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Abstract. We present a novel computational imaging principle that
combines diffractive optics with line (1D) sensing. When light passes
through a diffraction grating, it disperses as a function of wavelength.
We exploit this principle to recover 2D and even 3D positions from only
line images. We derive a detailed image formation model and a learning-
based algorithm for 2D position estimation. We show several extensions
of our system to improve the accuracy of the 2D positioning and expand
the effective field of view. We demonstrate our approach in two applica-
tions: (a) fast passive imaging of sparse light sources like street lamps,
headlights at night and LED-based motion capture, and (b) structured
light 3D scanning with line illumination and line sensing. Line imaging
has several advantages over 2D sensors: high frame rate, high dynamic
range, high fill-factor with additional on-chip computation, low cost be-
yond the visible spectrum, and high energy efficiency when used with
line illumination. Thus, our system is able to achieve high-speed and
high-accuracy 2D positioning of light sources and 3D scanning of scenes.

Keywords: Line sensor, Diffraction grating, 3D sensing, Computational
imaging, Motion capture

1 Introduction

Artificial light sources are widely used in computer vision. Whether observed di-
rectly (Fig. 1[a-b]) or indirectly (Fig. 1[c]), artificial lights act as strong features
to track [4, 29], reconstruct [21, 36], and interpret the scene and its objects. In
this work, we rely on a key observation: these light sources occupy the image
domain sparsely. But positioning sparse light sources with 2D sensors wastes
pixel resources and limits the image acquisition rate.1 Specifically, fast opera-
tion requires short exposures which leave most of the captured 2D image pixels
completely dark (see Fig. 1[c]). Thus, most of the system’s bandwidth is wasted.
Instead of using the full 2D sensor, we take a novel approach for saving band-
width by imaging the scene using 1D (line) sensors.

Light passing through a diffraction grating is dispersed as a function of wave-
length. When imaged by a 2D camera, the dispersed light manifests as colorful
streaks. The micro-structure of the grating influences the shapes and number

1 Event-based cameras known as dynamic vision sensors [8, 14] output changes in in-
tensity on a per-pixel basis, but the prototype sensors have limited spatial resolution.
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Fig. 1. When light sources or bright projections of light (a-c) are viewed through
a transmissive diffraction grating, the incoming light is dispersed as a function of
wavelength, creating streaks of light on the camera’s sensor plane (d-f). If a 1D color
sensor (dotted green) or very few rows in a 2D sensor, intersects with these streaks,
the measured colors can be used to efficiently determine the 2D spatial positions for
each light source (or projected-line reflection) at high frame rates.

of streaks. And the brightness and appearance of the streaks depend on the
2D spatial locations of the sources in the image. Diffraction gratings are used
to create artistic effects [16] (as in Fig. 1[d]), as well as in many imaging and
scientific applications including spectroscopy [18, 31], multi-spectral sensing [13,
26], and rainbow particle velocimetry [35]. Unlike prior works, our method uses
diffraction to encode the spatial position of scene light sources.

In this work, we introduce a novel class of imaging systems that use one
or more diffraction gratings in conjunction with line (1D) sensors. We call this
“Diffraction Line Imaging”. We demonstrate how line sensors can yield 2D and
even 3D information. Line sensors offer several advantages over 2D sensors: high
frame rates, high dynamic range, and additional on-chip computation near the
sensing area. Hence, this imaging approach results in fast 2D positioning and 3D
reconstruction in many applications including night imaging, LED-based motion
capture, and industrial product scanning.

We derive a detailed image formation model that maps a 3D point source
to a 2D location on a virtual image plane. We then develop a learning-based
algorithm to estimate the 2D locations of a sparse set of light sources or a line
illumination projected onto a 3D scene. We numerically evaluate the uncertainty
of the 2D positioning and the achieved field of view. To improve positioning accu-
racy significantly, the imaging system is extended to include multiple diffraction
gratings and/or an additional cylindrical lens. Finally, we extend the approach
to multiple line sensors (or multiple regions of interest in a 2D sensor) to increase
the imaging system’s field of view. Our approach can also be thought of as a
variant of compressive sensing [2, 3, 32, 34] with direct decoding of 2D positions,
in place of computationally intensive and noise-prone decoding algorithms.

Our imaging systems are demonstrated in the following two applications.

Passive Imaging of Light Sources: Night scenes include a variety of light
sources such as street lamps, vehicle headlamps, tail lights, turn signals, and
bicycle lights (Fig. 1[a]). The flicker of sources can determine the AC phase
of electrical circuits and even analyze power grids [27, 28]. The glows around
street lamps reveal the weather condition (fog, haze, rain) and visibility [19].
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Finally, motion capture systems often attach light sources (LEDs) to estimate
the object’s motion in 3D (Fig. 1[b]) [22, 24]. Our experiments show that we
are able to estimate 2D light source positions from line images at high frame
rates (up to 2220 fps in our camera). In contrast to previous works that use
line sensors [22, 24] or use spatio-temporal illumination to light a subject [15,
25], our approach is based purely on passive observation of light sources without
requiring special modulation or synchronization.

Structured Light Line Scanning: Structured light 3D scanning often projects
or sweeps an illumination line across a scene [6]. A 2D camera observes the
intersection of the line with the 3D scene. The 3D scene is then reconstructed
by intersecting the pixel ray with the plane of illumination. We show how to
accurately reconstruct the scene using a line light source and diffraction line
imaging. Our image acquisition is mainly limited by the signal-to-noise ratio
(SNR) (i.e., exposure time) and not by the bandwidth. Interestingly, our system
is the first instance of a structured light system with a 1D source and a 1D
camera, since prior methods used either a 2D projector and/or a 2D camera
[33]. Further, line illumination and imaging is significantly more energy efficient
than 2D illumination and imaging [23]. Hence, bright light sources enable scan
rates up to tens of thousands of lines per second, making this approach very
useful in industrial/logistics scanning applications [5, 11]. See supplementary
material for videos of results.

2 Background on Diffraction Gratings

Our approach to light source positioning exploits diffraction: the wavelength-
dependent optical phenomenon that causes light to bend (i.e., diffract) when
passing through and around obstacles and slits. A diffraction grating is an optical
element that produces diffraction patterns, useful in scientific applications such
as spectroscopy [18, 31], holography [17], and hyperspectral imaging [13, 26].

Fig. 2(Left) shows a grating consisting of a periodic structure repeated every
d microns. In a transmissive grating [17], incident light diffracts according to:

d[sin(θm)− sin(θi)] = mλ, (1)

where θm is the angle of the mth diffraction order, θi is the angle of incident
light, and λ is the wavelength in microns.2 In Eq. (1), m=0 corresponds to the
zeroth-order component which passes unbent through the grating, while each
wavelength disperses into a unique angle for m 6=0, producing the characteristic
rainbow color streaks (see Fig. 1).

For a fixed θi, a camera imaging the exiting light maps each wavelength
onto unique sensor position. This mapping is the basis for spectroscopy, whose
purpose is the spectral analysis of the incident light. In contrast, we propose to

2 Eq. (1) assumes a collimated incident beam and an identical index of refraction for
the medium on both sides of the grating.
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Fig. 2. Diffraction-based positioning. Left: A monochromatic collimated beam passes
through a diffraction grating. The grating diffracts the beam yielding new beam di-
rections according to Eq. (1). Middle: Per diffraction order m, each wavelength is
diffracted in a different spatial direction. When imaged by a camera, this results in
a horizontal rainbow pattern on the image plane. Here, pixel p0 measures the energy
of some wavelength in the green range. Right: Shifting the incident angle θi results
in a spatial shift of the spectral pattern on the image plane. Each θi maps a unique
wavelength to p0. Thus, the color value at p0 provides information about θi.

invert this process, using color to efficiently and precisely recover the incident
direction of light θi for unknown light sources.

Now, consider light exiting the diffraction grating at a fixed angle θ′ belonging
to the first diffraction order (i.e., m = 1). Suppose that on the camera image
plane, light exiting at θ′ is focused at some camera pixel p0, as illustrated in
Fig. 2(Middle). Then, from Eq. (1), the color (wavelength) measured at p0 is:

λ(θi) = d[sin(θ′)− sin(θi)], (2)

and depends on the incident light direction θi. Thus, for a fixed θ′, the measured
color at p0 indicates the direction of incident light.

3 Diffraction-Based 2D Positioning

The diffraction equation (Eq. (2)) has two key properties that enable computing
the direction of scene light sources. First, the function λ(θi) is an injective (i.e.,
one-to-one) function across the domain θi ∈ [−pi/2, θ′]. The inverse of λ(θi) is
therefore well-defined and given by

θi(λ) = arcsin

(
sin(θ′)− λ

d

)
. (3)

Second, Eq. (2) and its inverse do not depend on the intensity of light. This prop-
erty makes our imaging system effectively invariant to the incident light inten-
sity and, more specifically, its spectral characteristics (see derivation in Sec. 3.1).
Note that this assumes no under- and over-saturated pixel measurements.

A basic schematic of our optical system is shown in Fig. 3(Left). The sys-
tem consists of a diffraction grating and a color line scan camera. The line
scan camera is positioned vertically, containing pixels along the Y -direction (in
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Fig. 3. Positioning system schematic. The first diffraction order is imaged by a RGB
line scan camera, yielding 2D light source positions based on the measured color. Left:
System schematic with (a) Top-view and (b) Front-view. Middle: Sparse light-sources
yield intensity spikes on the line scan camera (green rectangle). Spike location along the
vertical line scan camera encodes the vertical coordinate in the virtual image plane,
while the spike color encodes the horizontal coordinate. Right: Line projection 3D
scanning. The projected line yields a piece-wise continuous signal in the 1D camera.

the camera’s reference frame) denoted by the single coordinate y. We use the
terms ‘line scan camera’ and ‘1D camera’ interchangeably. For ease of explana-
tion, we sometimes refer to the line scan camera’s image plane as the full 2D
image, had the camera been equipped with a standard 2D sensor.

The proposed system can then track both 2D spatial coordinates. For each
point source, the vertical source coordinate is trivially measured by the rainbow’s
streak position along the 1D vertical sensor (i.e., y1 in Fig. 3[Left]b). Computing
the source’s horizontal coordinate amounts to computing its θi angle, which
involves three simple steps: (1) measure the response in RGB space, (2) compute
the dominant wavelength λ that produces the RGB signal, and (3) evaluate the
inverse function θi(λ). Note that this procedure requires the light sources to
be sufficiently broadband, such that the RGB measurement is non-zero for the
given incident angle θi and the corresponding wavelength λ(θi).

As mentioned in the introduction, we tackle two types of imaging regimes.
(a) Sparse light sources: scenes having a sparse set of point sources distributed
across the image plane (Fig. 3[Middle]), and (b) Structured light line scanning :
scenes illuminated by a vertically projected line, which yields a vertical curve
on the image plane (Fig. 3[Right]). The projected line (i.e., plane in space) in
(b) can either be swept across a static object by a projector, or can have a fixed
direction while the object moves through the plane (e.g., by placing the object
on a conveyor belt or turn table).

3.1 Image Formation Model

We derive the model which connects the projection of light from 3D positions in
space onto a 2D virtual camera image plane. The line scan camera, modeled as
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a pinhole, is set to image the first-order diffracted light from the scene. Let Ocam

denote the line scan camera’s position and orientation. As shown in Fig. 3(Left),
we define a virtual image plane U with pixel coordinates pv = (xv, yv), that
belong to a virtual 2D camera positioned at Ovir.

For simplicity, we begin by describing the model for a single point source
indexed by n=1, having homogeneous world coordinates w1 ≡ [X,Y, Z, 1]T . On
the line scan camera’s image plane, the point source creates a holographic image
in the shape of a horizontal rainbow line (see Figs. 1, 4). The camera’s line sensor
is orthogonal to the rainbow line, intersecting it over a few pixels centered at y1.
The geometric relationship between y1 and virtual image coordinate yv1 is:

yv1 ≡ G(y1). (4)

Neglecting distortions that arise from light entering at highly oblique angles
[10], the rainbow line’s y1 coordinate is given by standard projective geometry:

γ

(
y1
1

)
=

(
0 1 0
0 0 1

)
Pw1, (5)

where P is the camera’s projection matrix and γ is an arbitrary scale factor [9].
In turn, since the Y -axes of both the virtual and line sensors are identical, G
can be approximated by an affine transformation.

As seen in Fig. 3(a), the angle of the incident light with respect to the grating
can be expressed as:

θi(x
v
1) = arctan([xv1 −W/2]/f), (6)

where f the virtual camera’s focal length in pixel units and W is the virtual
image plane width. Combining this with Eq. (3) yields:

λ(xv1) = d (sin(θ′)− sin[arctan([xv1 −W/2]/f)]) . (7)

The RGB intensity measured by the camera is modeled as:

Iσ(y1) = Tcσ[λ(xv1)] s[λ(xv1)], (8)

where T is the exposure time, cσ(λ) is the camera’s spectral response function
[grayscale/Joule] for every color channel σ ∈ {R,G,B}, and s(λ) represents the
source’s spectral radiant flux [Joule/sec] falling on y1. In Eq. (8) we assumed
that each pixel y integrates a very narrow band of wavelengths due to its the
very narrow field of view.

Normalizing the 3x1 vector Iσ(y1) by its L2 norm removes the dependence
on exposure time and source spectral flux:

Īσ(y1) =
Iσ(y1)

||Iσ(y1)||2
=

cσ[λ(θ′, xv1)]

||cσ[λ(θ′, xv1)]||2
≡ Hσ(xv1). (9)

Finally, xv1 is given by inverting Eq. (9):

xv1 = H−1[Īσ(y1)]. (10)

The model in Eqs. (6-10) assumes that only a single source is predominately
projected onto every line-camera pixel. Recovering xv1 is described next.
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Fig. 4. Recovering sparse point sources. (a) Rainbow streaks incident on the line
scan camera image plane. (b) The vertical rainbow locations along the line scan cam-
era yn are computed by detecting peaks in the averaged grayscale intensity along y.
(c) For each detected peak yn, a small 8×9 patch is extracted within sensor’s narrow
region of interest (ROI). (d) Each patch and its corresponding yn is processed by a
CNN to obtain xvn. Coordinate yvn is computed directly from yn using Eq. (4). The 2D
glove image from the helper camera is shown for reference only.

3.2 Learning to Recover Horizontal Coordinates

Computing H−1 in practice requires accounting for various factors— sources
not truly at infinity, sources having a small (non-point) projected surface area,
sensor-diffraction grating geometry, the line scan camera’s radiometric response,
sensor saturation, and more. And, due to camera lens distortions, sensor-diffraction
grating misalignment, and deviations to Eq. (1) due to incident light in oblique
angles, H−1 generally depends on y1 as well.3 These factors make computing
H−1 directly a laborious task. Instead, we adopt a learning-based approach.

We train a neural network to approximate H−1, denoted by Ĥ−1. The net-
work receives sensor color measurements in RGB space along with y, termed
RGBy, and outputs the xv coordinates. We tailored two different network archi-
tectures for our two recovery regimes: sparse points and vertical line projection.

Recovering Sparse Point Sources For sparse sources, we train a convo-
lutional neural network (CNN). The network, denoted by H−1point, maps RGBy
values from a small patch into a predefined discrete set of possible xv coordinates
(see Fig. 4). Our network consists of three convolutional layers (channel widths
20, 50, 50 respectively) followed by two fully connected layers; see Fig. 4. Con-
sider a scene with N point sources, indexed by n= 1, 2, . . . , N . Let I(y) denote
the 8×Q color image from our line scan camera. Here, 8 denotes the number of
image columns, since line scan cameras can be a few pixels wide in the horizontal
direction as well (e.g., due to RGB Bayer color filter).

The first step is to identify the rainbow line positions from peaks in I(y).
Then, for every detected rainbow with coordinate yn, we provide the CNN with

3 Eq. (1) strictly holds when the grating groves are perpendicular to the incidence
plane. The incidence plane is the plane containing the beam direction and the normal
to diffraction grating plane.
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person tracking car headlights tracking 2D image planeglove tracking

Fig. 5. Detection and tracking of light sources on a fast moving glove fitted with 8
LEDs, a suit fitted with 18 LEDs and headlamps of vehicles at multiple road intersec-
tions. The low-exposure background image from the helper camera is only shown to
aid visualization. See supplementary material for videos and tracker details.

a normalized small 8×9 image patch Ω(yn) vertically centered at yn, and con-
catenate the coordinate yn with the input to the first fully connected layer.4

The network outputs a W×1 vector sn with scores for every possible horizontal
virtual image location xv. Then, xvn are recovered as:

xvn = arg max(S[sn]), (11)

where S is a softmax function.
The training dataset consists of ground truth 2D coordinates captured with

a 2D helper camera, line scan camera coordinates ym, and the corresponding
image patches Ī[Ω(ym)]:{

xv,GT
m

}M
m=1

←→
{
Ī[Ω(ym)], ym

}M
m=1

, (12)

where M is the number of training examples. The training loss is given by:

L =
1

M

M∑
m=1

BCE(S[sm], D[xv,GT
m , σ]), (13)

where BCE(·, ·) is the Binary Cross Entropy function and function D(·) gener-
ates a Gaussian probability distribution with mean xv,GT

m and standard deviation
σ. Intuitively, the Binary Cross Entropy function drives the output distribution
S[sm] to match a narrow Gaussian centered at xv,GT

m . Using a Gaussian instead
of a Delta function for D(·) provides a tolerance for small deviation due to image
noise. See additional results in Fig. 5.

Recovering a Vertically Projected Line As detailed in Section 7, 3D re-
construction relies on an aggregate of many continuous measurements through

4 Normalizing a 8×9 consists of dividing all RGB pixel values by a scalar. For example,
for L∞, Ī[Ω(ym)] = I[Ω(ym)]/maxRGB, where maxRGB is the maximum value across
all patch pixels and color channels.
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Fig. 6. Structured light with a 1D sensor and a 1D illumination. An object (a) is
scanned using line projection. The recovered lines using a 2D camera (estimated ground
truth) (b) and our method (c) are visualized with a correspondence map, in which
each color indicates the projected column index. (d) Correspondence map error. Depth
maps recovered using a 2D camera (e) and our method (f). Displayed range is 50.6mm
to 71.1mm. (g) Recovered dense point clouds. We believe that this is the first instance
of structured light scanning with both a 1D sensor and 1D camera.

interpolation. Thus, here the network implements regression. Let the 3×1 RGB
vector uy denote the mean color of patch Ω(y). Namely, uy is computed by
averaging Ω(y) over the spatial domain.

The network H−1line is fed with a normalized uy along with y, and outputs a
continuous scalar approximation for xv:

xv =

{
H−1line

(
uy

||uy||2 , y
)
, if uy ∈ A

none, otherwise,
(14)

where A is a subspace of ‘valid’ RGB input values such that

A = {uy : ||uy||inf > t, ||uy||0 > 1} ,

where t is a predefined intensity threshold. Subspace A excludes low intensity
(thus noisy) measurements as well as wavelengths that map to only a single color
channel and thus can’t be distinguished after normalization. The latter occurs
at the edges of the rainbow streak (i.e., deep reds and blues).

The network consists of four fully connected layers of size 300, and is trained

using the Huber loss [12]. The training set is
{
xv,GT
m

}M
m=1

←→ {um, ym}Mm=1 , and
was obtained by scanning a vertical line on a white wall. See Section 6 for more
calibration details and Fig. 6 for example result.

4 Expanding the FOV using Multiple ROIs

Our original prototype’s readout was set to a single ROI consisting of a few
columns (rows in a 90◦ rotated camera) at the center of the camera’s image
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Fig. 7. Left: Using a 2D camera with multiple ROIs (three here) extends the system’s
FOV by ‘catching’ streaks outside the central ROI’s domain. Middle: The additional
left camera images the zeroth-order diffracted light through a cylindrical lens which
focuses the sources onto horizontal white streaks. The intersection of the white streaks
with the left line sensor yields additional horizontal point coordinate measurements
which improve source positioning. Right: A multi-axis diffraction grating additionally
yields horizontal rainbow streaks. Capturing these streaks using an additional line sen-
sor mitigates the vertically-overlapping sources ambiguity.

plane. However, reading multiple ROIs from different spatial locations on the
sensor, as shown in Fig. 7(Left), increases the horizontal FOV without sacrific-
ing acquisition speed too much. This is because multiple ROIs can catch rainbow
streaks whose visible spectrum does not intersect with the center column. Multi-
ple ROIs also reduce recovery uncertainty since they may increase the signal per
point, when the point’s rainbow streak has sufficient signal over several ROIs.

Let Irσ denote the camera image from ROIs indexed r=1, 2, .., R. For sparse
points, we concatenate the R patches Irσ[Ω(yn)] from yn to form an extended
8×(9R) color patch and feed it to the network along with yn. For vertical line
projection, we similarly concatenate the RGB measurements ury and feed the
resulting (3R+1)×1 vector to the network. As in Eq. (14), only ‘valid’ y’s are
considered, where now a measurement at y is valid if any one of the R terms ury
is valid. To preserve the network’s invariance to object albedo, we augment each
individual ury during training (before concatenation) by a random scale factor,
followed by adding simulated sensor noise. Fig. 6 shows a result where R = 5.
See supplementary for FOV analysis.

5 Reducing Sparse Point Uncertainty

The system described so far has two limitations: (1) uncertainty in the horizontal
coordinates is typically higher than the vertical one, and (2) ambiguities in
position estimates for certain source alignments (vertically overlapping sources).
Here we describe two hardware variations that mitigate these limitations, for
the sparse point case: (1) using two line sensors with a diffraction grating and a
cylindrical lens, respectively (Section 5.1), and (2) using two line sensors with a
double-axis diffraction grating (Section 5.2).
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Fig. 8. High speed operation. A fan is mounted with two LEDs at different radii and
is rotated at 780 RPM. A diffraction-cylindrical system (Section 5.1) images the fan at
2220 FPS. (a) Spectral space-time diagram for the diffraction camera where columns
show the 1D signal (along the rows) at different times. (b) Space-time diagram for the
additional cylindrical lens camera. (c) Recovered source positions and trajectories at
three times within the first revolution. Top row shows results using only the diffraction
signal. Bottom row shows the improvement by incorporating cylindrical measurements.

5.1 Horizontal Cylindrical Lens

To improve the accuracy of xv, we place an additional horizontal line scan camera
to image the zero-order component through a cylindrical lens (see Fig. 7[Middle]).
The cylindrical lens focuses scene points onto vertical lines which intersect the
horizontal line sensor. These white streaks yield precise measurement for coor-
dinates xv. However, unlike the rainbow streaks, the white streaks provide no
information about yv. Nevertheless, this data can improve 2D positioning.

Merging the recovered coordinates from the cylindrical lens sensor is fully
detailed in the supplementary material. Here we describe the basic idea. Let x̃vk
denote the recovered cylindrical lens coordinates, indexed by k = 1, 2, ..,K. For
every recovered point (xvn, y

v
n), we compute the distance of its xvn coordinates to

all x̃vk. If for any k, x̃vk is very ‘close’ to xvn (e.g. below four pixels), we assume that
measurement k originated from point n, and thus replace xvn ← x̃vk. Otherwise,
we discard (xvn, y

v
n) as an inaccurate measurement. See Fig. 8 for example result.

5.2 Double-axis Diffraction

The transmissive grating of Section 2 has spatial variation in only one axis, thus it
diffracts light along said axis. A double-axis grating has spatial variation in both
axes (i.e., a star filter) and thus diffracts light both horizontally and vertically.
Using a double-axis grating allows for a direct generalization of Section 3.

We replace the single-axis grating in Fig. 7(Left) with a double-axis grating
and add an additional line sensor camera to image the vertical first-order diffrac-
tion component as well (see Fig. 7[Right]). The vertical diffraction component
creates a vertical rainbow streak on the second line sensor camera (which now
requires no tilting). Each line sensor now provides a separate measurement for
(xv, yv). Merging these pair of measurements follows the same logic as in Section
5.1. Namely, if two points fall within the predefined distance on the virtual image
plane, they are assumed to originate from the same scene point and are merged
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Fig. 9. A double-axis diffraction system with 3-ROIs (a) yields signals from both
vertical (cam 1) (b), and horizontal (cam 2) (d) diffraction. Recovered points from
the vertical (c) and horizontal (e) diffraction superimposed on a 2D helper camera
(ground truth, cam 3). In (c), the three top points share the same y and thus not fully
recovered. Similarly, in (e) the right vertical points share the same x and thus are not
fully recovered. (f) Merging both measurements yields correct positions for all points.

by taking yv from the vertical sensor, while taking xv from the horizontal one.
See the supplementary for details. See example result in Fig. 9.

6 Hardware and Calibration

Our prototype is shown in Fig. 9(a). The setup consists of three IDS UI-3070CP-
C-HQ Rev.2 color cameras, which support up to 64 ROIs. Camera 1 and 2 cap-
ture the vertical and horizontal diffraction streaks, respectively. Camera 3 is the
helper camera, used for gathering ground-truth training data and visualizations.
Camera 3 is also used in Section 5.1 in conjunction with a cylindrical lens. At
least two rows are required per ROIs to yield color measurements (due to Bayer
filter). Camera 1 is rotated by 90◦ to obtain vertical 1D measurements. Cameras
1 and 2 were stripped of their built-in IR filter and mounted with Fujinon 1.5MP
9mm lenses. Camera 3 was mounted with a 8mm M12 lens using an adapter. We
used Thorlabs 50mm 1200 grooves/mm transmission gratings (GT50-12). The
double-axis diffraction system had two stacked gratings, where one is rotated
90◦ with respect to the other. Otherwise, a single grating was used. Our motion-
capture suit and glove prototypes are fitted with 5mm 12V white diffuse LEDs.
A second glove was fitted with 20mm 3.3V white LEDs. For 3D scanning, we
used an InFocus IN124STa Short Throw DLP Projector.

Calibration: Calibration is done using camera 3, whose image plane serves as
the virtual plane in Fig. 3. For sparse points, we simultaneously recorded about
40K samples of a single moving source using all cameras. For sources, we used
three types of LEDs (two clear one diffuse). This procedure yields the training
set of Eq. (12), and is used to compute H−1 and G. For 3D scanning, we sweep
and image a vertical line on a white wall. For each projected line, we compute
its line equation yv =cxv + d and use it to determine the ground truth disparity
xv,GT(y) = [G(y) − d]/c. Together, all lines yield about 700K RGBy/position
samples. Helper-camera and projector intrinsic and extrinsic calibration is done
using a checkerboard [9].
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Fig. 10. Fast line-illumination scanning. (a) The experimental setup scans objects
moving through the illuminated area, e.g., for in-line inspection of objects on a conveyor
belt. The bright source enables very fast scan speeds, up to 1743 scan lines per second.
(b) The measured signal of scene (a) from the three ROIs. (c) The raw recovered
disparity from (a), superimposed on the ground truth helper camera. (d) Fan rotating
at 1300RPM. (e) Recovered disparity in two frames where the helper camera and our
system temporally coincide. As shown in the supplementary video, the helper camera
is 30x slower than our system and thus it is unable to capture the fan’s motion.

7 Experimental Evaluation Details

Before using a neural network for H−1, we tried various hand-crafted color-based
methods (e.g., mapping LAB or RGB values to position using optimization).
The networks-based approach outperformed these methods. For sparse points,
the mean absolute error (MAE) over the test set was 1.71 pixels with a 1.54 stan-
dard deviation. For line projection, MAE was 2.27 pixels with a 2.32 standard
deviation. See supplementary for evaluation and network training details.

Point source detection and tracking is shown in Figs. 4, 5, and 8. Glove and
person keypoints are accurately tracked for long durations even in the case of
overlap in the diffraction readings. Fig. 5(Right) shows tracking of headlights
at multiple intersections. Observe that we are able to detect and track multiple
light sources in the wild using a CNN trained on only three LEDs.

Fig. 6 show 3D scanning using the setup shown in Fig. 3(Right). We used
an off-the-shelf projector, and a 2D camera configured with five ROIs, each
yielding a 8×2056 measurement. For each projected line, the algorithm yields up
to 2056 continuous measurements, tracing that line in the virtual image. After
imaging all lines, the measurements from all lines are used to interpolate the
final correspondence map – a virtual camera image where each pixel is identified
with one projected line index (or none). Then, 3D reconstruction follows from
simple triangulation; see supplementary for more details.

In Fig. 6, the projector has limited contrast. Namely, when projecting a white
vertical line, a significant amount of light was leaking to the ‘dark’ pixels outside
the line. To compensate, we used longer exposures and averaged multiple frames
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per line. In Fig. 6, we averaged 55 frames of 50ms exposure each. Additionally,
we captured a black projector image prior to scanning and subtract it from all
subsequently measurements.

Inter-reflections may degrade reconstruction quality by yielding a mixture of
signal from multiple surface points on the same line. To effectively reduce their
effect, we use high frequency illumination [20]. Specifically, we split each pro-
jected line into three high-frequency patterns, and extract the direct component
as in [20]. High-frequency patterns are used in Fig. 6.

Fig. 10 shows our experimental fast line illumination scanner. Applications
for this setup include scanning products on rapidly moving conveyor-belts, or
scanning objects rotated by a turntable. The camera was configured to readout
three 8×2056 ROIs at 1743 FPS with an exposure of 300us. The system could
compute disparity for fast moving objects (e.g., fan rotating at 1300 RPM)
captured under regular lighting conditions (with room and sunlight ambient
light present). See supplementary for additional details.

8 Concluding Remarks

Diffraction line imaging is a novel computational imaging principle based on light
diffraction and 1D sensing. Using the principle, we showed proof of concepts for
applications like motion capture of uncontrolled and unmodulated LEDs, track-
ing car headlights, and 3D scanning using both 1D sensing and 1D illumination.
Using line sensors significantly decreases bandwidth, which leads to speed. Speed
is crucial for motion capture since it greatly eases tracking. In 3D scanning, speed
is vital when scanning moving objects (e.g., industrial conveyor belt).

Our prototype mimicked a line sensor using multiple rows from a conventional
2D sensor, resulting in fast readout rates of up to 2220 FPS. Faster line sensors
[7] could reach up to 45,000 FPS (x20 faster than our prototype) and improve
light efficiency with large pixels up to 4×32 microns in size (x10 larger). Con-
versely, using 2D sensors with multiple ROIs gives smooth control over the speed
vs. quality trade-off, namely more ROIs reduce speed but increase accuracy.

As with any sensor though, our system’s performance depends on the avail-
able SNR. Using hyper-spectral sensors may improve position decoding by raising
the discrimination between signals from adjacent wavelengths. For 3D scanning,
bright broadband sources, such as supercontinuum/swept-frequency lasers can
additionally increase SNR many folds [1, 30]. Learning-based or dictionary-based
approaches may improve reconstruction quality by extracting multiple vertically
overlapping points, which yield a linear color mixture on the 1D line scan sensor.
Finally, we believe that our approach is an important step towards achieving a
simple high-speed and low-cost solution to light source positioning with potential
applications from vision to robotics.
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