
Supplementary Material

Appearance Consensus Driven
Self-Supervised Human Mesh Recovery

In this supplementary, we summarize the proposed differentiable colored-mesh
recovery procedure followed by additional implementation details and qualitative
results. Follow our project page1 for more details.

The supplementary material is organized as follows:

– Section 1: Differentiable operations in the proposed framework

– Section 2: Sampling image pairs with diverse background

– Section 3: Reflectional symmetry groups

– Section 4: Qualitative evaluation

Table 1. A list of notations and their size as used in the main paper.

Notations Description Size

I Input image 224× 224× 3
θ View invariant SMPL pose 3J (J=23)
β SMPL Shape parameter 10
φ Pose embedding 32
V 3D vertex locations 6890×3
C Vertex colors (RGB) 6890×3
v Image-projected vertex locations 6890×2
N Z-component of Camera-space normals 6890×1
Z Camera-space depth of mesh vertices 6890×1

Iz(u) Rendered depth image 224× 224× 3

W Visibility-aware-weighing 6890×1

C̃ Intermediate Vertex colors (RGB) 6890×3
S Vertex to symmetry group mapping (1575+295)×6890
C Group color for symmetry groups 1870× 3

Q Vertex to part-segmentation mapping -
H Conv2-1 output of pre-trained VGG-16 112× 112× 128

Hk Sampled feature from H at v(k) d̃ = 128
F Part-prototype appearance feature 128

k Index over mesh vertices K=6890
g Index over symmetry groups G=1870
l Index over body parts L=14
a, b Indicating association with inputs Ia, Ib -

1 Differentiable operations in the proposed framework
We propose three completely differentiable modules in order to realize our self-
supervised approach namely the color-recovery module, part-prototype module

1 Project-page: https://sites.google.com/view/ss-human-mesh

https://sites.google.com/view/ss-human-mesh
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Fig. 1. The series of differentiable computations and their interdependence as employed
in the proposed self-supervised mesh recovery framework (see Table 1 for the notations).

and the reflectional symmetry module. See Fig. 1 for an illustration of the
differentiable computations and their interdependence.

a) Obtaining visibility-aware-weighing, W : All the modules use a differen-
tiable visibility-aware-weighing, W to softly segregate the 3D vertices based on
their visibility for a given (or predicted) camera view. The computation of W
relies on the fact that visible vertices are influenced by two factors (i) camera
and (ii) human skeleton self-occlusion. We identify camera facing vertices using
the z-component of the Normal (N) while we handle human self-occlusion by
soft selection based on a camera-centric depth image and a margin in z-buffering.

W (k) ∈ [0, 1] = exp(−αD(k)) σ(γN (k)), where D(k) = |Iz(v(k))− Z(k)|

b) Recovering intermediate color, C̃: Next, we obtain the intermediate,
visibility-aware colors, C̃ by weighting the raw picked colors (done by bilinear
sampling of image I, given the vertex 2D projection v(k)) as shown below.

C̃(k) = I(v(k)) (2W (k) − 1), where I(v(k)) denotes RGB color at the v(k)

c) Applying reflectional symmetry to obtain the full vertex color, C:
Next, we focus on propagating the color intensities from the visible vertices (as
stored in the intermediate C̃) to the invisible ones (i.e. the vertices having low
W (k)). To realize a fully-colored mesh C, we use a predefined, 4-way symmetry
grouping knowledge (front-back and left-right) as stored in S. First the group
colors C(g) are computed as a normalized combination of the intermediate vertex
colors weighted by their visibility weighing W . Then, the group colors are directly
propagated to all the mesh vertices using S as shown in the following equation.

C = ST ∗ C, where C(g) = (S(g) ◦ ReLU(C̃))/(S(g) ◦ ReLU(2W − 1))
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Fig. 2. An illustration of the adopted procedure to sample image pairs of diverse
background. To built the dataset of image pairs as required by the proposed self-
supervised framework, we chose image pairs depicting the same person in diverse pose
(maintaining a considerable temporal gap) and background (via BG-diversity-metric).

d) Computation of part-prototype features, F : Here, we reuse the color-
recovery idea to realize part-prototype features. F (l) is computed as the normal-
ized weighted sum, of the recovered spatial features H(k) = H(v(k)), over the
vertices belonging to the part l (using vertex to part-segmentation mapping, Q).

F (l) = (Σk∈Q(l)W (k)H(k))/(Σk∈Q(l)W (k)), where H(k) = H(v(k))

2 Sampling image pairs with diverse background

Given a video clip depicting actions of a single person, in consistent apparel, we
aim to sample image pairs which would have diverge background (BG) appearance.
To realize this, we first prune the video frames using an off-the-shelf person-
detector [3] to obtain a reliable human-centric crop as required for the mesh
estimation pipeline. Following this, we compute L2 distance (mean squared error)
between image pairs, only for the regions outside the detector box, to obtain a
BG-diversity-metric (see Fig. 2). Among all possible frame pairs (beyond 1 sec
temporal gap), we choose the pairs having BG-diversity-metric greater than a
certain threshold value. In contrast to the in-studio datasets with hardly any
camera movement implying static BG [1], our in-house collection of YouTube
videos have diverse camera movements (e.g . Parkour and Free-running videos).
The wild camera movement inherently results in huge diversity in the sampled
image pairs. Note that, in static camera scenarios BG diversity occurs when the
person moves from one location to another. This is because, instead of taking
the full video feed, we consider a square region around the detector output as
the effective input to the CNN regressor.

3 Reflectional symmetry groups

We define reflectional groups where each group constitutes a set of vertices which
is assumed to have similar color property. Though this assumption does not hold
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https://www.groundai.com/project/learni
ng-3d-human-shape-and-pose-from-den
se-body-parts/1

Fig. 3. An illustration of front-back and left-right symmetry. This is used to define
the multi-hot encoding, S(g) ∈ {0, 1}K which constitutes of four ones indicating vertex
members in the symmetry group g. Here, ”yellow” and ”cyan” color patches show rough
location of the vertices for two such symmetry groups. Note that, for the head region
only left-right symmetry is used (red colored region in panel A).

true in presence of illumination difference and non-symmetric apparel design, we
find this to be helpful in general because of the following reasons. Firstly, it is rare
to encounter non-symmetric apparel with diverse color difference between the
left-right or front-back. Secondly, although the luminosity property (i.e. intensity)
is influenced in presence of illumination difference, the color property (i.e. hue)
remains comparable. However, the consistency loss on the part-prototypes and
also on the intermediate vertex color C̃ helps us to effectively balance this
shortcomings. Broadly, we define 2 types of symmetry groups; a) group sets of 2
members (vertex indices) only for the head region (295 groups), and b) group
sets of 4 members (vertex indices) for rest of the body parts (1575 groups). See
Fig. 3 for a rough illustration. 4-membered groups are obtained by applying
both front-back and left-right symmetry. However, 2-membered groups represent
only left-right symmetry. Note that all the group sets are mutually exclusive
and exhaustive, i.e. 2*295 + 4*1575 = 6890, where 6890 is the total number of
vertices. This symmetry knowledge is stored as a multi-hot encoding denoted
as S(g) ∈ {0, 1}K which constitutes of four ones indicating vertex members in
the symmetry group g. All the symmetry groups are combined in a symmetry-
encoding matrix represented as S ∈ {0, 1}G×K . This multi-hot symmetry group
representation helps us to perform a fully-differentiable vertex color assignment
for all the vertices including the occluded and non-camera facing ones.

4 Qualitative evaluation

In order to evaluate the generalizability of our model, we visualize our model’s
3D pose and shape performance on a variety of images sampled from different
datasets. Fig 4 shows the predicted colored mesh and the corresponding 3D pose
in aligned grid plots. Fig. 5 shows a qualitative analysis on the standard 6-part
mesh overlay. Here, mesh overlay can be considered as a proxy to evaluate both
shape and pose in a collective fashion.
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A. Results on YouTube, LSP and 3DPW dataset (in-the-wild)

Fig. 4. Qualitative results on single image colored human mesh recovery.

Although, pose and shape are predicted correctly, background leaks could
occur at misaligned locations that can be visualized using the coloured mesh
reconstructions as shown in Fig 4. Also note that, SMPL [2] does not parameterize
hand pose hence hands remain in a fixed mean pose (flat open hand). This tends
to be a consistent location for background leakage. Background leakages are
observed to generally occur at boundaries of hands and feet; e.g ., in row 2 last
column of Fig 4 the green background leaks onto the appearance of the hand
due to the limitation of the parametric human model in articulating the exact
hand pose. Also, our model outputs sub-optimal results in cases with complex
inter-limb occlusions as highlighted in magenta in Fig. 5.
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A. Results on H36M dataset (in-studio)

B. Results on 3DPW dataset (in-the-wild)

C. Results on LSP dataset (in-the-wild)

D. Results on YouTube dataset (in-the-wild)

Fig. 5. Qualitative results. In each panel, 1st column depicts the input image, 2nd
column shows the model-based part segments on A. Human3.6M (in-studio), B. 3DPW
(in-the-wild) C. LSP (in-the-wild) D. YouTube (in-the-wild). The model fails in presence
of complex inter-limb occlusions (in magenta box).
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