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Abstract. We present a method for projecting an input image into the
space of a class-conditional generative neural network. We propose a
method that optimizes for transformation to counteract the model bi-
ases in generative neural networks. Specifically, we demonstrate that one
can solve for image translation, scale, and global color transformation,
during the projection optimization to address the object-center bias and
color bias of a Generative Adversarial Network. This projection process
poses a difficult optimization problem, and purely gradient-based opti-
mizations fail to find good solutions. We describe a hybrid optimization
strategy that finds good projections by estimating transformations and
class parameters. We show the effectiveness of our method on real images
and further demonstrate how the corresponding projections lead to bet-
ter editability of these images. The project page and the code is available
at https://minyoungg.github.io/GAN-Transform-and-Project/.

1 Introduction

Deep generative models, particularly Generative Adversarial Networks (GANS)
[24], can create a diverse set of realistic images, with a number of controls for
transforming the output, e.g., [48, 6, 29, 32, 48]. However, most of these methods
apply only to synthetic images that are generated by GANs in the first place. In
many real-world cases, a user would like to edit their own image. One approach is
to train a network for each separate image transformation. However, this would
require a combinatorial explosion of training time and model parameters.

Instead, a user could “project” their image to the manifold of images pro-
duced by the GAN, by searching for an appropriate latent code [60]. Then, any
transformations available within the GAN could be applied to the user’s im-
age. This could allow a powerful range of editing operations within a relatively
compact representation. However, projection is a challenging problem. Previ-
ous methods have focused on class-specific models, for example, for objects [60],
faces [16, 9], or specific scenes such as bedrooms and churches [5, 7]. With the
challenges in both optimization and generative model’s limited capacity, we wish
to find a generic method that can fit real images from diverse categories into the
same generative model.

*Work started during an internship at Adobe Research.
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Fig.1. Given a pre-trained BigGAN [8] and a target image (left), our method uses
gradient-free BasinCMA to transform the image and find a latent vector to closely
reconstruct the image. Our method (top) can better fit the input image, compared to
the baseline (bottom), which does not model image transformation and uses gradient-
based ADAM optimization. Finding an accurate solution to the inversion problem
allows us to further fine-tune the model weights to match the target image without
losing downstream editing capabilities. For example, our method allows for changing
the class of the object (top row), compared to the baseline (bottom).

This paper proposes the first method for projecting images into class-conditional
models. In particular, we focus on BigGAN [8]. We address the main problems
with these tasks, mainly, the challenges of optimization, object alignment, and
class label estimation:

« To help avoid local minima during the optimization process, we systematically
study choices of both gradient-based and gradient-free optimizers and show
Covariance Matrix Adaptation (CMA) [26] to be more effective than stand-
alone gradient-based optimizers, such as L-BFGS [10] and Adam [33].

« To better fit a real image into the latent space, we account for the model’s
center bias by simultaneously estimating both spatial image transformation
(translation, scale, and color) and latent variable. Such a transformation can
then be inverted back to the input image frame. Our simultaneous transfor-
mation and projection method largely expands the scope and diversity of the
images that a GAN can reconstruct.

« Finally, we show that estimating and jointly optimizing the continuous embed-
ding of the class variable leads to better projections. This ultimately leads to
more expressive editing by harnessing the representation of the class-conditional
generative model.

We evaluate our method against various baselines on projecting real im-
ages from ImageNet. We quantitatively and qualitatively demonstrate that it
is crucial to simultaneously estimate the correct transformation during the pro-
jection step. Furthermore, we show that CMA, a non-parametric gradient-free
optimization technique, significantly improves the robustness of the optimiza-
tion and leads to better solutions. As shown in Figure 1, our method allows us
to fine-tune our model to recover the missing details without losing the editing
capabilities of the generative model.



Generative model latent space e Optimize transformation
e To(y)
Search - o,
Transformation Project \
: —>

Invert

N

Latent space after fine-tuning e Optimize latent variables

L(G(z,¢), Ty(y))

"""" Transformation

Sample

JANPIIE
BasinCMA z.C
~ "

Original Transformed Projected Fine-tuned Edited Final Update

Fig. 2. Overview: Our method first searches for a transformation to apply to the input
target image. We then solve for the latent vector that closely resembles the object in the
target image, using our proposed optimization method, also referred to as “projection”.
The generative model can then be further fine-tuned to reconstruct the missing details
that the original model could not generate. Finally, we can edit the image by altering
the latent code or the class vector (e.g., changing the border collie to a west highland
white terrier), and invert and blend the edited image back into the original image.

2 Related Work

Image editing with generative models. Image editing tools allow a user to
manipulate a photograph according to their goal while producing realistic visual
content. Seminal work is often built on low-level visual properties, such as patch-
based texture synthesis [18, 28, 17, 4], gradient-domain image blending [17], and
image matting with locally affine color model [37]. Different from previous hand-
crafted low-level methods, several recent works [60, 9] proposed to build editing
tools based on a deep generative model, with the hope that a generative model
can capture high-level information about the image manifold.

Many prior works have investigated using trained generative models as a tool

to edit images [60, 9, 5, 6]. The same image prior from deep generative models
has also been used in face editing, image inpainting, colorization, and deblurring
prior [46, 56, 2, 25, 51]. Unlike these works that focuses on single-class and

fixated image, our method presents a new ways of embedding an image into a
class-conditional generative model, which allows the same GAN to be applied to
many more “in-the-wild” scenarios.

Inverting networks. Our work is closely related to methods for inverting
pre-trained networks. Earlier work proposes to invert CNN classifiers and in-
termediate features for visualizing recognition networks [41, 15, 43, 44]. More
recently, researchers adopted the above methods to invert generative models.
The common techniques include: (1) Optimization-based methods: they find the
latent vector that can closely reconstruct the input image using gradient-based

method (e.g., ADAM, LBFGS) [60, 9, 39, 56, 50, 49, 10] or MCMC [20], (2)
Encoder-based methods: they learn an encoder to directly predict the latent
vector given a real image [12, 16, 60, 46, 9, 13], (3) Hybrid methods [60, 5, 7]:

they use the encoder to initialize the latent vector and then solve the optimiza-
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tion problem. Although the optimized latent vector roughly approximates the
real input image, many important visual details are missing in the reconstruc-
tion [5]. To address the issue, GANPaint [5] generates residual features to adapt
to the individual image. Image2StyleGAN [1] optimizes StyleGAN’s intermedi-
ate representation rather than the input latent vector. Unfortunately, the above
techniques still cannot handle images in many scenarios due to the limited model
capacity [7], the lack of generalization ability [1], and their single-class assump-
tion. As noted by prior work [1], the reconstruction quality severely degrades
under simple image transformation, and translation has been found to cause
most of the damage. Compared to prior work, we consider two new aspects in
the reconstruction pipeline: image transformation and class vector. Together,
these two aspects significantly expand the diversity of the images that we can
reconstruct and edit.

3 Image projection methods

We aim to project an image into a class-conditional generative model (e.g.,
BigGAN [8]) for the purposes of downstream editing. We first introduce the
basic objective function that we slowly build upon. Next, since BigGAN is an
object-centric model for most classes, we infer an object mask from the input
image and focus on fitting the pixels inside the mask.

Furthermore, to better fit our desired image into the generative model, we
propose to optimize for various image transformation (scale, translation, and
color) to be applied to the target image. Lastly, we explain how we optimize the
aforementioned objective loss function.

3.1 Basic Loss Function

Class-conditional generative model A class-conditional generative network
can synthesize an image y € R¥*W >3 given a latent code z € R? that models
intra-class variations and a one-hot class-conditioning vector ¢ € A€ to choose
over C classes. We focus on the 256 x 256 BigGAN model [3] specifically, where
Z =128 and C' = 1,000 ImageNet classes.

The BigGAN architecture first maps the one-hot ¢ into a continuous vector
c € R'?® with a linear layer W € R28%1000 hefore injecting into the main
network Gy, with learned parameters 6.

v = Gy(z,¢) = Gy(z, WS). (1)
Here, a choice must be made whether to optimize over the discrete ¢ or contin-

uous c. As optimizing a discrete class vector is non-trivial, we optimize over the
continuous embedding.

Optimization setup. Given a target image y, we would like to find a z* and
c* that generates the image.

z*,c* = argmin L(Gy(z,c),y) s.t. C(z) < Chax- (2)

z,C



During training, the latent code is sampled from a multivariate Gaussian
z ~ N(0,1I). Interestingly, recent methods [3, 34] find that restricting the distri-
bution at test time produces higher-quality samples. We follow this and constrain
our search space to match the sampling distribution from Brock et al. [3]. Specif-
ically, we use C(z) = ||z||co and Ciax = 2. During optimization, elements of z
that fall outside the threshold are clamped to +2, if positive, or —2, if negative.
Allowing larger values of z produces better fits but compromises editing ability.

Loss function. The loss function £ attempts to capture how close the approx-
imate solution is to the target. A loss function that perfectly corresponds to
human perceptual similarity is a longstanding open research problem [54], and
evaluating the difference solely on a per-pixel basis leads to blurry results [58].
Distances in the feature space of a pre-trained CNN correspond more closely with
human perception [30, 14, 21, 59]. We use the LPIPS metric [59], which cali-
brates a pre-trained model using human perceptual judgments. Here, we define
our basic loss function, which combines per-pixel ¢; and LPIPS.

. 1 . .
Lyasic(y,y) = WHY =¥yl + BLrpips(Y,Y)- (3)

In preliminary experiments, we tried various loss combinations and found g = 10
to work well. We now expand upon this loss function by leveraging object mask
information.

3.2 Object Localization

Real images are often more complex than the ones generated by BigGAN. For
example, objects may be off-centered and partially occluded, or multiple objects
appear in an image. Moreover, it is possible that the object in the image can be
approximated by GANs but not the background.

Accordingly, we focus on fitting a single foreground object in an image and
develop a loss funciton to emphasize foreground pixels. We automatically pro-
duce a foreground rectangular mask m € [0, 1]7*"W>1 ysing the bounding box of
an object detector [27]. Here, we opt for bounding boxes for simplicity, but one
could consider using segmentation mask, saliency maps, user-provided masks,
etc. The foreground and background values within mask m are set to 1 and 0.3,
respectively. We adjust the objective function to spatially weigh the loss:

R 1 R R
Linask(y,y, m) = M\Im OF =yl + BLurpips(¥,y, m), (4)

where normalization parameter M = ||m||; and ® represents element-wise multi-
plication across the spatial dimensions. Given a mask of all foreground (all ones),
the objective function is equivalent to Equation 3. We calculate the masked ver-
sion of the perceptual loss Ly,1pips(y,y, m) by bilinearly downsampling the
mask at the resolution of the intermediate spatial feature maps within the per-
ceptual loss. The details are described in Appendix B.With the provided mask,
we now explore how one can optimize for image transformation to better fit the
object in the image.
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Fig. 3. Object center comparison: We Fig.4. Object size comparison: We
use an object detector to compute the his- use an object detector to compute the
togram of object locations. Note that Im-  distribution of object widths (left) and
ageNet (left) is biased towards the center heights (right). Note that ImageNet
but exhibits a long-tail. BigGAN (right) (black) has a long-tail, whereas the Big-
is further biased towards center. GAN (blue) accentuates the mode.

3.3 Transformation Model and Loss

Generative models may exhibit biases for two reasons: (a) inherited biases from
the training distribution and (b) bias introduced by mode collapse [23], where
the generative model only captures a portion of the distribution. We mitigate
two types of biases, spatial and color during image reconstruction process.

Studying spatial biases. To study spatial bias, we first use a pre-trained
object detector, MaskRCNN [27], over 10,000 real and generated images to com-
pute the statistics of object locations. We show the statistics regarding the center
locations and object sizes in Figures 3 and 4, respectively.

Figure 3 (left) demonstrates that ImageNet images exhibit clear center bias
over the location of objects, albeit with a long tail. While the BigGAN learns to
mimic this distribution, it further accentuates the bias [7, 29], largely forgoing the
long tail to generate high-quality samples in the middle of the image. In Figure 4,
we see similar trends with object height and width. Abdal et al. [1] noted that
the quality of image reconstruction degrades given a simple translation in the
target image. Motivated by this, we propose to incorporate spatial alignment in
the inversion process.

Searching over spatial alignments. We propose to transform the generated

image using ﬁpamal(), which shifts and scales the image using parameters 1) =

Sz, Systz,ty]. The parameters v are used to generate a sampling grid which in
Yy y

turn is used by a grid-sampler to construct a new transformed image [42]. The
) . . . -1 _T1 1 te _ty
corresponding inverse parameters are ¢! = [, o, ]

Transforming the generated image allows for more flexibility in the optimiza-
tion. For example, if G can perfectly generate the target image, but at different
scales or at off-centered locations, this framework allows it to do so.

Searching over color transformations. Furthermore, we show that the same
framework allows us to search over color transformations 7;001“('). We exper-
imented with various color transformations such as hue, brightness, gamma,
saturation, contrast, and found brightness and contrast to work the best. Specif-
ically, we optimize for brightness, which is parameterized by scalar v with inverse



Target image Random initialization Encoder initialization BasinCMA initialization Encoder + BasinCMA initialization
K [ ]

methods, before the final gradient descent optimization. In “random initialization”,
seeds are drawn from the normal distribution; the results show higher variation. For
the “encoder initialization”, we use a trained encoder network to predict the latent
vector and apply a minor perturbation. Our method uses CMA to find a good starting
distribution. For “Encoder+BasinCMA”, we initialize CMA with the output of the
encoder. The results are more consistent and better reconstruct the target image.

value y~! = —. If the generator can perfectly generate the target image, but

slightly darker or brighter, this allows a learned brightness transformation to
compensate for the difference.

Final objective. Let transformation function 74 = mpatial o 7;C°1°r be a com-
position of spatial and color transformation functions, where transformation pa-
rameters ¢ is a concatenation of spatial and color parameters 1, 7y, respectively.
The inverse function is 74-1. Our final optimization objective function, with
consideration for (a) the foreground object and (b) spatial and color biases, is
to minimize the following loss:

argmin L:mask(%*l(GG(zvc))v}’am) s.t. C(Z) < Cmax (5)
Z,C,

Our optimization algorithm, described next, has a mix of gradient-free and
gradient-based updates. Alternatively, instead of inverse transforming the gener-
ated image, we can transform the target and mask images during gradient-based
updates and compute the following loss: Limask(Go(z,c), Ty(y), To(m)). We will
discuss when to use each variant in the next section.

3.4 Optimization Algorithms

Unfortunately, the objective function is highly non-convex. Gradient-based op-
timization, as used in previous inversion methods, frequently fall into poor local
minima. Bau et al. [7] note that recent large-scale GAN models [31, 32] are sig-
nificantly harder to invert due to a large number of layers, compared to earlier
models [48]. Thus, formulating an optimizer that reliably finds good solutions
is a significant challenge. We evaluate our method against various baselines and
ablations in Section 4. Given the input image y and foreground rectangular mask
m (which is automatically computed), we present the following algorithm.

Class and transform initialization We first predict the class of the image
with a pre-trained ResNeXt101 classifier [55] and multiply it by W to obtain
our initial class vector cg.
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Algorithm 1 Transformation-aware projection algorithm
Input: Image y, initial class vector co, mask m
Output: Transformation parameter ¢*, latent variable z*, class vector ¢*

1: # Optimize for transformation ¢
2: Initialize (pg, Xg) < (¢o0,0.1-1I) > ¢o precomputed in Section 3.3
3: for n iterations do
4: ¢1:.8 ~ SampleCMA (1, Xy) > Draw N samples of ¢
5: z1.ny ~ N(0,1), reset c1.n < Co > Reinitialize z and ¢
6 for m iterations do
7 for i <~ 1to N do > This loop is batched
8 i < Lmask (G9 (Zlv cl)v 7:‘% (Y): 77357, (m))
9 (2z4,¢;) < (zi,¢i) = Vae gi > Update each sample z, ¢
10: gimy ﬁ"‘“k(nf}v (Go(z1:n,€1:N)),y, m) > Recompute loss with inverse
11: fg, P1:8 < UpdateCMA (¢1:n, 917N 5 Ky 2op) > Section 3.4

12: Set ¢* < o

13: # Optimize for latent variables z,c
14: Initialize (pz, Xz) < (0,I)

15: for p iterations do

16: z1.m ~ SampleCMA (i, 27), reset c1:a — Co > Draw M samples of z
17: for q iterations do
18: for i < 1to M do > This loop is batched
19: gi = Lumask(Go(2i, i), Tox (y), Tox (m))
20: (i, ¢i) < (2i,¢i) = Vae g
21: g Lumask(Ty-1 (Go(z1:n, €1:v)), y, m) > Recompute loss with inverse
1N i
22: gy Xp < UpdateCMA, (z1:01, G1707 s Hazy Xz) > Section 3.4
23: Set z",c” < argmin, .(g1::m) > Choose the best z, ¢
Next, we initialize the spatial transformation vector ¥o =[Sz, Syy, tyes tao)

such that the foreground object is well-aligned with the statistics of the Big-
GAN model. As visualized in Figures 3 and 4, (h,w) = (137,127) is the center
of BigGAN-generated objects and (7, Z) = (213,210) is the mode of object sizes.
We define (A, wm) to be the height and width and (ym,Zm) to be center of
the masked region. We initialize scale factors as s, = s, = max (hT"‘, Lm) and
translations as (ty,,ts,) = (L5222, £=Em ). Finally, initial brightness transforma-
tion parameter is initialized as vy = 1.

Choice of optimizer. We find the choice of optimizer critical and that Bas-
inCMA [7] provides better results than previously used optimizers for the GAN
inversion problem. Previous work [60, 1] has exclusively used gradient-based
optimization, such as LBFGS [410] and ADAM [33]. However, such methods are
prone to obtaining poor results due to local minima, requiring the use of multiple
random initial seeds. Covariance Matrix Adaptation (CMA) [20], a gradient-free
optimizer, finds better solutions than gradient-based methods. CMA maintains
a Gaussian distribution in parameter space z ~ N (u, X). At each iteration, N
samples are drawn, and the Gaussian is updated using the loss. The details of
this update are described in Hansen and Ostermeier [26]. A weakness of CMA is
that when it nears a solution, it is slow to refine results, as it does not use gradi-
ents. To address this, we use a variant, BasinCMA [53], that alternates between
CMA updates and ADAM optimization, where CMA distribution is updated
after taking M gradient steps.

Next, we describe the optimization procedure between the transformation
parameters ¢ and latent variables z, c.



Choice of Loss function In Equation 5, we described two variants of our

optimization objective. Ideally, we would like to optimize the former variant
Lmask(Ty-1(Go(2,c)),y, m) such that the target image y is consistent through-
out optimization; and we do so for all CMA updates. However for gradient
optimization, we found that back-propagating through a grid-sampler to hurt
performance, especially for small objects. A potential reason is that when
shrinking a generated image, the grid-sampling operation sparsely samples
the image. Without low-pass filtering, this produces a noisy and aliased re-
sult [22, 45]. Therefore, for gradient-based optimization, we optimize the latter
version Lmask(Go(z, ), Ty(y), Te(m)).

Two-stage approach. Historically, searching over spatial transformations with
reconstruction loss as guidance has proven to be a difficult task in computer
vision [3]. We find this to be the case in our application as well, and that joint
optimization over the transformation ¢, and variables z, ¢ is unstable. We use a
two-stage approach, as shown in Algorithm 1, where we first search for ¢* and
use ¢* to optimize for z* and c*. In both stages, a gradient-free CMA outer loop
maintains a distribution over the variable of interest in that stage. In the inner
loop, ADAM is used to quickly find the local optimum over latent variables z, c.

To optimize for the transformation parameter, we initialize CMA distribution
for ¢. The mean p4 is initialized with pre-computed statistics ¢g, and Xy is set
to 0.1-I (Alg. 1, line 2). A set of transformations ¢1.y is drawn from CMA, and
latent variables z1.y are randomly initialized (Alg. 1, line 4-5). To evaluate the
sampled transformation, we take gradient updates w.r.t. z1.n,ci.n5 for m = 30
iterations (Alg. 1, line 6-9). This inner loop can be interpreted as quickly assess-
ing the viability of a given spatial transform. The final samples of z1.n, C1.n, @1. N
are used to compute the loss for the CMA update (Alg. 1, line 10-11). This pro-
cedure is repeated for n = 30 iterations, and the final transformation ¢* is set
to the mean of the current estimate of CMA (Alg. 1, line 12).

After solving for the transformation ¢*, a similar procedure is used to opti-
mize for z. We initialize CMA distribution for z with p, = 0 and X, =1 (Alg. 1,
line 14). M samples of zy.p; are drawn from the CMA distribution and c;.p/
is set to the initial predicted class vector (Alg. 1, line 16). The drawn samples
are evaluated by taking ¢ = 30 gradient updates w.r.t z1.p; and cq.py (Alg. 1,
line 17-20). The optimized samples are used to compute the loss for the CMA
update (Alg. 1, line 21-22). This procedure is repeated for p = 30 iterations.
On the final iteration, we take 300 gradient updates instead to obtain the final
solution z, ¢ (Alg. 1, line 23).

3.5 Fine-tuning

So far, we have located an approximate match within a generative model. We
hypothesize that if a high-quality match is found, fine-tuning to fit the image
will preserve the editability of the generative model. On the contrary, if a poor
match is found, the fine-tuning will corrupt the network and result in low-quality
images after editing. Next, we describe this fine-tuning process.
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Target Mask ADAM L-BFGS CMA BasinCMA Transform

Transform

Fig. 6. ImageNet comparisons: Comparison across various methods on inverting
ImageNet images without fine-tuning. A rectangular mask centered around the object
of interest is provided for all methods using MaskRCNN [27]. The losses are weighted
by the mask. BasinCMA+Transform is our full method.

To synthesize the missing details that the generator could not produce, we
wish to fine-tune our model after solving for the latent vector z, the class vector
¢, and transformation parameters ¢. Unlike previous work [5], which proposed
to produce the residual features using a small, auxiliary network, we update
the weights of the original GAN directly. This allows us to perform edits that
spatially deform the image. After obtaining the values for ¢, z, ¢ in our projection
step, we fine-tune the weights of the generative model. During fine-tuning, the
full objective function is:

argglign Emask(,rd)*l(GO(Zac))a}ﬂm) + )‘”9_00”2 s.t. C(Z) < Chax (6)

We put an {s-regularization on the weights, such that the fine-tuned weights
do not deviate too much from the original weights 6. In doing so, we can prevent
overfitting and preserve the generative model’s ability to edit the final image.
We use A = 10® for our results with fine-tuning.

4 Results

We demonstrate results on images from ImageNet [11], compare against baselines
and ablations, examine cases that BigGAN cannot generate, and show failure
cases. We further demonstrate the validity of our method on out-of-distribution
data such as COCO and conduct perceptual studies on the edited images.

The ImageNet dataset consists of 1.3 million images with 1,000 classes. We
construct a test set by using PASCAL [19] classes as super-classes. There are a
total of 229 classes from ImageNet that map to 16 out of 20 classes in PASCAL.
We select 10 images at random from each super-class to construct a dataset of 160
images. We run off-the-shelf Mask-RCNN [27] and take the highest activating



11

Target  Mask Baseline Ours Blended  Target Mask Baseline Ours Blended

Nl
i

Fig. 7. ImageNet results: Results using our final method without fine-tuning. The
final method uses BasinCMA as well as spatial and color transformation. Our generated
results are inverted back for visualization. We also provide the ADAM baseline along
with the blended result using Poisson blending [47].

class to generate the detection boxes. We use the same bounding box for all
baselines, and the optimization hyper-parameters are tuned on a separate set of
ImageNet images.

Experimental details. We use a learning rate of 0.05 for z and 0.0001 for c.
We use AlexNet-LPIPS [36, 59] as our perceptual loss for all our methods. We
did observe an improvement using VGG-LPIPS [52, 59] but found it to be 1.5
times slower. In our experiments, we use a total of 18 seeds for each method.
After we project and edit the object, we blend the newly edited object with the
original background using Poisson blending [47].

For all of our baselines, we optimize both the latent vector z and class em-
bedding c. We use the same mask m, and the same loss function throughout all
of our experiments. The optimization details of our method and the baselines
are in the Appendix A.

Experiments. We show qualitative comparisons of various optimization meth-
ods for ImageNet images in Figure 6. We show results of our final method with
blending in Figure 7. We then quantify these results by comparing against each
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Method Average of 18 seeds Best of 18 seeds
- Spatial Color Per-pixel LPIPS Per-pixel LPIPS
Optimizer Encoder
Transform Transform L1 L2 Alex VGG L1 L2 Alex VGG
ADAM 0.98 0.62 041 0.58 0.83 047 0.33 0.51
L-BFGS 1.04 068 045 0.61 085 049 0.35 0.53
CMA 0.96 0.61 0.39 0.55 091 054 037 0.54
None v 1.61 1.39 0.62 0.68 1.35 1.00 0.55 0.64
T ADAM T T T T V' 096 060 0.39 056 082 046 032 051
ADAM v 0.98 0.62 0.42 0.58 0.83 047 033 0.51
ADAM ' 0.90 0.54 0.44 0.57 0.76 041 0.36 0.50
ADAM v v v 0.88 0.52 0.42 0.55 0.76 0.40 0.36 0.49
"CMA+ADAM ~~ "~ "7 777777777093 057 037 055 083 047 032 051
BasinCMA 0.82 0.48 0.29 0.51 0.78 043 026 0.49
BasinCMA v 0.82 0.47 0.29 0.50 0.78 043 026 0.49
BasinCMA ' 0.81 0.46 0.29 0.50 0.77 042 0.25 0.49
BasinCMA v 0.72 0.38 0.33 048 0.69 0.35 031 0.46
BasinCMA ' v v 0.71 0.37 0.32 0.47 0.68 0.34 0.31 0.46

Table 1. ImageNet: We compare various methods for inverting images from ImageNet
(lower is better). The last row is our full method. The model is optimized using L1 and
AlexNet-LPIPS perceptual loss. The mask and ground-truth class vector is provided for
each method. We show the error using different metrics: per-pixel and perceptual [59].
We show the average and the best score among 18 random seeds. Methods that opti-
mized for transformation are inverted to the original location and the loss is computed
on the masked region for a fair comparison. All the results here are not fine-tuned.
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target image in blue. pled from the PASCAL super-class.

method using various metrics in Table 1. For all methods, we do not fine-tune our
results and we only compute the loss inside the mask for a fair comparison. For
methods optimized with transformation, the projected images are inverted back
before computing the loss. We further evaluate on COCO dataset [38] in Table 3,
and observed our findings to hold true on out-of-distribution dataset. The suc-
cess of hybrid optimization over purely gradient-based optimization techniques
may indicate that the generative model latent space is locally smooth but not
globally.

Without transforming the object, we observed that the optimization often
fails to find an approximate solution, specifically when the objects are off-
centered or contain multiple objects. We observed that optimizing over color
transformation does not lead to drastic improvements. Possibly because BigGAN
can closely match the color gamut statistics of ImageNet images. Nonetheless, we
found that optimizing for color transformation can slightly improve visual aes-
thetics. Out of the experimented color transformations, optimizing for brightness
gave us the best result, and we use this for color transformation throughout our
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Best of 18 seeds Best of 18 seeds
Class search Per-pixel LPIPS Method Per-pixel LPIPS
L1 L2 Alex VGG L1 L2 Alex VGG
Random Gaussian 1.26 0.88 0.69 0.86 ADAM 0.96 0.57 0.32 0.56
Random Class 0.88 0.51 0.40 0.59 ADAM + Transform 0.81 045 0.39 0.52
Predicted 0.84 0.47 0.33 0.52 BasinCMA 0.93 0.18 0.81 0.53
"Ground Truth~ ~ ~ 0.83 0.47 033 051 BasinCMA + Transform 0.78 0.42 0.36 0.49

Table 2. Class search: Given a fixed op- Table 3. Out-of-distribution: We com-
timization method (ADAM), we compare pare different methods on the COCO-
different methods for initializing the class dataset (lower is better). BigGAN was not
vector (lower is better). Baselines are: ini- trained on COCO images. The class labels
tialized from N(0,I), a random class, and are predicted using ResNext-101 and the
the ground truth class. masks are predicted using MaskRCNN.

experiments. We further experimented with composing multiple color transfor-
mations but did not observe additional improvements.

We found that using CMA/BasinCMA is robust to initialization and is a
better optimization technique regardless of whether the transform was applied.
Note that we did not observe any benefits of optimizing the class vectors ¢ with
CMA compared to gradient-based methods, perhaps because the embedding
between the continuous class vectors is not necessarily meaningful. Qualitatively,
we often found the class embeddings to be meaningful when it is either in the
close vicinity of original class embeddings or between the interpolation of 2
similar classes and not more. As a result, we use gradient descent to search
within the local neighborhood of the initial class embedding space.

We also provide ablation study on how the number of CMA and ADAM up-
dates for BasinCMA affects performance, and how other gradient-free optimizers
compare against CMA in Appendix D. We further provide additional qualitative
results for our final method in Appendix C.

Class initialization. In downstream editing application, the user may not
know the exact ImageNet class the image belongs to. In Table 2, we compare
different strategies for initializing the class vector. Here the classifier makes an
incorrect prediction 20% of the time. We found that using the predicted class of
an ImageNet classifier performs almost as well as the ground truth class. Since
we optimize the class vector, we can potentially recover from a wrong initial
guess if the predicted class is sufficiently close to the ground-truth.

Failure cases. Figure 8 shows some typical failure cases. We observed that our
method fails to embed images that are not well modeled by BigGAN — outlier
modes that may have been dropped. For example, we failed to project images
that are unique, complicated, rotated, or heavily occluded. More sophisticated
transformations such as rotations and perspective transformation could address
many of these failure cases and are left for future work.

Which classes does BigGAN struggle to generate? Given our method,
we analyze which classes BigGAN, or our method has difficulty generating. In
Figure 9, we plot the mean and the standard error for each class. The plot is
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Fig. 10. Fine-tuned edits: Inversion results on various datasets. We use BasinCMA
and transformation to optimize for the latent variables. After obtaining the projections,
we fine-tune the model weights and perform edits in the latent and class vector space.

from the output of the method optimized with ADAM + CMA + Transform.
We observed a general tendency for the model to struggle in generating objects
with delicate structures or with large inter-class variance.

Image Edits. A good approximate solution allows us to fine-tune the gen-
erative model and recover the details easily. Good approximations require less
fine-tuning and therefore preserve the original generative model editing capabili-
ties. In Figure 10, we embed images from various datasets including CIFAR [35],
LSUN [57], and images in-the-wild. We then fine-tune and edit the results by
changing the latent vector or class vector. Prior works [48, 29] have found that
certain latent vectors can consistently control the appearance change of GANs-
generated images such as shifting an image horizontally or zooming an image
in and out. We used the “shift” and “zoom” vectors [29] to modify our images.
Additionally, we also varied the class vector to a similar class and observed the
editability to stay consistent. Even for images like CIFAR, our method was able
to find good solutions that allowed us to edit the image. In cases like LSUN,
where there is no corresponding class for the scene, we observed that the edits
ended up being meaningless.

5 Discussion

Projecting an image into the “space” of a generative model is a crucial step
for editing applications. We have systematically explored methods for this pro-
jection. We show that using a gradient-free optimizer, CMA, produces higher
quality matches. We account for biases in the generative model by enabling
spatial and color transformations in the search, and the combination of these
techniques finds a closer match and better serves downstream editing pipelines.
Future work includes exploring more transformations, such as local geometric
changes and global appearance changes, as well as modeling generation of mul-
tiple objects or foreground/background.
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