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Appendix

A1 Assumptions

A1: Θ is finite; l(·, ·) is zero-one loss for binary classification.

The assumption leads to classical discussions on the i.i.d setting in multiple
textbooks (e.g., [16]). However, modern machine learning concerns more than
the i.i.d setting, therefore, we need to quantify the variations between train and
test distributions. Analysis of domain adaptation is discussed [2], but still relies
on the explicit knowledge of the target distribution to quantify the bound with
an alignment of the distributions. The following discussion is devoted to the
scenario when we do not have the target distribution to align.

Since we are interested in the θ? instead of the θ?(D), we first assume Θ is
large enough and we can find a global optimum hypothesis that is applicable to
any distribution, or in formal words:

A2: L(θ?;D) = L(θ?(D);D) for any D.

This assumption can be met when the conditional distribution P(Y(D)|Z(D)) is
the same for any D.

e.g., The true concept of “cat” is the same for any collection of images.

The challenge of cross-domain evaluation comes in when there exists multiple
optimal hypothesis that are equivalently good for one distribution, but not every
optimal hypothesis can be applied to other distributions.

e.g., For the distribution of picture book, “cats have chubby faces” can predict
the true concept of “cat”. A model only needs to learn one of these signals
to reduce training error, although the other signal also exists in the data.

The follow-up discussion aims to show that RSC can force the model to learn
multiple signals, so that it helps in cross-domain generalization.

Further, Assumption A2 can be interpreted as there is at least some features
z that appear in every distributions we consider. We use i to index this set
of features. Assumption A2 also suggests that zi is i.i.d. (otherwise there will
not exist θ?) across all the distributions of interest (but z is not i.i.d. because
z−i, where −i denotes the indices other than i, can be sampled from arbitrary
distributions).

e.g., z is the image; zi is the ingredients of the true concept of a “cat”, such as
ears, paws, and furs; z−i is other features such as “sitting by the window”.

We use O to specify the distribution that has values on the ith, but 0s else-
where. We introduce the next assumption:

A3: Samples of any distribution of interest (denoted asA) are perturbed version
of samples from O by sampling arbitrary features for z−i: EA[ES [z]] = EO[z]
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Notice that this does not contradict with our cross-domain set-up: while
Assumption A3 implies that data from any distribution of interest is i.i.d (oth-
erwise the operation EA[] is not valid), the cross-domain difficulty is raised when
only different subsets of A are used for train and test. For example, considering
A to be a uniform distribution of [0, 1], while the train set is uniformly sampled
from [0, 0.5] and the test set is uniformly sampled from (0.5, 1].

A2 Proof of Theoretical Results

A2.1 Corollary 1

Proof. We first study the convergence part, where we consider a fixed hypothesis.
We first expand

|L(θ̂RSC(S);S)− L(θ?RSC(S);D)|

= |L(θ̂RSC(S);S)− L(θ̂RSC(S);D) + L(θ̂RSC(S);D)− L(θ?RSC(S);D)|

≤ |L(θ̂RSC(S);S)− L(θ?RSC(S);D)|+ |L(θ?RSC(S);D)− L(θ?RSC(S);D)|

We first consider the term |L(θ?RSC(S);S) − L(θ?RSC(S);D)|, where we can
expand

|L(θ?RSC(S);S)− L(θ?RSC(S);D)| ≤ 2|L(θ?RSC(S);S)− L(θ?RSC(S);O)|

because of Assumption A4.
Also, because of Assumption A4, if samples in S are perturbed versions

of samples in O, then samples in O can also be seen as perturbed versions of
samples in S, thus, Condition 6 can be directly re-written into:

|L(θ?RSC(S);S)− L(θ?RSC(S);O)| ≤ ξ(p),

which directly leads us to the fact that |L(θ?RSC(S);S)−L(θ?RSC(S);D)| has the
expectation 0 (A4) and bounded by [0, ξ(p)].

For |L(θ̂RSC(S);S)− L(θ?RSC(S);S)|, the strategy is relatively standard. We
first consider the convergence of a fixed hypothesis θRSC, then over n i.i.d sam-
ples, the empirical risk (L̂(θRSC)) will be bounded within [0, 1] with the expec-
tation L(θRSC).

Before we consider the uniform convergence step, we first put the two terms
together and apply the Hoeffding’s inequality. When the random variable is with
expectation L(θRSC) and bound [0, 1 + 2ξ(p)], we have:

P(|L̂(θRSC;S)− L(θRSC;D)| ≥ ε) ≤ 2 exp(− 2nε2

(2ξ(p) + 1)2
)

Now, we consider the uniform convergence case, where we have:

P( sup
θRSC∈ΘRSC

|L̂(θRSC;S)− L(θRSC;D)| ≥ ε) ≤ 2|ΘRSC| exp(− 2nε2

(2ξ(p) + 1)2
)

Rearranging these terms following standard tricks will lead to the conclusion.
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A2.2 Corollary 2

Proof. Since we only concern with iteration t, we drop the subscript of zt and
z̃t. We first introduce another shorthand notation

h(θ̂RSC(t+ 1), z) :=
∑
〈zt,y〉

l(f(z; θ̂RSC); y)

We expand

Γ (θ̂RSC(t+ 1)) =|h(θ̂RSC(t+ 1), z)− h(θ̂RSC(t+ 1), z̃)|

=|h(θ̂RSC(t+ 1), z)− h(θ̂RSC(t), z̃) + h(θ̂RSC(t), z̃)− h(θ̂RSC(t+ 1), z̃)|

=|h(θ̂RSC(t+ 1), z)− h(θ̂RSC(t), z) + h(θ̂RSC(t), z)− h(θ̂RSC(t), z̃)

+ h(θ̂RSC(t), z̃)− h(θ̂RSC(t+ 1), z̃)|

=|h(θ̂RSC(t+ 1), z)− h(θ̂RSC(t), z) + h(θ̂RSC(t), z̃)− h(θ̂RSC(t+ 1), z̃) + Γ (θ̂RSC(t))|

Recall that, by the definition of RSC, we have:

θ̂RSC(t+ 1) = θ̂RSC(t)− ∂h(θ̂RSC(t), z̃)

∂θ̂RSC(t)
η = θ̂RSC(t)− g̃η

We apply Taylor expansion over h(θ̂RSC(t+1), ·) with respect to θ̂RSC(t) and
have:

h(θ̂RSC(t+ 1), ·) =h(θ̂RSC(t), ·) +
∂h(θ̂RSC(t), ·)
∂θ̂RSC(t)

(θ̂RSC(t+ 1)− θ̂RSC(t))

+
1

2

∂2h(θ̂RSC(t), ·)
∂2θ̂RSC(t)

||θ̂RSC(t+ 1)− θ̂RSC(t)||22 + σ

=h(θ̂RSC(t), ·)− ∂h(θ̂RSC(t), ·)
∂θ̂RSC(t)

g̃η +
1

2

∂2h(θ̂RSC(t), ·)
∂2θ̂RSC(t)

||g̃η||22 + σ,

where σ denotes the higher order terms.
Assumption A6 conveniently allows us to drop terms regarding η2 or higher

orders, so we have:

h(θ̂RSC(t), ·)− h(θ̂RSC(t+ 1), ·) =
∂h(θ̂RSC(t), ·)
∂θ̂RSC(t)

g̃η (8)

Finally, when · is replaced by z and z̃,
we have:

h(θ̂RSC(t), z̃)− h(θ̂RSC(t+ 1), z̃) =
∂h(θ̂RSC(t), z̃)

∂θ̂RSC(t)
g̃η = ||g̃||22η
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and

h(θ̂RSC(t), z)− h(θ̂RSC(t+ 1), z) =
1

γt(p)

∂h(θ̂RSC(t), z̃)

∂θ̂RSC(t)
g̃η =

1

γt(p)
||g̃||22η

We write these terms back and get

Γ (θ̂RSC(t+ 1)) =
∣∣( 1

γt(p)
− 1)||g̃||22η + Γ (θ̂RSC(t))

∣∣
We can simply drop the absolute value sign because all these terms are greater
than zero. Finally, we rearrange these terms and prove the conclusion.

Additional Experiment

We tested strategies including applying RSC to top layers (conv5), to internal
layers (conv4), and to top + internal layers (conv4 + conv5), and found that
the top layer works the best. We conjecture this behavior is because operating
on high-level feature maps can help the classifier train more effectively.

Layers backbone artpaint cartoon sketch photo Avg↑
conv4 ResNet18 79.91 74.56 74.73 96.13 81.33

conv4+conv5 ResNet18 81.61 76.93 78.48 95.72 83.19
conv5 ResNet18 83.43 80.31 80.85 95.99 85.15

Table A1. Ablation study of applying RSC to internal layers. RSC used the hy-
perparameters selected in above ablation studies:“Top-Gradient”, Feature Dropping
Percentage (33.3%) and Batch Percentage (33.3%).


