
Post-Training Piecewise Linear Quantization
for Deep Neural Networks
(Supplementary Material)

Jun Fang1, Ali Shafiee1, Hamzah Abdel-Aziz1, David Thorsley1,
Georgios Georgiadis2?, and Joseph H. Hassoun1

1 Samsung Semiconductor, Inc.
{jun.fang, ali.shafiee, hamzah.a, d.thorsley, j.hassoun}@samsung.com

2 Microsoft georgios.georgiadis@microsoft.com

In this supplement, we expand our discussion on piecewise linear quantization
(PWLQ) with additional analysis and experiments. In particular, we discuss the
following:

• Section 1 provides details about the algorithm of finding optimal breakpoints.
• Section 2 reports additional experimental results of activation quantization.
• Section 3 discusses the details of hardware implementation for PWLQ. The

impact on energy and latency is provided.

1 Optimal Breakpoint Inference

To best apply PWLQ, we need to find the optimal breakpoint. One approach is
to assume that weights and activations satisfy Gaussian or Laplacian distribu-
tions, and then use the formulated PDF/CDF to solve the convex problem of
minimizing the quantization error by gradient descent.

However, the iterative process of gradient descent increases the computation
complexity and the overall latency during inference. Therefore, it is better to
use a simple and fast one-shot approach to approximate the optimal breakpoint,
provided the approximation error is small.

1.1 Derivation of Approximation Formula

We first collect the maximum over standard deviation of per-channel weights in a
pre-trained Inception-v3 model, which is computed as max(Wi[j, :, :, :])/std(Wi[j, :
, :, :]) to estimate the range value m for the normalized quantization range
[−m,m], where Wi is the weight tensor at i-th layer and Wi[j, :, :, :] is the weight
sub-tensor at j-th output channel of Wi. In Figure 1, we found that over 95% of
m values are located between 3 and 10.

We then use gradient descent under the Gaussian assumption to find optimal
breakpoints for the quantization range values m ∈ [3, 10]. Using the gradient de-
scent results, we compute the following approximation of the optimal breakpoint
for a normalized Gaussian distribution: p∗/m = ln(0.8614m+ 0.6079).

? Work performed while at Samsung Semiconductor, Inc.



2 J. Fang et al.

Fig. 1. Histogram of maximum over standard deviation of per-channel weights in a
pre-trained Inception-v3 model. More than 95% of the values are located between 3
and 10

Figure 2 indicates how accurate our approximated versions of the optimal
breakpoints are for m ∈ [3, 10] under the Gaussian distribution assumption.
Furthermore, experimental results in Table 1 show that the approximations ob-
tain almost the same quantization error and same top-1 accuracy compared to
gradient descent on the piecewise linearly quantized model.

Fig. 2. Approximation formula of the optimal breakpoint p∗ for Gaussian distributions.
Left: approximation formula of p∗ in term of the ratio p∗/m. Right: approximation er-
ror. Notation p∗gd: optimal breakpoint found by gradient descent. Notation p∗app: optimal
breakpoint approximated by the one-shot formula.

1.2 PWLQ with Other Assumptions

Just as discussed above for Gaussian distributions, we also extend PWLQ to
Laplacian distributions. The approximated version of the optimal breakpoint
for a normalized Laplacian is: p∗/m = 0.8030

√
m−0.3167. We show the approx-

imation error of the Laplacian case in Figure 3. It has the same magnitude of
approximation error as the Gaussian case in Figure 2.



Supplementary Material of Post-Training PWLQ for DNNs 3

Table 1. Different methods of finding the optimal breakpoint for PWLQ: gradient
descent and approximation under Gaussian distribution assumption on Inception-v3,
top-1 accuracy baseline is 77.49%. MSE: mean squared error of all quantized weights.

Breakpoint Methods
8-bit 7-bit 6-bit 5-bit 4-bit

Top1% MSE Top1% MSE Top1% MSE Top1% MSE Top1% MSE

Gradient Descent 77.51 7.56e-8 77.50 3.07e-7 77.40 1.27e-6 77.16 5.41e-6 75.74 2.30e-5

Approximation 77.52 7.57e-8 77.49 3.08e-7 77.42 1.27e-6 77.15 5.42e-6 75.72 2.31e-5

Fig. 3. Approximation formula of the optimal breakpoint p∗ for Laplacian distribu-
tions. Left: approximation formula of p∗ in term of the ratio p∗/m. Right: approxima-
tion error. Notation p∗gd: optimal breakpoint found by gradient descent. Notation p∗app:
optimal breakpoint approximated by the one-shot formula.

Table 2. Comparison results of top-1 accuracy (%) for PWLQ with different assump-
tions. Gaussian/Laplacian/Search are three optimal breakpoint selection methods with
Gaussian/Laplacian or no specific distribution assumptions, respectively.

Network Method 8-bit 8+BC 6-bit 6+BC 4-bit 4+BC

Inception-v3
(77.49)

Gaussian 77.52 77.53 77.42 77.48 75.72 76.45
Laplacian 77.48 77.53 77.44 77.52 75.67 75.97

Search 77.52 77.55 77.35 77.39 75.34 76.40

ResNet-50
(76.13)

Gaussian 76.10 76.10 76.03 76.08 74.28 75.62
Laplacian 76.08 76.07 76.03 76.13 73.03 75.60

Search 76.08 76.10 76.08 76.09 72.55 75.71

MobileNet-v2
(71.88)

Gaussian 71.59 71.73 70.82 71.58 54.34 69.22
Laplacian 71.65 71.67 71.20 71.60 53.70 68.99

Search 71.64 71.63 70.75 71.53 56.13 69.28



4 J. Fang et al.

Another approach is a simple three-stage coarse-to-fine grid search algorithm
1 to minimize the quantization error without any need of specific distribution
assumptions. Compared to the breakpoint inference methods based on Gaussian
or Laplacian assumptions, the coarse-to-fine search is generally guaranteed to
achieve smaller quantization error at a cost of longer search time. We provide a
comparison result for all three methods in Table 2. There is no clear evidence
in this table to show that one of them generally performs better than the other
two methods. We therefore only report the results with Gaussian assumptions
to show the robustness of the PWLQ approach.

Algorithm 1: Coarse-to-fine search for the optimal breakpoint.

Input: A tensor T need to be quantized
Output: Optimal breakpoint p∗

1 p∗ = 0.5, m = max(abs(T ))
2 for stage in [1,2,3] do
3 grid = 0.1stage

4 range = 5 if stage == 1 else 10
5 start = p∗/m - grid * range
6 end = p∗/m + grid * range
7 for p∗/m in [start: grid: end] do
8 Apply piecewise linear quantization scheme
9 Compute mean squared quantization error

10 Select p∗/m having smallest quantization error

1.3 PWLQ with Multiple Breakpoints

In this section, we extend PWLQ to more general cases with n multiple break-
points p = (p1, p2, ...pn) under the feasible domain D = {(p1, p2, ...pn) |0 < p1 <
p2 < ... < pn < m}. We denote by p0 = 0, pn+1 = m and calculate the expected
squared quantization error similarly to Equation (4) in the main paper:

E(ε2pw; b,m,p) = C(b− 1)

n∑
l=0

{
(pl+1 − pl)2

[
F (pl+1)− F (pl)

]}
. (1)

Accordingly, the optimal breakpoints p∗ = (p∗1, p
∗
2, ...p

∗
n) can be estimated by

minimizing the expected squared quantization error:

p∗ = arg min
p∈D

E(ε2pw; b,m,p). (2)

In practice, we assume the tensor values satisfy Gaussian or Laplacian distri-
bution with formulated PDF/CDF. We then solve the optimization problem (2)
by using gradient descent. In our experiments with up to three breakpoints, the



Supplementary Material of Post-Training PWLQ for DNNs 5

gradient descent performs well and converges quickly. We also note the convexity
of the quantization error with two-to-three breakpoints in our experiments and
Figure 4 shows a typical example for two breakpoints. However, as we discussed
in Section 4 of the main paper and Section 3 of the supplementary material, more
breakpoints introduce more hardware overhead, we suggest using one breakpoint
on weights to maintain the simplicity of the inference algorithm and the hard-
ware implementation.

Fig. 4. Quantization error 1
C(b−1)

E(ε2pw; b,m,p) of PWLQ (m = 3) with two break-
points under Gaussian distribution assumption. Left: 3D surface plot. Right: 2D con-
tour plot.

2 Activation Quantization

In this section, we present more experimental results of activation quantization.

2.1 Activation Ranges

Before applying quantization to activations, we first need to find the activation
range boundaries [rl, ru]. These ranges (∆ = ru − rl) introduce two sources of
error to the activation quantization: one is from the clipping of outliers, and
another one is from the affine projection of floating-point to low-precision repre-
sentations. Shorter quantization ranges increase the clipping error and decrease
the projection error. Conversely, longer quantization ranges decrease the clipping
error but increase the projection error. Therefore, a good quantization method
on activations should balance the quantization error of clipping and projection.

We compare here the top-k median and percentile-based approaches to clip
the activation ranges. As explained in the main paper, the top-k median method
computes the median of the top-k smallest and top-k largest of the sorted acti-
vation values Xsort, i.e., rl = median(Xsort[: k]) and ru = median(Xsort[−k :]).
As opposed to computing the median, the percentile-based approach utilizes



6 J. Fang et al.

a parameter γ to determine the range, i.e., rl = γ-th percentile of Xsort and
ru = (1− γ)-th percentile of Xsort.

We show the experimental results for k = 5, 10, 20 and γ = 0.1, 0.01, 0.001 in
Table 3. In most of the cases (5 out of 9), the top-10 median method achieves
the best accuracy among all six configurations. Therefore, we only report the
results obtained from the top-10 median method in this work.

Table 3. Top-1 accuracy (%) of different clipping methods for activation ranges.
Weights are quantized per-channel into 4, 6, or 8 bits using PWLQ, activations are
uniformly quantized per-layer into 8 bits

Method Parameter
Inception-v3 (77.49) ResNet-50 (76.13) MobileNet-v2 (71.88)
8-bit 6-bit 4-bit 8-bit 6-bit 4-bit 8-bit 6-bit 4-bit

Top-k
Median

k = 5 77.50 77.41 75.81 76.07 75.95 74.18 71.66 70.83 54.25
k = 10 77.52 77.42 75.75 76.09 76.05 74.28 71.59 70.82 54.34
k = 20 77.45 77.32 75.71 76.12 75.99 74.23 71.66 70.90 54.23

Percentile
Based

γ = 0.1 75.85 75.78 73.78 75.27 75.26 73.29 70.91 70.12 51.91
γ = 0.01 77.31 77.30 75.51 76.04 75.95 74.13 71.53 70.76 54.02
γ = 0.001 77.53 77.47 75.76 76.10 75.96 74.22 71.67 70.72 54.27

2.2 PWLQ on Activations

Once we have the activation ranges, we can apply PWLQ on activations. We
show the comparison results of applying uniform quantization and PWLQ only
on activations in Table 4. In addition, we also provide the experimental results of
applying PWLQ on both weights and activations in Table 5. Again, our PWLQ
achieves notable superior performance against uniform quantization at a cost of
hardware overhead.

Table 4. Top-1 accuracy (%) of different quantization methods for activations. Weights
are uniformly quantized per-channel into 8 bits with bias correction, activations are
quantized per-layer into 4, 6, or 8 bits

W/A Method
Inception-v3 (77.49) ResNet-50 (76.13) MobileNet-v2 (71.88)
8/8 8/6 8/4 8/8 8/6 8/4 8/8 8/6 8/4

Uniform / Uniform 77.52 76.86 63.36 76.14 75.61 62.35 71.58 67.64 1.41
Uniform / PWLQ 77.53 77.45 75.95 76.15 76.09 75.27 71.76 71.40 67.14

Similar to the case of applying PWLQ on weights as we discussed in the main
paper, applying PWLQ only on activations with one breakpoint requires two
separate computational paths on each non-overlapping activation region. While
applying PWLQ on both weights and activations, we require computational paths



Supplementary Material of Post-Training PWLQ for DNNs 7

Table 5. Top-1 accuracy (%) of different quantization methods for both weights and
activations. Weights are quantized per-channel with bias correciton and activations are
quantized per-layer

W/A Method
Inception-v3 (77.49) ResNet-50 (76.13) MobileNet-v2 (71.88)
8/8 6/6 4/4 8/8 6/6 4/4 8/8 6/6 4/4

Uniform / Uniform 77.52 76.67 31.72 76.14 75.47 59.84 71.58 66.86 0.34
PWLQ / PWLQ 77.53 77.49 74.91 76.12 76.08 74.85 71.84 71.45 63.64

for each combination of weight regions and activation regions. We discuss the
details more precisely in the following.

For the case of applying PWLQ with one breakpoint on both weights W
and activations X, the algorithm breaks the ranges into non-overlapping re-
gions Rw1

, Rw2
for weights and Rx1

, Rx2
for activations. We set offsets zw1

=
0, zw2 = pw, zx1 = 0, zx2 = px and denote scaling factors by sw1 , sw2 , sx1 , sx2

in Rw1 , Rw2 , Rx1 , Rx2 , respectively. We also define by 〈·, ·〉Rwi,xj
the associated

partial vector inner product, and Wqi , Xqj the associated quantized integer vec-
tor of W,X in region Rwi

, Rxj
for i = 1, 2 and j = 1, 2. Then each combination

of weight region Rwi
and activation region Rxj

has a computational path Pi,j ,
which is calculated as:

Pi,j = 〈swi
Wqi + zwi

I, sxj
Xqj + zxj

I〉Rwi,xj

= C1,i,j〈Wqi , Xqj 〉Rwi,xj
+ C2,i,j〈Xqj , I〉Rwi,xj

+ C3,i,j ,
(3)

where C1,i,j = swisxj , C2,i,j = zwisxj and C3,i,j = swizxj 〈Wqi , I〉Rwi,xj
+

zwi
zxj
〈I, I〉Rwi,xj

are constant terms that can be pre-computed offline.

As indicated by (3), when C1,i,j and C2,i,j are non-zeros, each path Pi,j re-
quires two accumulators for the terms of 〈Wqi , Xqj 〉Rwi,xj

and 〈Xqj , I〉Rwi,xj
.

However, note that the offsets zw1
= 0 and then C2,1,j = zw1

sxj
= 0, thus P1,j

only needs one accumulator for 〈Wq1 , Xqj 〉Rw1,xj
. Therefore, in total, applying

PWLQ on both weights and activations requires six accumulators: one of each
for P1,1 and P1,2, plus two of each for P2,1 and P2,2. Compared to applying
PWLQ only on weights, it needs three additional accumulators for supporting
PWLQ also on activations, which translates to more hardware overhead. Apply-
ing PWLQ with multiple breakpoints on both weights and activations can be
extended similarly.

3 Hardware Implementation

In this section, we describe how PWLQ can be applied on a MAC-based DNN
accelerator. First, we explain the operation of a uniformly quantized accelerator
and then we extend it to support PWLQ.

Figure 5 (a) shows the structure of an accelerator consisting of the 2D array
of MAC units and a re-scaling unit. The MAC array has nrow rows and ncol



8 J. Fang et al.

Fig. 5. MAC-based DNN accelerator for uniform quantization

columns that implement an outer product. The accelerator computes nrow pixels
of ncol output channels in each round by decomposing it into a sequence of outer
products and then sums the products together. The re-scaling unit consists of
multiple floating-point (FP) operators to recover the FP results.

The weights and input activations are broadcast from the top and the left
side of the accelerators and their products are accumulated into the accumulator
inside each MAC unit (see Figure 5 (b)). Once all the pairs of input activations
and their corresponding weights are broadcast, the result will be sent to the
re-scaling unit, where an affine function is applied, using FP operators, to the
accumulated value for recovering its FP values.

As shown in Figure 5 (b), an accumulator consists of two registers, one for
accumulating the current result and one that holds the result of the prior round
and serves as the input to the re-scaling unit. This approach increases efficiency,
as the MAC unit does not need to wait for re-scaling unit to process its result.
Consequently, it enables optimizing the number of FP operators in the re-scaling
unit. For each MAC, the re-scaling unit is only required after multiple cycles of
accumulations. Thus, MAC units can share a limited number of FP operators.
The number of accumulation cycles might be different for different layers. If the
number of accumulation cycles is larger than ncycle in most cases, then re-scaling
unit requires nrow×ncol

ncycle
FP operators to execute, without causing any stall.

PWLQ keeps the organization of the accelerator intact, however, it imposes
overhead in each unit, as follows (see Figure 6):

(1) Besides broadcasting weight and activation values, PWLQ requires broad-
casting their corresponding regions.

(2) For each of the extra regions we need to allocate two accumulation registers,
as each region has its own offset value. The first one is to accumulate the
product value for this region (product accumulator). The second one is to
add all the activations that their corresponding weights belong to this region



Supplementary Material of Post-Training PWLQ for DNNs 9

Fig. 6. MAC-based DNN accelerator for PWLQ

(offset accumulator). In addition, we need to perform these two accumula-
tions in parallel to compute one MAC operation, per MAC unit per cycle.
As a result, each unit also has two adders (See Figure 6 (b)). The region
ID is used to select the accumulators without increasing the multiplier’s bit-
width. The selection is done with multiplexers that are negligible unless we
have many regions. The number of multiplied regions in the output, denoted
as nregion, equals the multiplication of the number of regions of activation
tensor and the number of regions of weight tensor.

(3) PWLQ requires 2× nregion times more bandwidth between MAC units and
re-scaling unit to fetch the values of the two registers allocated per region.

(4) Finally, PWLQ needs 2×nregion times more FP operators in re-scaling units
to support re-scalings explained in computational paths P1 and P2 in the
main paper.

In the end, we simulate the energy and latency impact on the DNN accel-
erators described above for ResNet-50. We summarize the results in the table
below for 8GBps and 16GBps available memory bandwidth configurations. In
particular, compared to 8-bit uniform quantization on weights, 4-bit PWLQ can
achieve 0.22× energy savings and 1.46× latency speedup at 8GBps available
memory bandwidth configuration.

Table 6. Hardware impact for uniform quantization and PWLQ on weights

Weight Quantization Method 8-bit Uniform 4-bit Uniform 4-bit PWLQ

Top-1 accuracy (%) 76.14 72.45 75.62

Normalized Energy Consumption 1.00× 0.73× 0.78×
Normalized Latency Speedup (8GBps) 1.00× 1.73× 1.46×

Normalized Latency Speedup (16GBps) 1.00× 1.32× 1.22×


