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Abstract. In the learning based video compression approaches, it is
an essential issue to compress pixel-level optical flow maps by devel-
oping new motion vector (MV) encoders. In this work, we propose a
new framework called Resolution-adaptive Flow Coding (RaFC) to ef-
fectively compress the flow maps globally and locally, in which we use
multi-resolution representations instead of single-resolution representa-
tions for both the input flow maps and the output motion features of
the MV encoder. To handle complex or simple motion patterns globally,
our frame-level scheme RaFC-frame automatically decides the optimal
flow map resolution for each video frame. To cope different types of mo-
tion patterns locally, our block-level scheme called RaFC-block can also
select the optimal resolution for each local block of motion features. In
addition, the rate-distortion criterion is applied to both RaFC-frame and
RaFC-block and select the optimal motion coding mode for effective flow
coding. Comprehensive experiments on four benchmark datasets HEVC,
VTL, UVG and MCL-JCV clearly demonstrate the effectiveness of our
overall RaFC framework after combing RaFC-frame and RaFC-block for
video compression.

1 Introduction

There is increasing demand for new video compression systems to effectively
reduce redundancy in video sequences. The conventional video compression sys-
tems are based on hand-designed modules such as block based motion estimation
and Discrete Cosine Transform (DCT). Taking advantage of large-scale train-
ing datasets and powerful nonlinear modeling capacity of deep neural networks,
the recent deep video compression methods [17,33, 28] have achieved promis-
ing video compression performance (Please refer to Section 2 for more details
about the related image and video compression methods). Specifically, in the
recent end-to-end deep video compression (DVC) framework [17], all modules
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(e.g., DCT, motion estimation and motion compensation) in the conventional
H.264/H.265 codec are replaced with the well-designed neural networks.

In the learning based video compression approaches such as the aforemen-
tioned DVC framework, it is a non-trivial task to compress pixel-level optical
flow maps. However, such frameworks adopt single representations for both in-
put flow maps and output motion features using a single motion vector (MV)
encoder. This cannot effectively handle complex or simple motion patterns in
different scenes and fast or slow movement of objects. To this end, in this work
we propose a new framework called Resolution-adaptive Flow Coding (RaFC),
which can adopt multi-resolution representations for both flow maps and motion
features and then automatically decide the optimal resolutions at both frame-
level and block-level in order to achieve the optimal rate-distortion trade-off.

At the frame-level, our RaFC-frame scheme can automatically decide the
optimal flow map resolution for each video frame in order to effectively handle
complex or simple motion patterns globally. As a result, for those frames with
complex global motion patterns, high-resolution flow maps containing more de-
tailed optimal flow information are more likely to be selected as the input for
the MV encoder. In contrast, for the frames with simple global motion patterns,
low-resolution optimal flow maps are generally preferred.

Inspired by the traditional codecs [32, 23], in which the blocks with different
sizes are used for motion estimation, we also propose a new scheme RaFC-
block, which can decide the optimal resolution for each block based on the rate-
distortion (RD) criterion when encoding the motion features. As a result, for
the local blocks with complicated motion patterns, our RaFC-block scheme will
use high-resolution blocks containing fine motion features. For the blocks within
smooth areas, our RaFC-block scheme prefers low-resolution blocks with coarse
motion features in order to save bits for encoding their motion features without
substantially sacrificing the distortion. In addition, we also propose an overall
RaFC framework by combining the two newly proposed schemes RaFC-frame
and RaFC-block.

We perform comprehensive experiments on four benchmark datasets HEVC
Class E, VTL, UVG and MCL-JCV. The results clearly demonstrate our overall
RaFC framework outperforms the baseline algorithms including H.264, H.265
and DVC. Our contributions are summarized as follows:

— To effectively handle complex or simple motion patterns globally, we adopt
the multi-resolution representations for the flow maps, in which the optimal
resolution at the frame-level can be automatically decided for our method
RaFC-Frame based on the RD criterion.

— Using multi-resolution representations for motion features, we additionally
propose the RaFC-block method to automatically decide the optimal resolu-
tion at the block-level based on the RD criterion, which can effectively cope
with different types of local motion patterns.

— Our overall RaFC framework after combining RaFC-frame and RaFC-block
achieves the state-of-the-arts video compression performance on four bench-
mark datasets including HEVC Class E, VTL, UVG and MCL-JCV.
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2 Related Work

2.1 Image Compression

Transform-based image compression methods can efficiently reduce the spa-
tial redundancy. Currently, those approaches (e.g., JPEG [29], BPG [7] and
JPEG2000 [24]) are still the most widely used image compression algorithms.
Recently, the deep learning based image compression methods [26, 27,5, 6, 25, 14,
3,16, 21,4] have been proposed and achieved the state-of-the-arts performance.
The general idea of deep image compression is to transform input images into
quantized bit-streams, which can be further compressed through lossless coding
algorithms. To achieve this goal, some methods [27, 14, 26] directly employed re-
current neural networks (RNNs) to compress the images in a progressive manner.
Toderici et al. [26] firstly introduced a simple RNN-based approach to compress
the image and further proposed a method [27], which enhances the performance
by progressively compressing reconstructed residual information. Johnston et
al. [14] also improved Toderici’s work by introducing a new objective loss. Other
popular approaches use an auto-encoder architecture [5, 6, 19, 25]. Balle et al. [5]
introduced a continuous and differentiable proxy for the rate-distortion loss and
further proposed a variational auto-encoder based compression algorithm [6].

Recently, some methods [6,19] focus on predicting different distribution in
different spatial area. And Li et al. [16] introduced the importance map to reduce
the total binary codes to transmit. All such methods need to transmit the full-
resolution feature map to the decoding stage. Our proposed method selects the
most optimal resolution at both frame-level and block-level in the encoding side,
which saves a lot of bits.

2.2 Video Compression

Traditional video compression algorithms, such as H.264 [32] and H.265 [23],
adopted the hand-crafted operations for motion estimation and motion com-
pensation for inter-frame prediction. Even though they can successfully reduce
temporal redundancy of video data, those compression algorithms are limited in
compression performance as they cannot be jointly optimized.

With the success of deep learning based motion estimation and image com-
pression approaches, some attempts have been made to use neural networks for
video compression [28, 33, 8, 34], in which the neural networks are used to replace
the modules from the conventional approach. The work in [8] proposed a block
based approach, while Tsai et al. [28] utilized an auto-encoder approach to com-
press residual information from H.264. Wu et al. [33] predicted and reconstructed
video frames by using interpolation. While the above works have achieved re-
markable performance, they cannot be trained in an end-to-end fashion, which
limits their performance.

Recently, more deep video compression methods [17,18, 11,22, 9] have been
proposed. Lu et al. [17] proposed the first end-to-end deep learning video com-
pression (DVC) framework, which replaces all the key components of the tra-
ditional video compression codec with deep neural networks. Rippel et al. [22]
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proposed to maintain a state, which contains the past information, compressed
motion information and residual information for video compression. Djelouah
et al. [9] proposed an interpolation based video compression approach, which
combines motion compression and image synthesis in a single network. In these
works, optical flow information plays an essential role. In order to achieve rea-
sonable compression performance, the state-of-the-art optical flow estimation
networks [10,13] have been adopted to provide accurate motion estimation.
However, as these optical flow estimation networks were designed for gener-
ating accurate full-resolution motion maps, they are not optimal for the video
compression task. Recently, Habibian et al. [12] proposed a 3D auto-encoder ap-
proach without requiring optical flow for motion compensation. However, their
algorithm is still limited for capturing fine scale motions.

In contrast to these works, we propose a new framework RaFC to effectively
compress optical flow maps, and it can be trained in an end-to-end fashion.

3 Methodology

3.1 System Overview

Figure 1(a) provides an overview of the proposed video compression system.
Inspired by the DVC [17] framework, we also use a hybrid coding scheme (e.g.,
motion coding and residual coding). The overall coding procedure is summarized
in the following steps.

Motion coding. We utilize our proposed RaFC method for motion coding.
RaFC consists of three modules, motion estimation net, the motion vector (MV)
encoder net, and the MV decoder net. The motion estimation net estimates
the optical flow V; between the input frame X; and the previous reconstructed
frame Xt,l from the decoded frames buffer. Then, the MV encoder net encodes
the optical ﬂow maps as motion features/representations M;, which is further
quantized as M, before entropy coding. Finally, the MV decoder net decodes the
motion representation M, so that the reconstructed flow map V, is obtained.

Motion compensation. Based on the reconstructed optical flow map v,
from the MV decoder and the reference frame Xt,l, a motion compensation
network is employed to obtain the predicted frame X,.

Restdual coding. Denote the residual between the original frame X; and
the predicted frame X; by R;. Like in [17], we adopt a residual encoder network
to encode the residual as the latent representation Y; and then quantized as Y,
for entropy coding. Then the residual decoder network reconstructs the residual
Rt from the latent representation Yt

Frame reconstruction. With the predicted frame X, from the motion com-
pensation net and R, obtained from the residual decoder net, the final recon-
structed frame for X; can be obtained by Xt =X, + ]A%t, which is also sent to
the decoded frames buffer and will be used as the reference frame for the next
frame X;41.

Quantization and Bit Estimation. The generated latent representations
(e.g., fft) should be quantized before sending to the decoder side. To build an
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Fig.1: Overview of our proposed framework and several basic modules used in our
pipeline (a), the detailed motion coding modules in our frame-level scheme RaFC-
frame (b) and our block-level scheme RaFC-block (c). In RaFC-frame (dashed yellow
box), the “Motion Estimation Net” will generate two optical flow maps V' and V;?
with different resolutions and our method automatically select the optimal resolution
(see the details in section 3.3(a)). In RaFC-block, the optical flow map Vi(i.e., V;' or
Vf) is transformed to multi-scale motion features m, and m?, and we will select the
most optimal resolution for each block by using the representations from either m;}
or m? to construct the reorganized motion feature Mt, which will be used to obtain
the reconstructed flow map V; (see the details in section 3.3(b)). In (c), Conv(3,128,2)
represents the convolution operation with the kernel size of 3x3, the output channel
of 128 and the stride of 2. Each convolution with the stride of 1 is followed by a
Leaky ReLU layer. Two masks Mask; and Masks are only used for “Motion Feature
Reorganization” and are not used for “Indicator Map Generation” (see section 3.3(b)
for more details).

end-to-end optimized system, we follow the method in [6] and add uniform noise
to approximate quantization in the training stage. Besides, we use the bitrate
estimation network in [6] to estimate the entropy coding bits.

In our proposed scheme, all the components in Figure 1(a) are included in
the encoder side, and only the MV decoder net, motion compensation net and
residual decoder net are used in the decoder side.

3.2 Problem Formulation

We use X = {X1, Xa, ..., X¢—1, X3, ...} to denote the input video sequence to be
compressed, where X, € RW*H*C represents the frame at time step t. W, H, C
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represent the width, the height and the number of channels (i.e., C = 3 for RGB
videos). Given the input video sequences, the video encoder will generate the
corresponding bitstreams, while the decoder reconstructs the video sequences by
using the received bitstreams. To achieve highly efficient compression, the whole
video compression system needs to generate high quality reconstructed frames
at any given bitrate budget. Therefore, the objective of the learning based video
compression system is formulated as follows,

RD = R+ AD = (H(M,) + H(Y})) + Md(Xy, X;), (1)

The term R in Eq. (1) denotes the number of bits used to encode the frame.
R is calculated by adding up the number of bits H(M;) for encoding the flow
information and the number of bits H(Y;) for encoding the residual informa-
tion. D = d(Xt,Xt) denotes the distortion between the input frame and the
reconstructed frame, where d(-) represents the metric (mean square error or
MS-SSIM [31]) for measuring the difference between two images.

In the traditional video compression system, the rate-distortion optimization
(RDO) technique is widely used to select the optimal mode for each coding block.
The RDO procedure is formulated as follows,

M = argmin RD; (2)
ieC
where RD; represents the RD value of the i* mode, and C represents the can-
didate modes. The RDO procedure will select the optimal mode M with the
minimum rate-distortion (RD) value to achieve highly efficient video coding.

However, this basic technique is not exploited in the state-of-the-art learning
based video compression systems. In this work, we propose the RaFC framework
to effectively compress motion information by using multi-resolution represen-
tations for the flow maps and motion features. The key idea in our method is to
use the RDO technique to select the optimal resolution of optical flow maps or
motion features at each block for the current frame.

3.3 Resolution-adaptive Flow Coding (RaFC)

In this section, we introduce our RaFC scheme for motion compression and
present how to select the optimal flow map or motion features by using the
RDO technique based on the RD criterion.

(a) Frame-level scheme RaFC-frame

As shown in Figure 1(b), given the input frame X; and its corresponding
reference frame X;_; from the decoded frames buffer, we utilize the motion
estimation network to generate the multi-scale flow maps. Taking advantage of
the existing pyramid architecture in Spynet [20] in our work, we generate two
flow maps V;! and V;? with the resolutions of W x H and % X %7 respectively.
While more resolutions can be readily used in our RaFC-frame method, we
observe that our RaFC-frame scheme based on two-scale optical flow maps has
already been able to achieve promising results.



Improving Deep Video Compression by Resolution-adaptive Flow Coding 7

2 27
h

i

i 8 X Conv : i 4 x (Deconv + Conv) !
= Lia) Zia)
mt RN Q >
C1ip i
Avg-poolin Upsamplin
A~ A
mg Q mtﬂ

Fig.2: Generation of the indicator map. The network structures of 8 x Conv and
4 x (Deconv + Conv) are provided in Figure 1(c). For better illustration, one channel
is shown as an example.

In our proposed frame-level scheme RaFC-frame, the goal is to select the
optimal resolution from the multi-scale optical flow maps for the current frame
in order to handle complex or simple motion patterns globally. According to the
RDO formulation in Eq. (2), we need to calculate the RD values for the two
optical flow maps V,! and V;? respectively. The details are provided below.

Calculating the rate-distortion(RD) value. We take the optical flow
map V2 as an example to introduce how to calculate the RD value. First,
as shown in Figure 1(b), based on the MV encoder and the MV decoder, we
can obtain the reconstructed optical flow map and the corresponding quantized
representatlon M 2. While the resolution of the reconstructed flow map is only
w

5 X %, there is an additional upsampling operation before obtaining Vt ,

the resolutlon of Vt2 is also W x H. After going through the subsequent codlng
procedure, such as the motion compensation unit, the residual encoder unit and
the residual decoder unit (see Section 3.1 for more details), we arrive at the
reconstructed frame Xf and also obtain the corresponding bitstreams from Mtz
and Y?, for motion information and residual information, respectively. There-
fore, based on Eq. (1), we can calculate the RD value for the flow map V;2. We
can similarly calculate the RD value for the flow map V;'. Finally, we select the
optimal flow map with the minimum RD value.

After selecting the optimal flow map of the current frame by using the RDO
technique in Eq. (2), we can update the network parameters by using the loss
function defined in Eq. (1), where Mt, Y} and Xt are obtained based on the
selected flow map (i.e., V! or V;2).

(b) Block-level scheme RaFC-block

Previous learning based video compression systems only use motion features
with fix resolution to represent optical flow information. In H.264 and H.265,
different block sizes are used for motion estimation. To this end, it is necessary
to design an efficient multi-scale motion features in order to handle different
types of motion patterns.
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As shown in Figure 1(c), given the optical flow map V; from one resolution
(i.e. V; can be V;! or V2 from Section 3.3(a)), we firstly feed the optical flow
map V; to generate the multi-scale motion features m; and m?. Here we just
use two-resolution motion features as an example, and our approach can be
readily used for more resolutions (we use three-resolution motion features in our
experiments). Then, the proposed RaFC-block method will select the optimal
resolution of the motion features for each block in the reconstructed frame based
on the RDO technique. Specifically, we proposed a two-step procedure, which is
summarized as follows.

Indicator Map Generation. In Figure 2, we take an input image with the
resolution of 64 x 64 as an example to introduce how to generate the indicator
map with the size of 2 x 2. After four pairs of convolution layers with the strides
of 1 and 2, we can obtain the motion feature m; with the resolution of 4 x 4.
We divide m; as 4 blocks A, B, C and D, and each block represents a 2 x 2
region. Based on m;, we further obtain m? with the resolution of 2 x 2 after
going through another average pooling layer. Then for each block (A, B, C, or
D), we need to decide whether we should choose the 2 x 2 representation from

mj or the 1 x 1 representation from m?. The details are provided below.

After quantizing m] to obtain M}, we will go through four pairs of decon-
volution and convolution layers and the rest coding procedure (e.g. the motion
compensation unit, the residual encoder unit and the residual decoder unit),
we can obtain the final reconstructed image #; with the resolution of 64 x 64
from 7h;. We also quantize m? as 17, and go through an additional upsampling
layer to reach the same size with m}. Then after four pairs of deconvolution and
convolution layers and the rest coding procedure, we can also obtain #? with the
resolution of 64 x 64. We then similarly divide #; and #? as four blocks A, B, C,
and D. For each block in both #} and #?, we can calculate the RD value by using
Eq. (1), where the bit rates are calculated by using the corresponding motion
features and the residual image at one specific block, and the distortion D is
also calculated for this specific block. By choosing the smaller RD value, we can
determine which representation of motion feature (i.e., the 2 x 2 representation
from m; or the 1 x 1 representation from m?) will be used at each block.

In this way, we can obtain the indicator map which represents the optimal
resolution choice at each block. While more advanced approaches can be used
to decide the indicator map, it is worth mentioning that the aforementioned
solution is efficient and achieves promising results (see our results in Section 4).

Motion Feature Reorganization. In our approach, we need to reorganize
the motion representation based on the indicator map. As shown in Figure 3,
given the indicator map and the quantized features, we first obtain the masked
and quantized multi-scale motion features m; and m?. The corresponding lo-
cations without features, which are also masked at the encoder side, are filled
with zeros. Then from bottom to top, m? is first upsampled to the same size of
my, which is then added to 7. In this way, we can obtain the reorganized mo-
tion feature Mt, which exploits the multi-scale motion representations for better

motion compression.
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Fig. 3: Motion feature reorganization with the indicator map. For better illustration,
one channel is shown as an example.

After motion feature reorginzation, we can easily obtain the quantized resid-
ual information Y; and the reconstructed frame X, by following the hybrid coding
scheme in Figure 1(a), which includes the motion compensation unit, the resid-
ual encoder unit and the residual decoder unit. Then the loss function defined
in Eq. (1) will be minimized to update the network parameters.

(c) Our overall RaFC framework by combining both schemes

The frame-level scheme RaFC-frame selects the optimal resolution of optical
flow maps, which is the input of the MV encoder, while the block-level scheme
RaFC-block selects the optimal resolution for motion features at each block,
which is the output of the MV encoder. Therefore, these two techniques are
complementary to each other and can be readily combined.

Specifically, we embed the block-level method RaFC-block into the frame-
level method RaFC-frame. For the first input flow map V', we use the RaFC-
block method to decide the optimal indicator map based on the RD criterion
at the block level, and then output th based on the reorganized motion fea-
ture. After going through the subsequent coding process including the motion
compensation unit, the residual encoder unit and the residual decoder unit, we
finally obtain the reconstructed frame th Based on the distortion between X'tl
and X, and the numbers of bits used for encoding both the reorganized motion
feature and residual information, we can calculate the RD value. For the second
input flow map V;?, we perform the same process and calculate the RD value.
Finally, we choose the optimal mode with the minimum RD value for encoding
motion information of the current frame. Here, the optimal mode includes the
selected optical flow map and the corresponding selected resolution of motion
features at each block for this selected flow map.

After selecting the optimal mode for encoding the motion information of the
current frame, we update all the parameters in our network by minimizing the
objective function in Eq. (1), where the distortion and the numbers of bits used
to encode the motion features and the residual information are obtained for the
selected mode.
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4 Experiment

4.1 Experimental Setup

Datasets. We use the Vimeo-90k dataset [35] to train our framework and each
clip in this dataset consists of 7 frames with the resolution of 448 x 256.

For performance evaluation, we use four datasets: HEVC Class E [23] |
UVG [1], MCL-JCV [30] and VTL [2]. The HEVC Standard Test Sequences
have been widely used for evaluating the traditional video compression meth-
ods, in which the HEVC class E dataset contains three videos with the resolu-
tion of 1280 x 720. The UVG dataset [1] has seven videos with the resolution of
1920 x 1080. The MCL-JCV dataset [30] has been widely used for video quality
evaluation, which has 30 videos with the resolution of 1920 x 1080. For the VTL
dataset [2], we follow the experimental setting in [9] and use the first 300 frames
in each video clip for performance evaluation.

Evaluation Metric. We use PSNR and MS-SSIM [31] to measure the dis-
tortion between the reconstructed and ground-truth frames. PSNR is the most
widely used metric for measuring compression distortion, while MS-SSIM has
been adopted in many recent works to evaluate the subjective visual quality. We
use bit per pixel (Bpp) to denote the bitrate cost in the compression procedure.

Implementation Details. We train our model in two stages. At the first
stage, we set A as 2048, and train our model based on mean square error for
2,000,000 steps to obtain a pre-trained model at high bitrate. At the second
stage, for different A values (A = 256,512,1024 and 2048), we fine-tune the
pretrained model for another 500,000 iterations. To achieve better MS-SSIM
performance, we additionally fine-tune the models from the second stage for
about 80,000 steps by using the MS-SSIM criterion as the distortion term when
calculating the RD values.

Our framework is implemented based on Pytorch with CUDA support. In the
training phase, we set the batch size as 4. We use the Adam optimizer [15] with
the learning rate of le-4 for the first 1,800,000 steps and le-5 for the remaining
steps. It takes about 6 days to train the proposed model.

In our experiments, motion features (1}, m? and mj) with three different
resolutions are used in our RaFC-block module (note 71} can be similarly ob-
tained from 7 as shown in Fig 2). It is noted that one pixel in ), m? and 73
correspond to one block with the resolution of 16 x 16, 32 x 32 and 64 x 64 in
the original optical flow map, respectively.

4.2 Experimental Results

The experimental results on different datasets are provided in Figure 4. In
DVC [17], the hyperprior entropy model [6] is used to compress the flow maps.
However, other advanced methods like the auto-regressive entropy model [19] can
be readily used to compress the flow maps. To this end, we report two results for
our RaFC framework, which are denoted as “Ours” and “Ours*®”. In “Ours”, the
hyperprior entropy model [6] is incorporated in our RaFC framework in order to
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fairly compare our RaFC framework with DVC. In “Ours*”, the auto-regressive
entropy model [19] is incorporated in our RaFC framework to further improve
the video compression performance. We use the traditional compression methods
H.264 [32], H.265 [23] and the state-of-the-art learning-based compression meth-
ods, including DVC [17], ADICCV [9], AH.ICCV [12] and CW_ECCV [33] for
performance comparison. It is noted that CW_ECCYV [33] and AD_ICCV [9] are
B-frame based compression methods, while the others are P-frame based com-
pression methods. For H.264 and H.265, we follow the setting in DVC [17] and
use FFmpeg with the default mode. We use the image compression method [6]
to reconstruct the I-frame.

As shown in Figure 4, our method using the hyperprior entropy model (i.e.,
“Ours”) outperforms the baseline method DVC on all datasets, which demon-
strates it is beneficial to use our newly proposed framework RaFC to compress
the optical flow maps. In other words, it is necessary to choose the optimal reso-
lutions for the optical flow maps and the corresponding motion features in video
compression. When compared with our method using the hyperprior entropy
model (i.e., “Ours”), our method using the auto-regressive entropy model (i.e.,
“Ours™®”) further improves the results, which demonstrates the effectiveness of
the auto-regressive entropy model for flow compression. Our method using the
auto-regressive entropy model [6] achieves the best results on all datasets. Specif-
ically, our method (i.e.,“Ours*®”) has about 0.5dB gain over DVC at 0.1bpp on
the UVG dataset. On the MCL-JCV dataset, our approach (i.e.,“Ours*”) out-
performs the interpolation based video compression method AD_ICCV in terms
of both PSNR and MS-SSIM. In addition, it also achieves about 0.4dB improve-
ment at 0.2bpp over AD_ICCV on the VTL dataset in terms of PSNR. Although
our method is designed for P-frame compression, we can still achieve better com-
pression performance than the B-frame compression methods AD_ICCV and
CW_ECCYV, which demonstrates the effectiveness of our approach.
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Table 1: Percentages of the selected op- Table 2: Percentages of the selected

tical flow map resolutions when using block resolutions when using our

our RaFC-frame scheme at different A RaFC-block scheme at different A\ val-
values. ues.

High resolution|Low resolution| |Block 16 x 16 | 32 x 32 | 64 x 64

(ie., Vi) (ie., V2) resolutions|(i.e., ;)| (i.e., m?)|(ie., m3)

A = 256 38.89% 61.11% A = 256 0.98% | 40.55% | 58.46%

A=512 |  45.14% 54.86% A=512 | 27.18% | 36.69% | 36.11%

A= 1024 57.64% 42.36% A=1024 | 36.44% | 32.27% | 31.28%

A=2048]  63.20% 36.80% A =2048 | 41.91% | 31.02% | 27.06%

4.3 Ablation Study and Model Analysis

Effectiveness of Different Components. In order to verify the effectiveness
of different components in our proposed method, we take the UVG dataset as
an example to perform ablation study. In this section, the hyperprior entropy
model [6] is used in all methods for fair comparison. As shown in Figure 5(a), our
method RaFC-frame outperforms the baseline DVC algorithm and has achieved
0.5dB improvement when compared with DVC at 0.055bpp. We also observe
that our overall framework RaFC by using both RaFC-block scheme and RaFC-
frame scheme achieves better result, which indicates that our overall framework
combining RaFC-frame and RaFC-block can further improve the performance
of RaFC-frame. In other words, it is beneficial to choose the optimal resolution
for both the optical flow maps and the corresponding motion representations.

Model Analysis. In Figure 5(b), we take the HEVC Class E dataset as
an example and show the average PSNR results over all predicted frames (i.e.
)_(t’s) after motion compensation at different Bpps. When compared with the
flow coding method in DVC [17], our overall RaFC framework can compress
motion information in a much more effective way and save up to 70% bits at the
same PSNR when encoding motion information.

Besides, we also report the percentage of bits used to encode motion infor-
mation over the total number of bits for encoding both motion and residual
information at different Bpps when using different A values. And it is obvious
that the percentage drops significantly when comparing our RaFC framework
with the baseline DVC method, which indicates our RaFC framework uses less
bits to encode flow information.

Resolutions Selection at Various Bit Rates. In our approach, we se-
lect the optimal resolution for the optical flow map in RaFC-frame or motion
features in RaFC-block. To investigate the effectiveness of our method, we pro-
vide the percentage of each selected resolution over the total number resolutions
at various bit rates. From Table 1 and Table 2, we observe that low-resolution
flow maps and large size blocks take a large portion at lower bit rates (i.e.,
when A is small). At higher bit rates (i.e., when X is large), it is more likely
that our methods RaFC-frame and RaFC-block select high resolution flow maps
and small block sizes, respectively. This observation is consist with the tradi-
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(a) The 6th frame from the HEVC (b) The reconstructed optical flow
Class E dataset. map and the corresponding block se-
lection result by using our method

RaFC-block.

Fig. 6: Visualization of the selected block resolutions by using our method RaFC-block.

tional video compression methods, where large size blocks are often preferred
for motion estimation at low bit rates in order to save bits for motion coding.

Visualization of Selected Blocks. In Figure 6, we visualize the selected
blocks with different resolutions by using our method RaFC-block. Figure 6(a)
shows the 6th frame of the 1st video from the HEVC Class E dataset and Fig-
ure 6(b) represents the reconstructed optical flow map of this frame and the
corresponding block selection result by using our method RaFC-block. It can
be observed that the small size blocks are often preferred from areas around
the moving object boundaries and large size blocks are always preferred in the
smooth areas.

5 Conclusion

In this work, we have proposed a Resolution-adaptive Flow Coding (RaFC)
method to efficiently compress the motion information for video compression,
which consists of two new schemes RaFC-frame at the frame-level and RaFC-
block at the block-level. Our method RaFC-frame can handle complex or simple
motion patterns globally by automatically selecting the optimal resolutions from
multi-scale flow maps, while our method RaFC-block can cope with different
types of motion patterns locally by selecting the optimal resolutions of multi-
scale motion features at each block. By performing comprehensive experiments
on four benchmark datasets, we show that our RaFC framework outperforms
the recent state-of-the-art deep learning based video compression methods. In
our future work, we will use the proposed framework for encoding residual in-
formation and study more efficient block partitioning strategy.
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