iterations,
i.e. 3.8 times more. For the hand tracking experiment in the main paper (Fig. 12(a)),
to achieve an accuracy level where 79% of dataset has average joint error < 20mm,
Lifted Phong (red solid line) requires ~ 4 iterations, while ICP Phong (red dashed line)

4 J. Shen et al.

== Lifted Phong (This paper) === Lifted Subdiv. Lifted Tri. mesh . «+ ICP Phong ICP Subdiv ICP Tri. mesh
£30 5
=
(=4
v
o
5]
520
2
£
o
=
£
s
210
&
LT =T I=dF
F S % 52 {eltzrs

-120 -100 —-80 —-60 —40 —20 20 40 60 80 100 120

Ground truth rotation angle in degs

Fig. 2: Rigid alignment accuracy for an ellipsoid with 1280 facets. The optimization runs
for max. 50 iterations.

requires ~ 7 iterations, i.e. 1.75 times more. Recall that from the analysis above, the
per-iteration cost of lifting for N < 200 is comparable to ICP.

In summary, depending on several factors ICP can range from marginally cheaper
than lifted optimization per iteration to considerably more expensive, but also comes with
the cost of increases in iteration count (and decrease in basin of convergence, requiring
more compute for any initial estimate).

3 More results on rigid pose estimation of an ellipsoid

Here we show more results on convergence comparison of various surface types and
optimization frameworks on rigid pose estimation of an ellipsoid (Sec 3.1 in main paper).
Qualitative comparisons. Fig. 4 visualizes the optimization iterations to reach the
ground-truth rigid pose [0.1,0.3,2.0, 1,1, 1]. In the lifted case, the Phong and Subdiv
surfaces both converge to the correct pose within 5 iterations; 7ri. mesh needs 15
iterations. With ICP, the Phong and Subdiv. surfaces both converge to the correct pose
within 24 iterations; Tri. mesh needs 35 iterations.

Varying mesh resolution. As for the Phong interpolated normals exhibit less variation
with higher-resolution meshes, we run a similar experiment considering an ellipsoid with
4x denser triangles. Fig. 2 shows that, in this case, Tri. mesh get slightly better accuracy
than with lower resolution. However, the overall performance seems comparable to that
reported in Fig. 5 in the main paper.

Data point positional errors. In addition to the rotation error analysed in the main
paper Fig. 6 (left), here we show the data point positional error and data point normal
error in Fig. 3. It’s clear that the Tri. mesh fits well to data point positions but quite bad
to data normals.

Noise in data normals. As our proposed model-fitting method relies on data normal
term for good convergence, one possible failure case will be when there is too much
noise in the input data normals, due to either data too sparse or normal estimation too
noisy. To confirm this, we tried to bump up the noise level in data normals in the ellipsoid

Phong surface model 5

g .
5 2
E z
g g
g= =)
2 g
o <
s =
5] <
5 o
Z < _
40 60 80 100 40 60 80 100
The i-th iteration The i-th iteration

Fig. 3: Averaged data point positional error and normal error during fitting for an ellipsoid
with 320 facets. The error is averaged across 400 trials. The optimization runs for max.
100 iterations.

example (Sec 3.1 and Fig. 5 in the main paper), from default random range [0.0, 0.1], up
to [0.0, 0.25] and [0.0, 0.5]. We found that on average the Phong does get slightly worse
at 0.25, but still much better than Tri. mesh; but the advantage gets much smaller at 0.5.

References

1. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: IEEE
International Conference on Robotics and Automation. pp. 2724-2729 (1991) 1

2. Low, K.L.: Linear least-squares optimization for point-to-plane icp surface registration. Tech.
rep. (2004) 1

3. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: International Conference
on 3D Digital Imaging and Modeling. pp. 145-152 (2001) 1

4. Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Sharp, T., Soto, E., Sweeney,
D., Valentin, J., Luff, B., Topalian, A., Wood, E., Khamis, S., Kohli, P., Izadi, S., Banks,
R., Fitzgibbon, A., Shotton, J.: Efficient and precise interactive hand tracking through joint,
continuous optimization of pose and correspondences. ACM Transactions on Graphics 35(4),
143:1-143:12 (2016) 3

6 J. Shen et al.

Lifted Subdiv.
Iter 0 Iter 3 Iter 5 Iter 8 Iter 50

¥

Lifted Phong (ours)
Iter 0 Iter 3 Iter 5 Iter 8 Iter 50

Lifted Tri. mesh
Iter 0 Iter 3 Iter 5 Iter 8 Iter 50

ICP Subdiv.
Iter 0 Iter 3 Iter 5 Iter 8 Iter 50

ICP Phong
Iter 0 Iter 3 Iter 5 Iter 8 Iter 50

ICP Tri. mesh
Iter 0 Iter 3 Iter 5 Iter 8 Iter 50

Fig. 4: Rigid pose alignment of an ellipsoid with 3 surface types in lifted optimization
and ICP optimization. The green and red dots represent data points and surface points,
respectively; black lines denote correspondences between the two. Only the first two
methods converge within 5 iterations.

