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Abstract. Recent research on learned visual descriptors has shown
promising improvements in correspondence estimation, a key component
of many 3D vision tasks. However, existing descriptor learning frameworks
typically require ground-truth correspondences between feature points
for training, which are challenging to acquire at scale. In this paper
we propose a novel weakly-supervised framework that can learn feature
descriptors solely from relative camera poses between images. To do so, we
devise both a new loss function that exploits the epipolar constraint given
by camera poses, and a new model architecture that makes the whole
pipeline differentiable and efficient. Because we no longer need pixel-level
ground-truth correspondences, our framework opens up the possibility of
training on much larger and more diverse datasets for better and unbiased
descriptors. We call the resulting descriptors CAmera Pose Supervised,
or CAPS, descriptors. Though trained with weak supervision, CAPS
descriptors outperform even prior fully-supervised descriptors and achieve
state-of-the-art performance on a variety of geometric tasks.1
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1 Introduction

Finding local feature correspondence is a fundamental component of many
computer vision tasks, such as structure from motion (SfM) [56] and visual
localization [54]. Recently, learned feature descriptors [42,58,65] have shown
significant improvements over hand-crafted ones [4,26,37] on standard benchmarks.
However, other recent work has observed that, when applied to real-world unseen
scenarios, learned descriptors do not always generalize well [39,57].

One potential cause of such limited generalization is the insufficiency of
high-quality training data in both quantity and diversity [57]. Ideally, one would
train descriptors on fully accurate, dense ground-truth correspondence between
image pairs. However, it is hard to collect such data for real imagery, and only a
few datasets of this form exist [6,10]. As an alternative, many previous methods
resort to SfM datasets that provide pseudo ground-truth correspondences given by
matched and reconstructed feature points [39,42,48,65], but these correspondences
are sparse and potentially biased by the keypoints used in the SfM pipeline.

1 Project page: https://qianqianwang68.github.io/CAPS/

https://qianqianwang68.github.io/CAPS/
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Fig. 1: Overview of our method. Our model can learn descriptor using only relative
camera poses (e.g., from SfM reconstructions (a)). Knowing camera poses, we obtain
epipolar constraints illustrated in (b), where points in the first image correspond to the
epipolar lines in same color in the second image. We utilize such epipolar constraints as
our supervision signal (see Fig. 2). (c) shows that at inference, our descriptors establish
reliable correspondences even for challenging image pairs.

Another option for obtaining correspondence annotations is synthetic image pairs
warped by homographies [13,40]. However, homographies do not capture the full
range of geometric and photometric variations observed in real images.

In this paper, we address the challenge of limited training data in descriptor
learning by relaxing this requirement of ground-truth pixel-level correspondences.
We propose to learn descriptors solely from relative camera poses between pairs of
images. Camera poses can be obtained via a variety of non-vision-based sensors,
such as IMUs and GPS, and can also be estimated reliably using SfM pipelines [56].
By reducing the supervision requirement to camera poses, it becomes possible to
learn better descriptors on much larger and more diverse datasets.

However, existing metric learning based methods for learning descriptors
cannot utilize camera poses as supervision, as the triplet or contrastive losses
used in such methods cannot be defined with respect to camera poses. Hence,
we propose a novel framework to leverage camera pose supervision. Specifically,
we translate the relative camera pose between an image pair into an epipolar
constraint on pixel locations of matched points as our supervision signal (Fig. 2).
The remaining challenge is to make the locations of matched points differentiable
with respect to descriptors for training, for which we introduce a new differentiable
matching layer (Fig. 3(a)). To further reduce the computation cost and accelerate
training, we use a coarse-to-fine matching scheme (Fig. 3(b)) that computes the
correspondence at a lower resolution, then locally refines at a finer scale.

Once trained, our system can generate dense feature descriptors for an arbi-
trary input image, which can then be combined with existing keypoint detectors
for downstream tasks. Despite the fact that we only train with weak camera
pose supervision, our learned descriptors are on par with or even outperform
prior fully-supervised state-of-the-art methods that train with ground-truth corre-
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spondence annotations. Furthermore, while enabling training with solely camera
poses, our framework can also be trained with ground-truth correspondences,
yielding even better results.

Fig. 1 summarizes our approach. To conclude, our main contributions are:

– We show that camera poses alone suffice to learn good descriptors, which has
not been explored in the literature to our knowledge.

– To enable learning from camera poses, we depart from existing metric learning-
based approaches and design a novel loss function as well as a new, efficient
network architecture.

– We achieve state-of-the-art performance across a range of geometric tasks.

2 Related Work

Descriptor Learning. The dominant paradigm for learning feature descrip-
tors is essentially deep metric learning [8], which encourages matching points
to be close whereas non-matching points to be far away in the feature space.
Various loss functions (e.g., pairwise and triplet loss [3,8,13,31,66], structured
loss [42,47,59,61]) have been developed. Based on the input type, current descrip-
tor learning approaches roughly fall into two categories, patch-based and dense
descriptor methods. Patch-based methods [3,15,21,27,39,42,43,44,48,58,61,65] pro-
duce a feature descriptor for each patch defined by a keypoint detector, which can
be viewed as direct counterparts for hand-crafted feature descriptors [4,5,37,53].
Dense descriptor methods [9,13,14,16,34,50,55] instead use fully-convolutional
neural networks [35] to extract dense feature descriptors for the whole image in
one forward pass. Our method gives dense descriptors, and unlike the prior work
that requires ground-truth correspondence annotations to train, we are able to
learn descriptors from the weak supervision of camera pose.

Correspondence Learning. Our differentiable matching layer is related to the
correlation layer and cost volume that are widely used to compute stereo corre-
spondences [7,28] or optical flow [17,22,60] in a differentiable manner. However,
the search space in these problems is limited to either a single scanline or a
local patch, while in wide-baseline matching we must search for matches over
the whole image. This necessitates the efficient coarse-to-fine architecture we
use. Our method is also related to weakly-supervised semantic correspondence
approaches [24,29,46,51,69]. However, they usually assume a simpler paramet-
ric transformation between images and tolerate much coarser correspondences
than what is required for geometric tasks. Recent work [40,52] explores dense
geometric correspondence, but focuses on global optimization of the estimated
correspondences rather than the descriptors themselves. In contrast to these prior
work, we propose a new architecture that is more suitable for descriptor learning.

Epipolar Constraint. Epipolar constraint has been shown to be useful for
learning local features [23,64] and optical flow [67]. MONET [23] proposes the
epipolar divergence for learning semantic keypoints, but this loss does not apply to



4 Q. Wang et al.

!!"
!#$

"%
#"&

$"%

Fig. 2: Epipolar loss and cycle consistency loss. x1 (yellow) is the query point,
and x̂2 (orange) is the predicted correspondence. The epipolar loss Lep is the distance
between x̂2 and ground-truth epipolar line Fx1. The cycle consistency loss Lcy is the
L2 distance between x1 and its forward-backward corresponding point (green).

dense descriptor learning. [64] leverages epipolar constraints to generate pseudo-
groundtruth correspondences but this process is non-differentiable. In contrast,
we enable differentiable training of dense descriptors using the epipolar constraint.

3 Method

Given only image pairs with camera pose, standard deep metric learning meth-
ods do not apply. Therefore, we devise a new method to exploit the geometric
information of camera pose for descriptor learning. Specifically, we translate
relative camera pose into an epipolar constraint between image pairs, and enforce
the predicted matches to obey this constraint (Sec. 3.1). Since this constraint is
imposed on pixel coordinates, we must make the coordinates of correspondences
differentiable with respect to the feature descriptors. For this we devise a differ-
entiable matching layer (Sec. 3.2). To further improve efficiency, we introduce a
coarse-to-fine architecture (Sec. 3.3) to accelerate training, which also boosts the
descriptor performance. We elaborate on our method below.

3.1 Loss Formulation

Our training data consists of image pairs with relative camera poses. To train
our correspondence system with such data, we propose to use two complimentary
loss terms: a novel epipolar loss, and a cycle consistency loss (Fig. 2).

Given the relative pose and camera intrinsics for a pair of images I1 and I2,
one can compute the fundamental matrix F. The epipolar constraint states that
xT
2 Fx1 = 0 holds if x1 and x2 is a true match, where Fx1 can be interpreted as

the epipolar line corresponding to x1 in I2.2 We treat x1 as the query point and
re-fashion this constraint into an epipolar loss based on the distance between the
predicted correspondence location and the ground-truth epipolar line:

Lep(x1) = dist(h1→2(x1),Fx1), (1)

2 For simplicity, we use the same symbols for homogeneous and Cartesian coordinates.
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where h1→2(x1) is the predicted correspondence in I2 for the point x1 in I1, and
dist(·, ·) is the distance between a point and a line.

The epipolar loss alone only encourages a predicted match to lie on the epipolar
line, rather than near the ground-truth correspondence location (which is at an
unknown location on the line). To provide additional supervision, we additionally
introduce a cycle consistency loss. This loss encourages the forward-backward
mapping of a point to be spatially close to itself [63]:

Lcy(x1) = ||h2→1(h1→2(x1))− x1||2. (2)

This term encourages the network to find true correspondences and suppress
other outputs, especially those that satisfy the epipolar constraint alone.

Full Training Objective. For each image pair, our total objective is a weighted
sum of epipolar and cycle consistency losses, totaled over n sampled query points:

L(I1, I2) =

n∑
i=1

[Lep(xi
1) + λLcy(xi

1)], (3)

where xi
1 is the i-th training point in I1, and λ is a weight for the cycle consistency

loss term. At the end of Sec. 3.2, we further show how we can reweight individual
training instances in Eq. (3) to improve training.

3.2 Differentiable Matching Layer

The objective defined above is a simple function of the pixel locations of the
predicted correspondences. Minimizing this objective through gradient descent
therefore requires these locations to be differentiable with respect to the network
parameters. Many prior methods establish correspondence by identifying nearest
neighbor matches, which unfortunately is a non-differentiable operation.

To address this challenge, we propose a differentiable matching layer, illus-
trated in Fig. 3(a). Given a pair of images, we first use convolutional networks
with shared weights to extract dense feature descriptors M1 and M2. To compute
the correspondence for a query point x1 in I1, we correlate the feature descriptor
at x1, denoted by M1(x1), with all of M2. Following a 2D softmax operation [19],
we obtain a distribution over 2D pixel locations of I2, indicating the probability
of each location being the correspondence of x1. We denote this probability
distribution as p(x|x1,M1,M2):

p(x|x1,M1,M2) =
exp (M1(x1)TM2(x))∑

y∈I2 exp (M1(x1)TM2(y))
, (4)

where y varies over the pixel grid of I2. A single 2D match can then be computed
as the expectation of this distribution:

x̂2 = h1→2(x1) =
∑
x∈I2

x · p(x|x1,M1,M2). (5)
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(b) coarse-to-fine architecture

Fig. 3: Network architecture design. (a) differentiable matching layer. For
a query point, its correspondence location is represented as the expectation of a
distribution computed from the correlation between feature descriptors. (b) The
coarse-to-fine module. We use the location of highest probability at coarse level (red
circle) to determine the location of a local window W at the fine level. During training,
we compute the correspondence locations at both coarse and fine level from distribution
pc and pf , respectively, and impose our loss functions on both. This allows us to train
both coarse- and fine-level features simultaneously.

This makes the entire system end-to-end trainable. Since the correspondence
location is computed from the correlation between feature descriptors, enforcing
it to be correct would facilitate descriptor learning.

Leveraging Uncertainty during Training. This differentiable matching also
provides an interpretable measure of uncertainty. For each query point x1, we can
calculate the total variance σ2(x1) as an uncertainty measure, which is defined as
the trace of the covariance matrix of the 2D distribution p(x|x1,M1,M2). High
variance indicates multiple or diffuse modes, signifying an unreliable prediction.

This uncertainty can help identify unreliable correspondences and improve
training. In particular, due to the lack of ground-truth correspondence annotations,
it is unknown if a query point has a true correspondence in the other image during
training (which could be missing due to occlusion or truncation). Minimizing the
loss for such points can lead to incorrect training signals. To alleviate this issue,
we reweight the losses for each individual point using the total variance defined
above, resulting in the final weighted loss function:

L(I1, I2) =

n∑
i=1

1

σ(xi
1)

[Lep(xi
1) + λLcy(xi

1)], (6)

where the weight 1/σ(xi
1) are normalized so that they sum up to one. This

weighting strategy weakens the effect of infeasible and non-discriminative training
points, which we find to be critical for rapid convergence. Prior work [25,46] on
semantic correspondence leverages the uncertainty in a similar way, but their
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uncertainty is predicted using extra network parameters whereas ours is directly
derived from the learned descriptors.

3.3 Coarse-to-Fine Architecture

During training, we impose supervision only on sparsely sampled query points
for each pair of images. While the computational cost is made manageable in this
way, having to search correspondence over the entire image space is still costly.
To overcome this issue, we propose a coarse-to-fine architecture that significantly
improves computational efficiency, while preserving the resolution of learned
descriptors. Fig. 3(b) illustrates the coarse-to-fine module. Instead of generating
a flat feature descriptor map, we produce both coarse-level feature descriptors
Mc

1,M
c
2 and fine-level feature descriptors Mf

1,M
f
2.

Coarse-to-fine matching works as follows. Given a query point x1, we first
compute the distribution pc(x|x1,M

c
1,M

c
2) over all locations of the coarse feature

map. At the fine level, on the contrary, we compute the fine-level distribution
only in a local window W centered at the highest probability location in the
coarse-level distribution (with coordinates rescaled appropriately). Given coarse-
and fine-level distributions, correspondences at both levels can be computed. We
then impose our loss function (Eq. (6)) on correspondences at both levels, which
allows us to train both coarse and fine features descriptors simultaneously.

This architecture allows us to learn high-resolution descriptors without evalu-
ating full correlation between large feature maps, significantly reducing computa-
tional cost. In addition, as observed by Liu et al. [33], we find that coarse-to-fine
reasoning not only improves efficiency but also boosts matching accuracy (Sec. 4.3).
By concatenating both coarse- and fine-level descriptors, we obtain the final
hierarchical descriptors [16] that capture both abstract and detailed information.

3.4 Discussion

Effectiveness of Epipolar Constraint. The seemingly weak epipolar con-
straint actually provides empirically sufficient supervision for descriptor learning,
as suggested by results in Sec. 4. One key reason is that the epipolar constraint
suppresses a large number of incorrect correspondence—i.e., every point not on
the epipolar line. Moreover, among all valid predictions that satisfy the epipolar
constraint, true correspondences are most likely to have similar feature encodings
given their local appearance similarity. Therefore, by aggregating such a geometric
constraint over all training data, the network learns to encode the similarity
between true correspondences, leading to effective learned descriptors.

Training with Ground-truth Correspondence Annotations. Although
the focus of this paper is on learning from camera poses alone, our system can
also be trained with ground-truth correspondence annotations when such data
is available. In this case, we can replace our loss functions with an L2 distance
between the pixel locations of the predicted and ground-truth correspondence. As
shown in Fig. 7, our method trained with groundtruth correspondences achieves
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even better performance than our method trained with camera poses, with both
outperforming prior fully supervised methods.

Matching at Test Time. The descriptors learned by our system can be inte-
grated in standard feature matching pipelines. Given a detected keypoint, feature
vectors in the coarse and fine feature maps are extracted by interpolation and
concatenated to form the final descriptor. We then match features using the
standard Euclidean distance between them.

3.5 Implementation Details

Architecture. We use a ImageNet-pretrained ResNet-50 [11,20,49] architecture,
truncated after layer3, as our backbone. With an additional convolutional layer
we obtain the coarse-level feature map. The fine-level feature map is obtained by
further convolutional layers along with up-sampling and skip-connections. The
sizes of the coarse- and fine-level feature map are 1/16 and 1/4 of the original
image size, respectively. They both have a feature dimensionality of 128. The size
of the local window W at fine level is 1/8× the size of the fine-level feature map.

Training Data. We train using the MegaDepth dataset [32], which consists of 196
different scenes reconstructed from over 1M internet photos using COLMAP [56].
130 out of 196 scenes are used for training and the rest are for validation and
testing. This gives us millions of training pairs with known camera poses. We train
our system on these pairs using only the provided camera poses and intrinsics.

Training Details. We train the network using Adam [30] with a base learning
rate of 10−4. The weight λ for the cycle consistency term is set to 0.1. n = 500
query points are used in each training image pair due to memory constraints.
These query points consist of 90% SIFT [37] keypoints and 10% random points.

For more implementation details, please refer to the supplementary material.

4 Experimental Results

To evaluate our descriptors, referred to as CAPS, we conduct three sets of
experiments:

1. Feature matching experiments: The most direct evaluation of CAPS is
in terms of how accurately they can be matched between images. We evaluate
both sparse and dense feature matching on the HPatches dataset [2].

2. Experiments on downstream tasks: Feature matches are rarely the end-
goal. Instead, they form a core part of many 3D reconstruction tasks. We
evaluate the impact of CAPS on downstream tasks (homography estimation
on HPatches as well as relative pose estimation on MegaDepth [32] and
ScanNet [10]) and 3D reconstruction (as part of an SfM pipeline in the ETH
local feature benchmark [57]).

3. Ablation study: We evaluate the impact of each proposed contribution
using the HPatches dataset.
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Fig. 4: Mean matching accuracy (MMA) on HPatches [2]. For each method, we
show the MMA with varying pixel error thresholds. We also report the mean number of
detected features and mutual nearest neighbor matches. With SuperPoint [13] keypoints,
our approach achieves the best overall performance after 2px.

4.1 Feature Matching Results

We evaluate our descriptors on both sparse and dense feature matching on the
HPatches dataset [2]. HPatches is a homography dataset containing 116 sequences,
where 57 sequences have illumination changes and 59 have viewpoint changes.

Sparse Feature Matching. Given a pair of images, we extract keypoints in both
images and match them using feature descriptors. We follow the same evaluation
protocol as in D2-Net [14] and use the mean matching accuracy (MMA) as the
evaluation metric. The MMA score is defined as the average percentage of correct
matches per image pair under a certain pixel error threshold. Only mutual nearest
neighbor matches are considered.

We combine CAPS with SIFT [37] and SuperPoint [13] keypoints which
are representative of hand-crafted and learned keypoints, respectively. We com-
pare to several baselines: Hessian affine detector [41] with RootSIFT descrip-
tor [37,1] (HesAff + RootSIFT), HesAffNet [43] regions with HardNet++ descrip-
tors [42] (HAN + HN++), DELF [45], SuperPoint [13], LF-Net [48], multi-scale
D2-Net [14] (D2-Net MS), SIFT detector with ContextDesc descriptors [38] (SIFT
+ ContextDesc), as well as R2D2 [50].

Fig. 4 shows MMA results on the HPatches dataset. We report results for the
whole dataset, as well as for subsets corresponding to illumination and viewpoint
changes. Following D2-Net [14], we additionally present the mean number of
detected features per image and mutual nearest neighbor matches per pair. With
SuperPoint keypoints CAPS achieves the best overall performance, and with
SIFT keypoints CAPS also achieves competitive performance. In addition, with
the same detectors, CAPS shows clear improvements over its counterparts (“SIFT
+ CAPS” vs. “SIFT + ContextDesc”, “SuperPoint + CAPS” vs. “SuperPoint”).

Dense Feature Matching. To evaluate our dense matching capability, we
extract keypoints on image grids in the first image and find their nearest neighbor
match in the full second image. The percentage of correct keypoints (PCK)
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Fig. 5: Dense feature matching on HPatches. (a) PCK comparison. CAPS out-
performs other methods at larger pixel thresholds (> 4px). (b) Qualitative result of
dense feature matching. Color indicates correspondence.

metric [8,36,68] is used to measure performance: the predicted match for a query
point is deemed correct if it is within a certain pixel threshold of the true match.

We compare to baseline methods that produce dense descriptors: Dense
SIFT [37], SuperPoint [13], D2-Net [14] and R2D2 [50]. Fig. 5(a) shows the
mean PCK over all image pairs on HPatches. CAPS achieves the overall best
performance and is only worse than R2D2 [50] at small thresholds (≤ 4px). This
is because the R2D2 we use here computes descriptor maps at the full input image
resolution, whereas ours are 4x downsampled. Fig. 5(b) shows the qualitative
performance of our dense correspondence.

4.2 Results on Downstream Tasks

Next, we evaluate how well CAPS facilitates downstream tasks. We focus on
two tasks related to two-view geometry estimation: homography estimation and
relative camera pose estimation, and a third task related to 3D reconstruction.

Homography Estimation. We use the same HPatches dataset as in Sec. 4.1
for the homography estimation task. We follow the corner correctness metric
used in SuperPoint [12,13]. The four corners of one image are transformed to the
other image using the estimated homography and compared with the corners
computed using the groundtruth homography. The estimated homography is
deemed correct if the average error of the four corners is less than ε pixels.

Following SuperPoint [13], we extract a maximum of 1,000 keypoints from
each image, and robustly estimate the homography from mutual nearest neighbor
matches. The comparison of homography accuracy between CAPS and other
methods is shown in Tab. 1. As can be seen, CAPS improves over both SIFT and
SuperPoint descriptors. With SuperPoint keypoints, CAPS achieves the overall
best performance even without training on annotated correspondences.

Relative Pose Estimation. We also evaluate the performance of CAPS on the
task of relative camera pose estimation. Note that we train only on MegaDepth [32]
but test on both MegaDepth and ScanNet [10], an indoor dataset that we use
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Table 1: Homography estimation accuracy [%] at 1, 3, 5 pixels on HPatches.
CAPS with SuperPoint keypoints achieves the overall best performance.

Methods ε = 1 ε = 3 ε = 5

SIFT [37] 40.5 68.1 77.6
LF-Net [48] 34.8 62.9 73.8
SuperPoint [13] 37.4 73.1 82.8
D2-Net [14] 16.7 61.0 75.9
ContextDesc [38] 41.0 73.1 82.2
R2D2 [50] 40.0 75.0 84.7

CAPS w/ SIFT kp. 34.6 72.2 81.7
CAPS w/ SuperPoint kp. 44.8 74.5 85.7

Table 2: Relative pose estimation accuracy on ScanNet [10] and
MegaDepth [32]. Each cell shows the accuracy of estimated rotations and translations
(as rotation accuracy / translation accuracy). Each value shown is the percentage of
pairs with relative pose error under a certain threshold (5◦ for ScanNet and 10◦ for
MegaDepth). Higher is better. dframe represents the interval between frames. Larger
frame intervals imply harder pairs for matching.

Methods
Accuracy on ScanNet [%] Accuracy on MegaDepth [%]

dframe = 10 dframe = 30 dframe = 60 easy moderate hard

SIFT [37] 91.0 / 14.1 65.1 / 15.6 41.4 / 11.9 58.9 / 20.2 26.9 / 11.8 13.6 / 9.6
SIFT w/ ratio test [37] 91.2 / 15.9 67.1 / 19.8 44.3 / 15.9 63.9 / 25.6 36.5 / 17.0 20.8 / 13.2
SuperPoint [13] 94.4 / 17.5 75.9 / 26.3 53.4 / 22.1 67.2 / 27.1 38.7 / 18.8 24.5 / 14.1
HardNet [42] 95.8 / 18.2 79.0 / 24.7 55.6 / 21.8 66.3 / 26.7 39.3 / 18.8 22.5 / 12.3
LF-Net [48] 93.6 / 17.4 76.0 / 22.4 49.9 / 18.0 52.3 / 18.6 25.5 / 13.2 15.4 / 11.1
D2-Net [14] 91.6 / 13.3 68.4 / 19.5 42.0 / 14.6 61.8 / 23.6 35.2 / 19.2 19.1 / 12.2
ContextDesc [38] 91.5 / 16.3 73.8 / 21.8 51.4 / 18.5 68.9 / 27.1 43.1 / 21.5 27.5 / 14.1
R2D2 [50] 97.4 / 22.3 86.1 / 31.7 62.9 / 28.8 69.4 / 30.3 48.3 / 23.9 32.6 / 17.4

CAPS w/ SIFT kp. 92.3 / 16.3 74.8 / 22.5 50.8 / 20.9 70.0 / 30.5 50.2 / 24.8 36.8 / 16.1
CAPS w/ SuperPoint kp. 96.1 / 17.1 79.5 / 27.2 59.3 / 26.1 72.9 / 30.5 53.5 / 27.9 38.1 / 19.2

to test the generalization of CAPS. For MegaDepth, we generate overlapping
image pairs from test scenes, and sort them into three subsets according to
relative rotation angle: easy ([0◦, 15◦]), moderate ([15◦, 30◦]) and hard ([30◦, 60◦]).
For ScanNet, we follow LF-Net [48] and randomly sample image pairs at three
different frame intervals, 10, 30, and 60. Each subset in MegaDepth and ScanNet
consists of 1,000 image pairs.

To estimate relative pose, we first estimate the essential matrix from mutual
nearest neighbor matches (RANSAC [18] is applied), and then decompose it to
get the relative pose. For SIFT [37] we additionally prune matches using the
ratio test [37], since that is the common practice for camera pose estimation (i.e,
we report results of both plain SIFT and SIFT with a carefully-tuned ratio test).

Following UCN [8], we evaluate the estimated camera pose using angular
deviation for both rotation and translation. We consider a rotation or translation
to be correct if the angular deviation is less than a threshold, and report the
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SIFT SuperPoint CAPS w/ SuperPoint kp.

Fig. 6: Sparse feature matching results after RANSAC. The test image pairs
are from MegaDepth [32]. Green lines indicate correspondences. Our method works well
even under challenging illumination and viewpoint changes.

average accuracy for that threshold. We set a threshold of 5◦ for ScanNet and
10◦ for MegaDepth, as MegaDepth is harder due to larger illumination changes.
Results for all methods are reported in Tab. 2. CAPS improves performance
over SIFT and SuperPoint descriptors, and “CAPS w/ SuperPoint keypoints”
outperforms all other methods but is outperformed by R2D2 [50] on ScanNet.
Qualitative results on MegaDepth test images are shown in Fig. 6.

3D Reconstruction. Finally, we evaluate the effectiveness of CAPS descriptors
in the context of 3D reconstruction using the ETH local features benchmark [57].
We extract CAPS descriptors at keypoint locations provided by [57] and feed
them into the protocol. Following [39], we do not conduct the ratio test, in order
to investigate the direct matching performance of the descriptors. To quantify
the quality of SfM, we report the number of registered images (# Registered),
sparse 3D points (#Sparse Points) and image observations (# Obs), the mean
track lengths (Track Len.), and the mean reprojection error (Reproj. Err.).

We use SIFT [37], GeoDesc [39], D2-Net [14] and SOSNet [62] as baselines
and show the results in Tab. 3. CAPS is comparable to or even outperforms
our baselines in terms of the completeness of the sparse reconstruction (i.e., the
number of registered images, sparse points and observations). However, we do not
achieve the lowest reprojection error. A similar situation is observed in [39,62],
which can be explained by the trade-off between completeness of reconstruction
and low reprojection error: fewer matches tend to lead to lower reprojection
error. Taking all metrics into consideration, the performance of CAPS for SfM
is competitive, indicating the advantages of CAPS even trained with only weak
pose supervision.

4.3 Ablation Analysis

In this section, we conduct ablation analysis to demonstrate the effectiveness of
our proposed camera pose supervision and architectural designs. We follow the
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Table 3: Evaluation on the ETH local features benchmark [57]. Note that SIFT
and D2-Net [14] apply ratio test but other methods do not. Overall, CAPS performs on
par with state-of-the-art local features on this task.

#Registered #Sparse points #Obs. Track Len. Reproj. Err.

Madrid SIFT [37] 500 116K 734K 6.32 0.61px
Metropolis GeoDesc [39] 809 307K 1,200K 3.91 0.66px
1,344 images D2-Net [14] 501 84K - 6.33 1.28px

SOSNet [62] 844 335K 1,411K 4.21 0.70px
CAPS 851 242K 1,489K 6.16 1.03px

Gendarmen- SIFT 1,035 339K 1,872K 5.52 0.70px
markt GeoDesc 1,208 780K 2,903K 3.72 0.74px
1,463 images D2-Net 1,053 250K - 5.08 1.19px

SOSNet 1,201 816K 3,255K 3.98 0.77px
CAPS 1,179 627K 3,330K 5.31 1.00px

Tower of SIFT 804 240K 1,863K 7.77 0.62px
London GeoDesc 1,081 622K 2,852K 4.58 0.69px
1,576 images D2-Net 785 180K - 5.32 1.24px

CAPS 1,104 452K 2,627K 5.81 0.98px

evaluation protocol in Sec. 4.1 and report MMA and PCK score over all image
pairs in the HPatches dataset [2]. For sparse feature matching, we combine our
descriptors with SIFT [37] keypoints. The variants of our default method (Ours)
are introduced below. For fair comparison, we train each variant on the same
training data (∼20K image pairs) from MegaDepth [32] for 10 epochs.

Variants. Ours from scratch is trained from scratch instead of using Ima-
geNet [11] pretrained weights. Ours supervised is trained on sparse ground-
truth correspondences provided by the SfM models of MegaDepth [32]. We
simply change the epipolar loss to a L2 loss between predicted and groundtruth
correspondence locations. Triplet Loss is also trained on sparse ground-truth
correspondences, but using a standard triplet loss and a hard negative mining
strategy [8]. Ours w/o c2f is a single-scale version of our method, where the
coarse-level feature maps are removed and only the fine-level feature maps are
trained and used as descriptors. Ours w/o cycle does not use the cycle consis-
tency loss term (λ = 0), and Ours w/o reweighting does not use the uncertainty
re-weighting strategy, but uses uniform weights during training. Below we provide
a detailed analysis based on these variants. The results are shown in Fig. 7.

Analysis of Supervision Signal. Both Ours supervised and Ours outperform
the plain version of Triplet Loss, where Ours supervised and Triplet Loss share
the same correspondence annotations but Ours uses only camera pose. Ours
supervised outperforms Triplet Loss because of the geometric distance-based losses
(as opposed to metric learning) and the coarse-to-fine architecture. Compared
to Ours supervised, the gains of Ours decrease a bit, but our epipolar loss
still leverages the rich information in the epipolar constraint and allows us to
outperform Triplet Loss and other past fully supervised work in Sec. 4. In terms
of loss functions, cycle consistency only provides marginal improvement, and
training with only cycle consistency loss fails. This validates the importance of
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Fig. 7: Ablation study on HPatches. Solid lines indicate methods trained with
ground-truth correspondence; dashed lines indicate ones trained with only camera pose.

epipolar constraint. Ours from scratch shows that even with randomly initialized
weights, our network still succeeds to converge and learn descriptors, further
validating the effectiveness of our loss functions.

Analysis of Architecture Design. As shown in Fig. 7, the coarse-to-fine mod-
ule significantly improves performance. Two explanations for this improvement
include: 1) At the fine level, correspondence is computed within a local window,
which may reduce issues arising from multi-modal distributions compared to
a flat model that computes expectations over the whole image; and 2) The
coarse-to-fine module produces hierarchical feature descriptors that capture both
global and local information, which may be beneficial for feature matching.

5 Conclusion

In this paper, we propose a novel descriptor learning framework that can be
trained using only camera pose supervision. We present both new loss functions
that exploit the epipolar constraints, and a new efficient architectural design
that enables learning by making the correspondence differentiable. Experiments
showed that our method achieves state-of-the-art performance across a range of
geometric tasks, outperforming fully supervised counterparts without using any
correspondence annotations for training. In future work, we will study how to
further improve invariance of the learned descriptors to large geometric trans-
formations. It is also worth investigating if the pose supervision and traditional
metric learning losses are complementary to each other, and if their combination
can lead to even better performance.

Acknowledgements. We thank Kai Zhang, Zixin Luo, Zhengqi Li for help-
ful discussion and comments. This work was partly supported by a DARPA
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