
Exploiting Deep Generative Prior for
Versatile Image Restoration and Manipulation

Supplementary Material

Xingang Pan1, Xiaohang Zhan1, Bo Dai1,
Dahua Lin1, Chen Change Loy2, and Ping Luo3

1 The Chinese University of Hong Kong
2 Nanyang Technological University 3 The University of Hong Kong

In this supplementary material, we provide more qualitative results and the
implementation details in our experiments. We also recommend readers to refer
to the attached videos for animated restoration and manipulation effects.

1 Qualitative Examples

We extend the figures of the main paper with more examples, as shown from
Fig.1 to Fig.11.

Input Ground truthAutocolorize Ours Input Ground truthAutocolorize Ours

Fig. 1. Colorization. This is an extension of Fig.5 in the main paper.



2 X. Pan et al.

Target (a) Optimize z (b) Encoder (c) Zhu et al. (d) Bau et al. (e) Ours

Fig. 2. Image reconstruction. We compare our method with other GAN-inversion
methods including (a) optimizing latent vector [4, 1], (b) learning an encoder [9], (c) a
combination of (a)(b) [9], and (d) adding small perturbations to early stages based on
(c) [2].

Input Ground truthDIP Ours Input Ground truthDIP Ours

Fig. 3. Inpainting. This is an extension of Fig.6 in the main paper. The proposed
DGP tends to recover the missing part in harmony with the context. Images of the last
row are scratched from the Internet.



Deep Generative Prior 3

Bicubic DIP SinGAN Ours Ground truth Ground truthBicubic DIP SinGAN Ours

Ground truthBicubic DIP SinGAN Ours

Fig. 4. Super-resolution (×4) on 32 × 32 (above) and 64 × 64 (below) size images.
This is an extension of Fig.7 in the main paper.

Target Reconstruction process

Fig. 5. The reconstruction process of DGP in various image restoration tasks.



4 X. Pan et al.

Target (a) MSE (b) Perceptual (c) Discriminator 
(d) Discriminator 

 + progressive

`

Fig. 6. Comparison of different loss types and optimization techniques in colorization
and super-resolution, including (a) MSE, (b) perceptual loss with VGG network [6], (c)
discriminator feature matching loss, and (d) combined with progressive reconstruction.

Target

(a) MSE

(b) Perceptual

(c) Discriminator 

(d) Discriminator 

 + progressive

Reconstruction process

Fig. 7. Comparison of different loss types and optimization techniques when fine-tuning
the generator to restore the image.



Deep Generative Prior 5

Target Reconstruction Random jittering effects

Fig. 8. Random jittering. This is an extension of Fig.11 in the main paper.



6 X. Pan et al.

Target A Reconstruction A Interpolation Target BReconstruction B

Fig. 9. Imaeg morphing. This is an extension of Fig.12 in the main paper.



Deep Generative Prior 7

Target A Reconstruction A Interpolation Target BReconstruction B

(c) Optimizing z and θ, MSE loss

(a) DIP

(b) Optimizing latent vector z only

(d) Optimizing z and θ, Perceptual loss

(e) Optimizing z and θ, Discriminator loss (ours)

Fig. 10. Comparison of various methods in image morphing, including (a) using DIP,
(b) optimizing the latent vector z of the pre-trained GAN, and (c)(d)(e) optimizing
both z and the generator parameter θ with (c) MSE loss, (d) perceptual loss with
VGG network [6], and (e) discriminator feature matching loss. (b) fails to produce
accurate reconstruction while (a)(c)(d) could not obtain realistic interpolation results.
In contrast, our results in (e) are much better.



8 X. Pan et al.

Fig. 11. Category transfer. The red box shows the target, and the blue box shows
the reconstruction. Others are category transfer results.



Deep Generative Prior 9

2 Implementation Details

Architectures. We adopt the BigGAN[3] architechtures of 1282 and 2562 res-
olutions in our experiments. For the 1282 resolution, we use the best setting of
[3], which has a channel multiplier of 96 and a batchsize of 2048. As for the
2562 resolution, the channel multiplier and batchsize are respectively set to 64
and 1920 due to limited GPU resources. We train the GANs on the ImageNet
training set, and the 1282 and 2562 versions have Inception scores of 103.5 and
94.5 respectively. Our experiments are conducted based on PyTorch [8].

Initialization. In order to ease the optimization goal of Eq.4 in the paper, it
is a good practice to start with a latent vector z that produces an approximate
reconstruction. Therefore, we randomly sample 500 images using the GAN, and
select the nearest neighbor of the target image under the discriminator feature
metric as the starting point. Since encoder based methods tend to fail for de-
graded input images, they are not used in this work.

Note that in BigGAN, a class condition is needed as input. Therefore, in order
to reconstruct an image, its class condition is required. This image classification
problem could be solved by training a corresponding deep network classfier and
is not the focus of this work, hence we assume the class label is given except for
the adversarial defense task. For adversarial defense and images whose classes
are not given, both the latent vector z and the class condition are randomly
sampled.

Fine-tuning. With the above pre-trained BigGAN and initailized latent vector
z, we fine-tune both the generator and the latent vector to reconstruct a target
image. As the batchsize is only 1 during fine-tuning, we use the tracked global
statistics (i.e., running mean and running variance) for the batch normalization
(BN) [5] layers to prevent inaccurate statistic estimation. The discriminator of
BigGAN is composed of a number of residual blocks (6 blocks and 7 blocks for
1282 and 2562 resolution versions respectively). The output features of these
blocks are used as the discriminator loss, as described in Eq.(6) of the paper.
In order to prevent the latent vector from deviating too much from the prior
gaussian distribution, we add an additional L2 loss to the latent vector z with
a loss weight of 0.02. We adopt the ADAM optimizer [7] in all our experiments.
The detailed training settings for various tasks are listed from Table.1 to Table.6,
where the parameters in these tables are explained below:

Blocks num.: the number of generator blocks to be fine-tuned. For example, for
blocks num.=1, only the shallowest block is fine-tuned.

D loss weight : the factor multiplied to the discriminator loss.

MSE loss weight : the factor multiplied to the MSE loss.

Iterations: number of training iterations of each stage.

G lr : the learning rate of the generator blocks.

z lr : the learning rate of the latent vector z.

For inpainting and super-resolution, we use a weighted combination of discrimi-
nator loss and MSE loss, as the MSE loss is beneficial for the PSNR metric. We



10 X. Pan et al.

Table 1. The fine-tuning setting of col-
orization. The explanation of these param-
eters are in the main text

Stage 1 2 3 4 5

Blocks num. 1 2 3 4 5
D loss weight 1 1 1 1 1
MSE loss weight 0 0 0 0 0
Iterations 200 200 300 400 300
G lr 5e-5 5e-5 5e-5 5e-5 2e-5
z lr 2e-3 1e-3 5e-4 5e-5 2e-5

Table 2. The fine-tuning setting of
inpainting. In this task we also fine-
tune the class embedding apart from
the generator blocks

Stage 1 2 3 4

Blocks num. 5 5 5 5
D loss weight 1 1 0.1 0.1
MSE loss weigh 1 1 100 100
Iterations 400 200 200 200
G lr 2e-4 1e-4 1e-4 1e-5
z lr 1e-3 1e-4 1e-4 1e-5

Table 3. The fine-tuning setting of super-
resolution. This setting is biased towards
MSE loss

Stage 1 2 3 4 5

Blocks num. 1 2 3 4 5
D loss weight 1 1 1 0.5 0.1
MSE loss weight 1 1 1 50 100
Iterations 200 200 200 200 200
G lr 2e-4 2e-4 1e-4 1e-4 1e-5
z lr 1e-3 1e-3 1e-4 1e-4 1e-5

Table 4. The fine-tuning setting of super-
resolution. This setting is biased towards
discriminator loss

Stage 1 2 3 4 5

Blocks num. 1 2 3 4 5
D loss weight 1 1 1 1 1
MSE loss weight 1 1 1 1 1
Iterations 200 200 200 200 200
G lr 5e-5 5e-5 2e-5 1e-5 1e-5
z lr 2e-3 1e-3 2e-5 1e-5 1e-5

Table 5. The fine-tuning setting of adver-
sarial defense. The fine-tuning is stopped
if the MSE loss reaches 5e-3

stage 1 stage 2

Blocks num. 6 6
D loss weight 0 0
MSE loss weight 1 1
Iterations 100 900
G lr 2e-7 1e-4
z lr 5e-2 1e-4

Table 6. The fine-tuning setting of ma-
nipulation tasks including random jitter-
ing, image morphing, and category trans-
fer

stage 1 stage 2 stage 3

Blocks num. 5 5 5
D loss weight 1 1 1
MSE loss weight 0 0 0
Iterations 125 125 100
G lr 2e-7 2e-5 2e-6
z lr 1e-1 2e-3 2e-6

also seamlessly replace BN with instance normalization (IN) for the setting in
Table. 2, Table. 3, and Table. 5, which enables higher learning rate and leads
to better PSNR. This is achieved by initialize the scale and shift parameters of
IN with the statistics of the output features of BN. Our quantitative results on
adversarial defense is based on the 2562 resolution model, while those for other
tasks are based on the 1282 resolution models.

References

1. Albright, M., McCloskey, S.: Source generator attribution via inversion. In: CVPR
Workshops (2019)



Deep Generative Prior 11

2. Bau, D., Zhu, J.Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., Torralba, A.:
Seeing what a gan cannot generate. In: ICCV. pp. 4502–4511 (2019)

3. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. In: ICLR (2019)

4. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial
network. In: IEEE transactions on neural networks and learning systems (2018)

5. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448–456 (2015)

6. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV. pp. 694–711. Springer (2016)

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

9. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipu-
lation on the natural image manifold. In: ECCV (2016)


