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Abstract. Most salient object detection approaches use U-Net or fea-
ture pyramid networks (FPN) as their basic structures. These methods
ignore two key problems when the encoder exchanges information with
the decoder: one is the lack of interference control between them, the
other is without considering the disparity of the contributions of differ-
ent encoder blocks. In this work, we propose a simple gated network
(GateNet) to solve both issues at once. With the help of multilevel gate
units, the valuable context information from the encoder can be opti-
mally transmitted to the decoder. We design a novel gated dual branch
structure to build the cooperation among different levels of features and
improve the discriminability of the whole network. Through the dual
branch design, more details of the saliency map can be further restored.
In addition, we adopt the atrous spatial pyramid pooling based on the
proposed “Fold” operation (Fold-ASPP) to accurately localize salient ob-
jects of various scales. Extensive experiments on five challenging datasets
demonstrate that the proposed model performs favorably against most
state-of-the-art methods under different evaluation metrics.

Keywords: Salient Object Detection · Gated Network · Dual Branch ·
Fold-ASPP

1 Introduction

Salient object detection aims to identify the visually distinctive regions or objects
in a scene and then accurately segment them. In many computer vision applica-
tions, it is used as a pre-processing step, such as scene classification [22], visual
tracking [19], person re-identification [24], light field image segmentation [30]
and image captioning [8], etc.

With the development of deep learning, salient object detection has gradually
evolved from the traditional method based on manual design features to the deep
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Fig. 1. Visual comparison of different CNN based methods.

learning method. In recent years, U-shape based structures [23,16] have received
the most attention due to their ability to utilize multilevel information to recon-
struct high-resolution feature maps. Therefore, most state-of-the-art saliency
detection networks [17,10,45,31,43,46,34,21,20] adopt U-shape as the encoder-
decoder architecture. And many methods aim at combining multilevel features
in either the encoder [45,31,43,34,21,36] or the decoder [17,10,46,36]. For each
convolutional block, they separately formulate the relationships of internal fea-
tures for forward update. It is well known that the high-quality saliency maps
predicted in the decoder rely heavily on the effective features provided by the
encoder. Nevertheless, the aforementioned methods directly use an all-pass skip-
layer structure to concatenate the features of the encoder to the decoder, and
the effectiveness of feature aggregation at different levels is not quantified. These
restrictions not only introduce misleading context information into the decoder
but also result in that the really useful features can not be adequately utilized. In
cognitive science, Yang et al. [41] show that inhibitory neurons play an important
role in how the human brain chooses to process the most important information
from all the information presented to us. And inhibitory neurons ensure that hu-
mans respond appropriately to external stimuli by inhibiting other neurons and
balancing excitatory neurons that stimulate neuronal activity. Inspired by this
work, we think that it is necessary to set up an information screening unit be-
tween each pair of encoder and decoder blocks in saliency detection. It can help
distinguish the most intense features of salient regions and suppress background
interference, as shown in Fig. 1, in which these images have easily-confused back-
grounds or low-contrast objects.

Moreover, due to the limited receptive field, a single-scale convolutional ker-
nel is difficult to capture context information of size-varying objects. This moti-
vates some efforts [6,43] to investigate multiscale feature extraction. These meth-
ods directly equip an atrous spatial pyramid pooling module [3] (ASPP) in their
networks. However, when using a convolution with a large dilation rate, the in-
formation under the kernel seriously lacks correlation due to inserting too many
zeros. This may be detrimental to the discrimination of subtle image structures.

In this paper, we propose a simple gated network (GateNet) for salient object
detection. Based on the feature pyramid network (FPN), we construct multilevel
gate units to combine the features from the decoder and the encoder. We use con-
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volution operation and nonlinear functions to calculate the correlations among
features and assign gate values to different blocks. In this process, a partner-
ship is established between different blocks by using weight distribution and the
decoder can obtain more efficient information from the encoder and pay more
attention to the salient regions. Since the top-layer features of the encoder net-
work contain rich contextual information, we construct a folded atrous spatial
pyramid pooling (Fold-ASPP) module to gather multiscale high-level saliency
cues. With the “Fold” operation, the atrous convolution is implemented on a
group of local neighborhoods rather than a group of isolated sampling points,
which can help generate more stable features and more adequately depict finer
structure. In addition, we design a parallel branch by concatenating the output
of the FPN branch and the features of the gated encoder, so that the residual
information complementary to the FPN branch is supplemented to generate the
final saliency map.

Our main contributions can be summarized as follows.

– We propose a simple gated network to adaptively control the amount of infor-
mation that flows into the decoder from each encoder block. With multilevel
gate units, the network can balance the contribution of each encoder block
to the the decoder block and suppress the features of non-salient regions.

– We design a Fold-ASPP module to capture richer context information and
localize salient objects of various sizes. By the “Fold” operation, we can
obtain more effective feature representation.

– We build a dual branch architecture. They form a residual structure, com-
plement each other through the gated processing and generate better results.

We compare the proposed model with seventeen state-of-the-art methods
on five challenging datasets. The results show that our method performs much
better than other competitors. And, it achieves a real-time speed of 30 fps.

2 Related Work

2.1 Salient Object Detection

Early saliency detection methods are based on low-level features and some heuris-
tics prior knowledge, such as color contrast [1], background prior [39] and center
prior [12]. Most of them using hand-crafted features, and more details about the
traditional methods are discussed in [32].

With the breakthrough of deep learning in the field of computer vision, a
large number of convolutional neural networks-based salient object detection
methods have been proposed and their performance had been improved gradu-
ally. Especially, fully convolutional networks (FCN), which avoid the problems
caused by the fully-connected layer, become the mainstream for dense prediction
tasks. Wang et al. [28] use weight sharing methods to iteratively refine features
and promote mutual fusion between features. Hou et al. [10] achieve efficient
feature expression by continuously blending features from deep layers into shal-
low layers. However, the single-scale feature cannot roundly characterize various
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objects as well as image contexts. How to get multiscale features and integrate
context information is an important problem in saliency detection.

2.2 Multiscale Feature Extraction

Recently, the atrous spatial pyramid pooling module (ASPP) [3] is widely applied
in many tasks and networks. The atrous convolution can enlarge the receptive
field to obtain large-scale features and does not increase the computational cost.
Therefore, it is often used in saliency detection networks. Zhang et al. [43] insert
several ASPP modules into the encoder blocks of different levels, while Deng et
al. [6] install it on the highest-level encoder block. Nevertheless, the repeated
stride and pooling operations already make the top-layer features lose much fine
information. With the increase of atrous rate, the correlation of sampling points
further degrades, which leads to difficulties in capturing the changes of image
details (e.g., lathy background regions between adjacent objects or spindly parts
of objects). In this work, we propose a folded ASPP to alleviate these issues and
achieve a local-in-local effect.

2.3 Gated Mechanisms

The gated mechanism plays an important role in controlling the flow of infor-
mation and is widely used in the long short term memory (LSTM). In [2], the
gate unit combines two consecutive feature maps of different resolutions from
the encoder to generate rich contextual information. Zhang et al. [43] adopt gate
function to control the message passing when combining feature maps at all
levels of the encoder. Due to the ability to filter information, the gated mecha-
nism can also be seen as a special kind of attention mechanism. Some saliency
methods [4,46,34] employ attention networks. Zhang et al. [46] apply both spa-
tial and channel attention to each layer of the decoder. Wang et al. [34] exploit
the pyramid attention module to enhance saliency representations for each layer
in the encoder and enlarge the receptive field. The above methods all unilater-
ally consider the information interaction between different levels either in the
encoder or in the decoder. We integrate the features from the encoder and the
decoder to formulate gate function, which plays the role of block-wise attention
and model the overall distribution of all blocks in the network from the global
perspective. While previous methods actually utilize the block-specific feature to
compute dense attention weights for the corresponding block. Moreover, in order
to take advantage of rich contextual information in the encoder, these methods
directly feed the encoder features into the decoder and do not consider their
mutual interference. Our proposed gate unit can naturally balance their contri-
butions, thereby suppressing the response of the encoder to non-salient regions.
Experimental results in Fig. 4 and Fig. 9 intuitively demonstrate the effect of
multilevel gate units on the above two aspects, respectively.
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Fig. 2. The overall architecture of the gated network. It consists of the VGG-16 encoder
(E1 ∼ E5), five transition layers (T1 ∼ T5), five gate units (G1 ∼ G5), five decoder
blocks (D1 ∼ D5) and the Fold-ASPP module. We employ twice supervision in this
network. Once acts at the end of the FPN branch D1. The other is used to guide the
fusion of the two branches.

3 Proposed Method

The gated network architecture is shown in Fig. 2, in which encoder blocks,
transition layers, decoder blocks and gate units are respectively denoted as Ei,
Ti , Di and Gi (i ∈ {1, 2, 3, 4, 5} indexes different levels). And their output fea-
ture maps are denoted as Ei, T i, Di and Gi, respectively. The final prediction
is obtained by combining the FPN branch and the parallel branch. In this sec-
tion, we first describe the overall architecture, then detail the gated dual branch
structure and the folded atrous spatial pyramid pooling module.

3.1 Network Overview

Encoder Network. In our model, the encoder is based on a common pretrained
backbone network, e.g., the VGG [25], ResNet [9] or ResNeXt [37]. We take the
VGG-16 network as an example, which contains thirteen Conv layers, five max-
pooling layers and two fully connected layers. In order to fit saliency detection
task, similar to most previous approaches [45,10,46,43], we cast away all the
fully-connected layers of the VGG-16 and remove the last pooling layer to retain
details of last convolutional layer.
Decoder Network. The decoder comprises three main components. i) The
FPN branch, which continually fuses different level features from T 1 ∼ T 5 by
element-wise addition. ii) The parallel branch, which combines the saliency map
of the FPN branch with the feature maps of transition layers by cross-channel
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Fig. 3. Detailed illustration of the gate unit. Ei, Di+1 indicates feature maps of the
current encoder block and those of the previous decoder block, respectively. S© is sig-
moid function.
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Fig. 4. The distributions of the gate weights on five datasets. We calculate the average
gate values for each level of the FPN branch and the parallel branch across all images
in every dataset. For the FPN branch, the low-level gate values are significantly smaller
than the high-level ones. For the parallel branch, the gate values gradually decrease
with the promotion of levels.

concatenation. At the same time, multilevel gate units (G1 ∼ G5) are inserted
between the transition layer and the decoder layer. iii) The Fold-ASPP module,
which improves the original atrous spatial pyramid pooling (ASPP) by using a
“Fold” operation. It can take advantage of semantic features learned from E5 to
provide multiscale information to the decoder.

3.2 Gated Dual Branch

The gate unit can control the message passing between scale-matching encoder
and decoder blocks. By combining the feature maps of the previous decoder
block, the gate value also characterizes the contribution that the current block of
the encoder can provide. Fig. 3 shows the internal structure of the proposed gate
unit. In particular, encoder feature Ei and decoder feature Di+1 are integrated
to obtain feature F i, and then it is fed into two branches, which includes a
series of convolution, activation and pooling operations, to compute a pair of
gate values Gi. The entire gated process can be formulated as,

Gi =

{
P (S(Conv(Cat(Ei, Di+1)))) if i = 1, 2, 3, 4
P (S(Conv(Cat(Ei, T i)))) if i = 5

(1)

where Cat(·) is the concatenation operation among channel axis, Conv(·) refers
to the convolution layer, S(·) is the element-wise sigmoid function, and P (·) is
the global average pooling. The output channel of Conv(·) is 2. The resulted
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Fig. 5. Illustration of different decoder architectures. (a) Progressive structure, (b)
Parallel structure and (c) Our dual branch structure.

gate vector Gi has two different elements which correspond to two gate values
in Fig. 3.

Given the gate values, they are applied to the FPN branch and the parallel
branch for weighting the transition-layer features T 1 ∼ T 5, which are generated
by exploiting 3 × 3 convolution to reduce the dimension of E1 ∼ E4 and the
Fold-ASPP to finely process E5 (Please see Fig. 2 for details). Through multilevel
gate units, we can suppress and balance the information flowing from different
encoder blocks to the decoder.

In Fig. 4, we statistically demonstrate the curves of gate value with a convo-
lutional level as the horizontal axis. It can be seen that the high-level encoder
features contribute more contextual guidance to the decoder than the low-level
encoder features in the FPN branch. This trend is just the opposite in the paral-
lel branch. It is because the FPN branch is responsible to predict the main body
of the salient object by progressively combining multilevel features, which needs
more high-level semantic knowledge. While the parallel branch, as a residual
structure, aims to fill in the details, which are mainly contained in the low-level
features. In addition, some visual examples are shown in Fig. 9 demonstrate
that multilevel gate units can significantly suppress the interference from each
encoder block and enhance the contrast between salient and non-salient regions.
Since the proposed gate unit is simple yet effective, a raw FPN network with
multilevel gate units can be viewed as a new baseline for saliency detection task.

Most existing models either use progressive decoder [43,31,46,34] or parallel
decoder [6,47], as shown in Fig. 5. The progressive structure begins with the top
layer and gradually utilizes the output of the higher layer as prior knowledge
to fuse the encoder features. This mechanism is not conducive to the recov-
ery of details because the high-level features lack fine information. While the
parallel structure easily results in inaccurate localization of objects since the
low-level features without semantic information directly interfere with the cap-
ture of global structure cues. In this work, we mix the two structures to build a
dual branch decoder to overcome the above restrictions. We briefly describe the
FPN branch. Taking Di as an example, we firstly apply bilinear interpolation to
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upsample the higher-level feature Di+1 to the same size as T i. Next, to decrease
the number of parameters, T i is reduced to 32 channels and fed into gate unit
Gi. Lastly, the gated feature is fused with the upsampled feature of Di+1 by
element-wise addition and convolutional layers. This process can be formulated
as follows:

Di =

{
Conv(Gi1 · T i + Up(Di+1)) if i = 1, 2, 3, 4

Conv(Gi1 · T i) if i = 5,
(2)

where D1 is a single-channel feature map with the same size as the input image.
In the parallel branch, we firstly upsample T 1 ∼ T 5 to the same size of

D1. Next, the multilevel gate units are followed to weight the corresponding
transition-layer features. Lastly, we combine D1 and the gated features by cross-
channel concatenation. The whole process is written as follows:

FCat = Cat(D1, Up(G1
2 · T 1), Up(G2

2 · T 2),

Up(G3
2 · T 3), Up(G4

2 · T 4), Up(G5
2 · T 5)).

(3)

The final saliency map SF is generated by integrating the predictions of the
two branches with a residual connection as shown in Fig. 5(c),

SF = S(Conv(FCat) +D1)), (4)

where S(·) is the element-wise sigmoid function.

3.3 Folded Atrous Spatial Pyramid Pooling

In order to obtain robust segmentation results by integrating multiscale infor-
mation, atrous spatial pyramid pooling (ASPP) is proposed in Deeplab [3]. And
some works [43,6] also show its effectiveness in saliency detection. The ASPP
uses multiple parallel atrous convolutional layers with different dilation rates.
The sparsity of atrous convolution kernel, especially when using a large dilation
rate, results in that the association relationships among sampling points are too
weak to extract stable features. In this paper, we apply a simple “Fold” operation
to effectively relieve this issue. We visualize the folded convolution structure in
Fig. 6, which not only further enlarges the receptive field but also extends each
valid sampling position from an isolate point to a 2× 2 connected region.

Let X represent feature maps with the size of N ×N × C (C is the channel
number). We slide a 2 × 2 window on X in stride 2 and then conduct atrous
convolution with kernel size K ×K in different dilation rates. Fig. 6 shows the
computational process when K = 3 and dilation rate is 2. Firstly, we collect
2 × 2 × C feature points in each window from X and then it is stacked by
channel direction, we call this operation ”Fold”, which is shown in Fig. 6 1©.
After the fold operation, we can get new feature maps with the size of N/2 ×
N/2× 4C. A point on the new feature maps corresponds to a 2× 2 area on the
original feature maps. Secondly, we adopt an atrous convolution with a kernel
size of 3 × 3 and dilation rate is 2. Followed by the reverse process of “Fold”
which is called “Unfold” operation, the final feature maps are obtained. By
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Fig. 6. Illustration of the folded convolution. We use 1©, 2© and 3© to respectively indi-
cate “Fold” operation, atrous convolution and “Unfold” operation. 4© shows the com-
parison between atrous convolution (Left) and the folded atrous convolution (Right).

using the folded atrous convolution, in the process of information transfer across
convolution layers, more contexts are merged and the certain local correlation
is also preserved, which provides the fault-tolerance capability for subsequent
operations.

As shown in Fig. 2, the Fold-ASPP is only equipped on the top of the en-
coder network, which consists of three folded convolutional layers with dilation
rates [2, 4, 6] to fit the size of feature maps. Just as group convolution [37] is
a trade-off between depthwise convolution [5,11] and vanilla convolution in the
channel dimension, the proposed folded convolution is a trade-off between atrous
convolution and vanilla convolution in the spatial dimension.

3.4 Supervision

As shown in Fig. 2, we use the cross-entropy loss for both the intermediate
prediction from the FPN branch and the final prediction from the dual branch.
In the dual branch decoder, since the FPN branch gradually combines all-level
gated encoding and decoding features, it has very powerful prediction ability.
We expect that it can predict salient objects as accurately as possible under the
supervision of ground truth. While the parallel branch only combines the gated
encoding features, which is helpful to remedy the ignored details with the design
of residual structure. Moreover, the supervision on D1 can drive gate units to
learn the weight of the contribution of each encoder block to the final prediction.
We use the cross-entropy loss. The total loss L could be written as:

L = ls1 + lsf , (5)

where ls1 and lsf are respectively used to regularize the output of the FPN
branch and the final prediction. The cross-entropy loss could be computed as:

l = Y logP + (1− Y )log(1− P ), (6)

where P and Y denote the predicted map and ground-truth, respectively.
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4 Experiments

4.1 Experimental Setup

Dataset. We evaluate the proposed model on five benchmark datasets. EC-
SSD [38] contains 1, 000 semantically meaningful and complex images with
pixel-accurate ground truth annotations. HKU-IS [13] has 4, 447 challenging im-
ages with multiple disconnected salient objects, overlapping the image boundary.
PASCAL-S [15] contains 850 images selected from the PASCAL VOC 2009 seg-
mentation dataset. DUT-OMRON [40] includes 5, 168 challenging images, each
of which usually has complicated background and one or more foreground ob-
jects. DUTS [27] is the largest salient object detection dataset, which contains
10, 553 training and 5, 019 test images. These images contain very complex sce-
narios with high-diversity contents.
Evaluation Metrics. For quantitative evaluation, we adopt four widely-used
metrics: precision-recall (PR) curve, F-measure score, mean absolute error (MAE)
and S-measure score. Precision-Recall curve: The pairs of precision and recall
are calculated by comparing the binary saliency maps with the ground truth to
plot the PR curve, where the threshold for binarizing slides from 0 to 255. The
closer the PR curve is to the upper right corner, the better the performance is. F-
measure: It is an overall performance measurement that synthetically considers
both precision and recall:

Fβ =

(
1 + β2

)
· precision · recall

β2 · precision + recall
, (7)

where β2 is set to 0.3 as suggested in [1] to emphasize the precision. In this
paper, we report the maximum F-measure score across the binary maps of dif-
ferent thresholds. Mean Absolute Error : As the supplement of the PR curve and
F-measure, it computes the average absolute difference between the saliency
map and the ground truth pixel by pixel. S-measure: It is more sensitive to fore-
ground structural information than the F-measure. It considers the region-aware
structural similarity Sr and the object-aware structural similarity So:

Sm = α ∗ So + (1− α) ∗ Sr, (8)

where α is set to 0.5 [7].
Implementation Details. We follow most state-of-the-art saliency detection
methods [26,21,33,36,31,34,42,46,43] to use the DUTS-TR as the training dataset
which contains 10, 553 images. Our model is implemented based on the Pytorch
repository and the hyper-parameters are set as follows: We train the GateNet
on a PC with GTX 1080 Ti GPU for 40 epochs with mini-batch size 4. For the
optimizer, we adopt the stochastic gradient descent (SGD). The momentum,
weight decay, and learning rate are set as 0.9, 0.0005 and 0.001, respectively.
The “poly” policy [18] with the power of 0.9 is used to adjust the learning rate.
We adopt some data augmentation techniques to avoid overfitting and make the
learned model more robust, which include random horizontally flipping, random
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rotation, random brightness, saturation and contrast changing. In order to pre-
serve the integrity of the image semantic information, we only resize the image to
384×384 instead of using a random crop. The source code will be publicly avail-
able at https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency.

4.2 Performance Comparison with State-of-the-art

We compare the proposed algorithm with seventeen state-of-the-art saliency
detection methods, including the DCL [14], DSS [10], Amulet [45], SRM [29],
DGRL [31], RAS [4], PAGRN [46], BMPM [43], R3Net [6], HRS [42], MLMS [35],
PAGE [34], ICNet [33], CPD [36], BANet [26], BASNet [21] and Capsal [44]. For
fair comparisons, all the saliency map of these methods are directly provided by
their respective authors or computed by their released codes. To further show the
effectiveness of our GateNet, we test its performance in both RGBD SOD and
Video Object Segmentation tasks and include the results in supplementary
materials.

Quantitative Evaluation. Tab. 1 shows the experimental comparison re-
sults in terms of the F-measure, S-measure and MAE scores, from which we
can see that the GateNet can consistently outperform other approaches across
all five datasets and different metrics. In particular, the GateNet achieves sig-
nificant performance improvement in terms of the F-measure compared to the
second best method BANet [26] on the challenging DUTS-test (0.870 vs 0.852
and 0.888 vs 0.872) and PASCAL-S (0.882 vs 0.866 and 0.883 vs 0.877) datasets.
This clearly demonstrates its superior performance in complex scenes. Moreover,
some methods [14,10,29,6] apply the post-processing techniques to refine their
saliency maps. Our GateNet still performs better than them without any post-
processing. We evaluate different algorithms using the standard PR curves in
Fig. 7. It can be seen that our PR curves are significantly higher than those of
other methods on five datasets.

Qualitative Evaluation. Fig. 1 and Fig. 8 illustrate some visual compar-
isons. In Fig. 1, other methods are severely disturbed by branches and weeds
while ours can precisely identify the whole objects. And the GateNet can sig-
nificantly suppress the background with similar shapes to salient objects (see
the 1st row in Fig. 8). Since the Fold-ASPP can obtain more stable structural
features, it can help to accurately locate objects and separate adjacent objects
well, but some competitors make adjacent objects stick together (see the 3th

and 4th rows in Fig. 8). Besides, the proposed parallel branch can restore more
details, therefore, the boundary information is retained well.

4.3 Ablation Studies

We detail the contribution of each component to the overall network.
Effectiveness of Backbones. Tab. 1 demonstrates that the performance

of the gated network can be significantly improved by using better backbones
such as ResNet-50, ResNet-101 or ResNeXt-101.

https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
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Table 1. Quantitative comparisons. Blue indicates the best performance under each
backbone setting, while red indicates the best performance among all settings. The
subscript in the first column regards the publication year. “†”, “S” and “X” mean
using the post-processing, ResNet-101 and ResNeXt-101 backbone, respectively. “—”
represents that the results are not available. ↑ and ↓ indicate that the larger and smaller
scores are better, respectively.

Method
DUTS-test DUT-OMRON PASCAL-S HKU-IS ECSSD

Fβ ↑ Sm ↑ MAE↓ Fβ ↑ Sm ↑ MAE↓ Fβ ↑ Sm ↑ MAE↓ Fβ ↑ Sm ↑ MAE↓ Fβ ↑ Sm ↑ MAE↓

VGG-16 backbone

DCL†
16 0.782 0.796 0.088 0.757 0.770 0.080 0.829 0.793 0.109 0.907 0.877 0.048 0.901 0.868 0.068

DSS†
17 — — — 0.781 0.789 0.063 0.840 0.792 0.098 0.916 0.878 0.040 0.921 0.882 0.052

Amulet17 0.778 0.804 0.085 0.743 0.780 0.098 0.839 0.819 0.099 0.899 0.886 0.050 0.915 0.894 0.059

BMPM18 0.852 0.860 0.049 0.774 0.808 0.064 0.862 0.842 0.076 0.921 0.906 0.039 0.928 0.911 0.045

RAS18 0.831 0.838 0.059 0.786 0.813 0.062 0.836 0.793 0.106 0.913 0.887 0.045 0.921 0.893 0.056

PAGRN18 0.854 0.837 0.056 0.771 0.774 0.071 0.855 0.814 0.095 0.919 0.889 0.048 0.927 0.889 0.061

HRS19 0.843 0.828 0.051 0.762 0.771 0.066 0.850 0.798 0.092 0.913 0.882 0.042 0.920 0.883 0.054

MLMS19 0.852 0.861 0.049 0.774 0.808 0.064 0.864 0.844 0.075 0.921 0.906 0.039 0.928 0.911 0.045

PAGE19 0.838 0.853 0.052 0.792 0.824 0.062 0.858 0.837 0.079 0.920 0.904 0.036 0.931 0.912 0.042

BANet19 0.852 0.860 0.046 0.793 0.822 0.061 0.866 0.838 0.079 0.919 0.901 0.037 0.935 0.913 0.041

GateNet 0.870 0.869 0.045 0.794 0.820 0.061 0.882 0.855 0.070 0.928 0.909 0.035 0.941 0.917 0.041

ResNet-50 backbone

SRM†
17 0.826 0.835 0.059 0.769 0.797 0.069 0.848 0.830 0.087 0.906 0.886 0.046 0.917 0.895 0.054

DGRL18 0.828 0.841 0.050 0.774 0.805 0.062 0.856 0.836 0.073 0.911 0.895 0.036 0.922 0.903 0.041

CPD19 0.865 0.868 0.043 0.797 0.824 0.056 0.870 0.844 0.074 0.925 0.906 0.034 0.939 0.918 0.037

ICNet19 0.855 0.864 0.048 0.813 0.837 0.061 0.865 0.849 0.072 0.925 0.908 0.037 0.938 0.918 0.041

BASNet19 0.860 0.864 0.048 0.805 0.835 0.057 0.860 0.834 0.079 0.930 0.907 0.033 0.943 0.916 0.037

BANet19 0.872 0.878 0.040 0.803 0.832 0.059 0.877 0.851 0.072 0.930 0.913 0.033 0.944 0.924 0.035

GateNet 0.888 0.884 0.040 0.818 0.837 0.055 0.883 0.857 0.069 0.933 0.915 0.033 0.945 0.920 0.040

ResNet/ResNeXt-101 backbone

R3Net†
X

18 0.819 0.827 0.063 0.795 0.816 0.063 0.844 0.802 0.095 0.915 0.895 0.035 0.934 0.910 0.040

CapsalS19 0.819 0.818 0.063 0.639 0.673 0.101 0.869 0.837 0.074 0.883 0.851 0.058 0.863 0.826 0.077

GateNetS 0.893 0.889 0.038 0.821 0.844 0.054 0.883 0.862 0.067 0.937 0.920 0.031 0.951 0.930 0.035

GateNetX 0.898 0.895 0.035 0.829 0.848 0.051 0.888 0.865 0.065 0.943 0.925 0.029 0.952 0.929 0.035
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Fig. 7. Precision (vertical axis) recall (horizontal axis) curves on six popular rgb-salient
object datasets.

Image GT GateNetX R3Net GateNet CPD BASNet BANet ICNet DGRL SRM

Fig. 8. Visual comparison between our results and state-of-the-art methods.
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Image D5 D4 D3 D2 D1 GT

Fig. 9. Visual comparison of feature maps for showing the effect of the multilevel gate
units. D5 ∼ D1 represent the feature maps of each decoder block from high level to
low level. Odd rows and even rows are the results of the FPN baseline without or with
multilevel gate units, respectively.

Effectiveness of Components. We quantitatively show the benefit of each
component in Tab. 2. We take the results of the VGG-16 backbone with the
FPN branch as the baseline. Firstly, the multilevel gate units are added to the
baseline network. The performance is significantly improved with the gain of
2.94%, 2.17% and 11.67% in terms of the F-measure, S-measure and MAE,
respectively. To show the effect of the gate units more intuitively, we visualize
the features of different levels in Fig. 9. It can be observed that even if the
dog has a very low contrast with the chair or the billboard (see the 1st ∼ 4th

rows), through using multilevel gate units, the high contrast between the object
region and the background is always maintained at each layer while the detail
information is continually regained, thereby making salient objects be effectively
distinguished. Besides, the gate units can avoid excessive suppression for the
slender parts of objects (see the 5th ∼ 8th rows). The corners of the poster,
the limbs and even tentacles of the mantis are retained well. Secondly, based on
the gated baseline network, we design a series of experimental options to verify
the effectiveness of the folded convolution and Fold-ASPP. Tab. 3 illustrates the
results in detail. We adopt the atrous convolution with dilation rates of [2, 4, 6]
and the same dilation rates are also applied to the folded convolution. It can be
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Table 2. Ablation analysis on the DUTS dataset.

Fβ Sm MAE

Baseline (FPN) 0.816 0.829 0.060

+ Gate Units 0.840 0.847 0.053

+ Fold-ASPP 0.866 0.863 0.047

+ Parallel Branch 0.870 0.869 0.045

Table 3. Evaluation of the folded convolution and Fold-ASPP. (x) stands for different
sampling rates of atrous convolution.

Atrous(2) Atrous(4) Atrous(6) Fold(2) Fold(4) Fold(6) ASPP Fold-ASPP

Fβ 0.840 0.845 0.848 0.853 0.856 0.860 0.856 0.866
MAE 0.055 0.053 0.051 0.051 0.050 0.048 0.051 0.047
Sm 0.847 0.849 0.851 0.856 0.858 0.859 0.860 0.863

observed that the folded convolution consistently yields significant performance
improvement at each dilation rate than the corresponding atrous convolution in
terms of all three metrics. And the single-layer Fold(6) already performs better
than the ASPP of aggregating three atrous convolution layers. The Fold-ASPP
also naturally outperforms the ASPP with the gain of 1.17% and 8.0% in terms
of the F-measure and MAE, respectively. Finally, we add the parallel branch to
further restore the details of objects. In this process, the gate units, Fold-ASPP
and parallel branch complement each other without repulsion.

5 Conclusions

In this paper, we propose a novel gated network architecture for saliency de-
tection. We first adopt multilevel gate units to balance the contribution of each
encoder block and suppress the activation of the features of non-salient regions,
which can provide useful context information for the decoder while minimizing
interference. The gate unit is simple yet effective, therefore, a gated FPN net-
work can be used as a new baseline for dense prediction tasks. Next, we use the
Fold-ASPP to gather multiscale semantic information for the decoder. By the
folded operation, the atrous convolution achieves a local-in-local effect, which
not only expands the receptive field but also retains the correlation among lo-
cal sampling points. Finally, to further supplement the details, we combine all
encoder features in parallel and construct a residual structure. Experimental
results on five benchmark datasets demonstrate that the proposed model out-
performs seventeen state-of-the-art methods under different evaluation metrics.
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