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In this document we provide supplementary descriptions and results.

1 KITTI Test Server Evaluation

Figs. 1 and 2 show the complete set of available qualitative results from the held-
out 2015 test set from the KITTI online server. We show the official benchmark
model of (GANet official)! [15], a GANet retrained by us using only Scene-
flow [9] (Sceneflow GANet), and GANet trained only with our MfS data
(MfS GANet (Ours)). Note that only GANet official uses KITTI data to
finetune, as is apparent in the overly smooth predictions on transparent surfaces
like car windows (see rows 6 and 7 in Fig. 1). In Fig. 2 (also rows 6 and 7), can see
poor quality predictions in the right of the sky region for the finetuned model,
whereas our MfS trained model produces much more sensible predictions. Our
results are generally more faithful to the boundaries of the color input image
and have fewer artefacts than the alternative methods despite using no LiDAR
or synthetic data during training. Quantitative results are presented in Table 1.

Table 1: KITTI 2015 Benchmark. All trained by us on GANet [15], without any
finetuning with KITTI LiDAR data. Our model does better than the sceneflow trained
alternative. Row three gives the GANet scores (after KITTI LiDAR finetuning) on
the same benchmark as reported in their paper [15], and row four gives the current
best GANet score on the KITTI benchmark leaderboard. Our scores are not compet-
itive with these scores from models which have had domain-specific KITTI LiDAR
finetuning, but our qualitative results are more faithful (Figs. 1 and 2).

Training data KITTI |D1-bg|D1-fg|D1-all|D1-bg| D1-fg|D1-all
Finetune| Noc | Noc | Noc | All | All | All
Sceneflow GANet 3.60 |16.56 | 5.74 | 3.86 |17.21| 6.08
MIfS GANet (Ours) 2.96 [15.09| 4.97 | 3.13 [15.57| 5.20
GANet [15] (in paper) v 3.39 | 1.84 3.91 | 2.03
GANet Official [15] v 1.34 | 3.11 | 1.63 | 1.48 | 3.46 | 1.81

! http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?

benchmark=stereo&result=ccb2b24d3e08ec968368f85ad4eeab8b668e70b8c
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Input GANet official Sceneflow GANet
(KITTI finetuned)

Input GANet official Sceneflow GANet
(KITTI finetuned)

MfS GANet (Ours)

_
I—
== =] -

MfS GANet (Ours)

Fig. 1: KITTI 2015 benchmark qualitative comparison. On the held-out KITTI
2015 benchmark images our predictions MfS GANet (Ours), produced without any
KITTI finetuning, are qualitatively more faithful to the scene geometry than both the

Sceneflow-trained model and the official KITTI-finetund GANet [15

here are generated by the KITTI upload server. [5].

]. Visualisations
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Input GANet official Sceneflow GANet MIfS GANet (Ours)
(KITTI finetuned)

(KITTI finetuned)

Fig. 2: KITTI 2015 benchmark qualitative comparison — continued. See Fig. 1
caption for details.
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2 Image Synthesis Visualisation

When converting predicted depth Z to disparity D we can vary the scaling factor
s; D= ﬂgﬂ In Fig. 3 we illustrate the resulting I, for different values of s. As
s becomes larger, we see that it has the effect of changing the relative camera
viewpoint of the synthesized right image e.g. we observe the front of the bus
occluding the trash can on the sidewalk.

(®) () I(s = 200)
Fig. 3: Visualization of different scaling factors s. Here we show the effect of
varying the scaling factor s (¢ - h) when constructing the synthesized right image I,
from the input left image (a) and its predicted depth (b).

I.(s = 150) (h) I,(s = 225)

3 Baseline Algorithm Details

Here we describe the baseline image synthesis approaches we compared to in
Table 1 in the main paper. We show qualitative results from these approaches
here in Fig. 7 and in Fig. 6 in the main paper.

Affine Warps — For the affine warps baseline, similar to [2], we warp each I,
with a top shift syp and a bottom shift Spottom, With 50% probability syop ~
Unif [0, dmax] and Spottom ~ Unif [0, Sop]; and with 50% probability Shottom ~
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2 DA

Fig.4: Affine warp baseline. The diagram at top shows how Stop, Sbottom relate to
the warp applied to I,.. Below, we show examples of the resulting affine warped images.

Unif [0, dmax] and syop ~ Unif [0, Shottom]. Following the warping, I; and I, are
both cropped to avoid black borders, and the corresponding D is adjusted ap-
propriately to account for this cropping. Details and example training images
are shown in Fig. 4.

Random Pasted Shapes — For the random pasted shapes baseline we paste
‘foreground’ shapes onto a ‘background’ image in a similar manner to [8]. We
start with affine warped images, but with dy.x = 50 to help to ensure that
foreground ‘objects’ move with greater disparity than the ‘background’ image.
We then sample num_patches ~ Unif]0, 10] and for each patch we load a random
image from the training set and mask out a region. The masked region is pasted
on top of I;, and a translated version of the masked region is placed on I,. Masks
are generated with equal probability from rectangles, partial ellipses, polygons
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Fig.5: Random pasted shapes baseline. We show examples of images warped
using this baseline.

and thin objects. With the exception of rectangles, masks are generated with
OpenCV’s drawing functions. Examples of random pasted shapes training tuples
are shown in Fig. 5. Note that the disparity of the background image is less
visible compared with the disparity maps from the Affine Warp baseline, due to
the reduced dp,.x used here.

Rectangles are axis-aligned, with z-axis and y-axis bounds sampled from
Unif[0.1W,0.9W] and Unif[0.1H, 0.9H] respectively.

Partial ellipses have a center (z,y), where z ~ Unif[0.1W, 0.9W] and y ~
Unif[0.1H,0.9H]. With 75% probability the ellipse is a full ellipse, with
start_angle = 0 and end_angle = 360. Otherwise, the ellipse is partial, with
the angular bounds sampled from Unif]0,360]. The rotation angle of the
ellipse is sampled from Unif[0,360], and the axes sizes are sampled from
Unif[0.1W, 0.9W].

Polygons are generated using the approach described in [10], with a number
of sides sampled from Unif[3,20], spikyness = 0.8, irregularity = 0.5, and
aveRadius ~ Unif[0.01W, 0.3W].

Thin objects are full ellipses with with minor axis ~ Unif[0.001H,0.025H |
and major axis ~ Unif[0.1W, 0.5W].
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Fig. 6: Random superpixels baseline. Synthesized stereo pairs using superpixel
warping.

Random Superpixels — For this baseline, we segment I; into superpix-
els using [3,12], with parameters scale ~ Unif[50,200], ¢ ~ Unif[0, 1], and
min_size ~ Unif[75,275]. We initialise D as a plane, where pixel ¢ has dis-
parity value d; defined by d; = ax + by + ¢ with a ~ Unif[—0.025, 0.025],
b ~ Unif[0.3,0.4], and ¢ ~ Unif[15,20]. Superpixels s; in I; are chosen with
probability 0.6 to act as foreground objects. We set the disparity values of these
foreground superpixels as d; = Eiej% + x;, where ; ~ Unif]0, 64] and n is the
number of pixels in superpixel s;. Finally we clip the values of D to lie between
0 and dpyax- Using D, we then forward warp I; to generate our right image I:T,
handing occlusions and collisions in the way described in Section 3.2 of the main
paper. Examples of this training data are shown in Fig. 6.

4 Evaluation Details

Here we provide additional details for the experiments in main paper.
4.1 Evaluation Image Resolution

Due to architecture constraints, we make predictions at slightly different reso-
lutions for each network; see Table 2 for details. Note that all predictions are
resized to the native resolution of the ground truth for evaluation. When train-
ing a given architecture with different datasets we use the same resolution for
all datasets for fair comparison.
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Fig. 7: Additional results comparing our method to the baseline algorithms.
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Table 2: Evaluation image resolution. Here we show the prediction resolutions for
each architecture. Note that all predictions are resized to the native resolution of the
ground truth for evaluation.

Architecture|| KITTT ‘12 | KITTI ‘15 |Middlebury| ETH3D
iResnet [7] [|1280 x 384[1280 x 384|1280 x 768 [768 x 448
PSM [1] 1280 x 384[1280 x 384| 1280 x 768|768 x 448
GANet [15] {1248 x 384|1248 x 3841248 x 768 |768 x 432

4.2 KITTI Evaluation Splits

KITTTI 2012 results in the paper are reported on the 40 images from the vali-
dation split of [1]. The image indices used by both us and [1] are [3, 6, 20, 26,
38, 41, 43, 44, 49, 60, 67, 70, 81, 84, 89, 97, 109, 119, 122, 123,

129, 130, 132, 134, 141, 144, 152, 158, 165, 171, 174, 179, 184, 186].3

The KITTI 2015 indices are [1, 3, 6, 20, 26, 35, 38, 41, 43, 44, 49,
60, 67, 70, 81, 84, 89, 97, 109, 119, 122, 123, 129, 130, 132, 134,

141, 144, 152, 158, 159, 165, 171, 174, 179, 182, 184, 186, 187, 196].3

5 Additional KITTI Results

In Table 3 we present additional metrics for the KITTI 2012 experiments from
Table 1 in the main paper where we compare different methods for generating
training data. We also show additional metrics for KITTT 2015. As in the main
paper, our method brings consistent improvement over the baselines.

Table 3: KITTI 2012 and 2015 Results. Additional metrics for PSMNet’s [1]
trained with different stereo data.

[Synthesis approach [Training data [J[EPE Noc[<3px Noc[EPE All[<3px All|
KITTI 2012
Affine warps MfS 3.04 12.72 3.74 14.78
Random pasted shapes |MfS 2.70 9.62 3.38 11.21
Random superpixels MfS 1.15 4.97 1.33 5.90
Synthetic Sceneflow 0.95 4.77 1.03 5.51
Ours MIS 0.77 3.58 0.91 4.42
KITTI 2015
Affine warps MIfS 2.05 13.67 2.33 14.94
Random pasted shapes |MfS 1.29 6.33 1.53 7.63
Random superpixels MIS 1.13 5.11 1.15 5.38
Synthetic Sceneflow 1.18 5.54 1.19 5.73
Ours MIfS 1.06 4.80 1.07 4.92
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6 Recovering from Monocular Depth Errors

Fig. 7 in the main paper shows that our trained stereo networks can overcome
some of the errors of monocular depth estimation. In Fig. 8 here, we observe
the same result across three different monocular depth networks: MiDa$S [11],
Megadepth [6], and Monodepth2 [4]. In each case, problems present in monocular
depths, such as missing objects and uneven ground planes do not transfer to our
eventual stereo predictions. We note here that although Monodepth2 [4] was
trained using monocular videos from KITTI, our resulting stereo network has
never seen images from this dataset.

Input
Stereo prediction Stereo prediction Stereo prediction
(MfS+MiDaS[11]) (MfS+Megadepth[6 (MfS+[4])
Mono prediction Mono prediction Mono prediction
(MiDa$S [11]) (Megadepth [6]) Monodepth2 [4]

Inpuf
Stereo prediction Stereo prediction Stereo prediction
(MfS+MiDaS[11]) (MfS+Megadepth[6 (MfS+[4])
Mono prediction Mono prediction Mono prediction
(MiDa$S [11]) (Megadepth [6]) Monodepth2 [4]

Fig. 8: We can recover from errors in monocular depth estimation.

7 Ablation

Table 4 shows the full set of ablation results for our method, again justifying
our design decisions (see Table 4 in the main paper). We show some qualitative
comparisons for this experiment in Fig. 9.
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Ours (full)
Ours w/o background filling) Ours w/o sharpening Ours w/o b.g. filling and sharpening

Ours (full)

Ours w/o background filling) Ours w/o sharpening Ours w/o b.g. filling and sharpening

Fig.9: Qualitative Ablation Results. Here we see stereo predictions for models
trained with different parts of our synthesis pipeline disabled. A quantitative compar-
ison is available in Table 4.

8 Training for Longer

For all the stereo results in the main paper we trained for 175k steps. In Table 5,
we present results for training both PSMNet and GANet for and additional
175k and 150k steps respectively. We can see that longer training benefits both
our MfS and Sceneflow trained stereo models. However, we still outperform the
Sceneflow trained models when we increase the number of iterations.?

9 Additional Qualitative Results

In Figs. 10 and 11 we present additional comparisons using PSMNet to Sceneflow
training versus our MfS dataset for both KITTI 2012 and KITTI 2015. In Figs. 12

2 Note that row 1 in Table 6 in the main paper has incorrect numbers for KITTI —
these should be the same as row 4 in Table 2 in the main paper.

Table 4: Ablation results. By including all parts of our synthesis pipeline when
creating training we achieve the best results overall (bottom row).

KITTI "12|KITTI ’15|Middlebury| ETH3D

Sharpening|Background filling||EPE <3px|EPE <3px|EPE <2px |EPE <1px
1.03 5.22 |1.09 5.37 |8.15 31.89|0.51 9.59
0.88 4.88 |1.07 5.14 |7.44 29.17]0.52 9.44
1.06 4.90 |1.08 4.98 |7.20 27.66|0.57 9.03
0.91 4.43|1.07 4.926.34 27.33|0.52 8.78

NN\ X X%
N\ > N\ X%
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Table 5: Training for longer. Stereo models trained with our MfS dataset still
outperform Sceneflow models even with more training steps.

Architecture|Training data|Steps||KITTI '12|KITTI 15| Middlebury| ETH3D
EPE <3px|EPE <3px|EPE <2px |[EPE <lpx

PSMNet [1] |Sceneflow 175k (| 1.03 5.51 |1.19 5.73 | 9.45 36.09|0.67 14.66
350k |[1.01 5.31 |1.15 5.62 | 8.54 34.04|0.68 11.51
PSMNet [1] |MIS 175k (|0.91 4.43 |1.07 4.92|6.34 27.33|0.52 8.78
350k |[1.02 4.36|1.04 4.56|6.26 25.38|0.44 7.35

GANet [15] |Sceneflow 175k (| 1.00 5.45|1.21 6.11 [10.94 32.57|0.49 9.97
325k [[0.96 5.24 |1.14 5.43|9.81 32.20|0.48 9.45
GANet [15] |MIfS 175k ||{0.81 4.32 |1.04 4.66 | 5.54 24.75|0.44 7.73
325k |[0.83 4.27|1.03 4.61|5.29 23.79|0.41 6.45

and 13 we compare using Flickr1024 [13], a dataset stereo images collected on-
line. For Flickr1024, we should results using our method using depth generated
by MiDaS [11] or MegaDepth [6]. It is worth remembering that MegaDepth [6]
does not use any synthetic or ground truth depth at training time but it still
can be used to train a stereo model that produces high quality predictions. We
reached out to the authors of the ReDWeb dataset [14] so we could evaluate on
it, but unfortunately the original input stereo frames are not available. In all
cases we see that our fully automatic data generation pipeline results in high
quality stereo predictions without directly requiring any synthetic training data
which is time consuming to create.
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Trained with Sceneflow Trained with our MfS

Fig.10: Additional KITTI 2012 qualitative results.
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Input (left) image Trained with Sceneflow

Fig.11: Additional KITTI

Trained with our MfS

2015 qualitative results.
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Input (left) image Trained with Sceneflow Trained ours Trained ours
(MfS + MiDasS [11]) (MfS + MegaDepth [6])

Fig. 12: Additional Flickr1024 [13] qualitative results.
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Input (left) image Trained with Sceneflow Trained ours Trained ours
(MfS + MegaDepth [6]

(MfS + MiDa$ [11])

Fig. 13: Additional Flickr1024 [13] qualitative results.
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