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Abstract. Coded aperture is a promising approach for capturing the
4-D light field (LF), in which the 4-D data are compressively modulated
into 2-D coded measurements that are further decoded by reconstruction
algorithms. The bottleneck lies in the reconstruction algorithms, result-
ing in rather limited reconstruction quality. To tackle this challenge, we
propose a novel learning-based framework for the reconstruction of high-
quality LFs from acquisitions via learned coded apertures. The proposed
method incorporates the measurement observation into the deep learning
framework elegantly to avoid relying entirely on data-driven priors for
LF reconstruction. Specifically, we first formulate the compressive LF re-
construction as an inverse problem with an implicit regularization term.
Then, we construct the regularization term with an efficient deep spatial-
angular convolutional sub-network to comprehensively explore the signal
distribution free from the limited representation ability and inefficiency
of deterministic mathematical modeling. Experimental results show that
the reconstructed LFs not only achieve much higher PSNR/SSIM but
also preserve the LF parallax structure better, compared with state-of-
the-art methods on both real and synthetic LF benchmarks. In addition,
experiments show that our method is efficient and robust to noise, which
is an essential advantage for a real camera system. The code is publicly
available at https://github.com/angmt2008/LFCA.

Keywords: Light Field, Coded Aperture, Deep Learning, Regulariza-
tion, Observation Model

1 Introduction

Owing to multi-view and depth information embedded in 4-D light fields (LFs), a
large variety of LF based applications have emerged, e.g., image post-refocusing
[25], 3-D reconstruction [34], saliency detection [16], view synthesis [6,11,12,37,
45]. Different from earlier LF capturing approaches, i.e., camera gantry [15] and
camera array [36], portable micro-lens array-based LF cameras [19,27] are more
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Fig. 1: The pipeline of our deep learning-based compressive LF reconstruction
over coded apertures. Our method elegantly incorporates the observation model
of coded measurements into deep learning framework. The left side illustrates
the acquisition of coded measurements by learning apertures, and the right side
shows the reconstruction phase. More details of the reconstruction module are
shown in Fig. 2

convenient and cost-effective for capturing a dense LF. By using a micro-lens
array placed between the main lens and image sensor, the micro-lens array-
based camera records the spatial and angular information of light rays into a
multiplexing sensor with only a single shot. However, due to the limited sensor
resolution, the projection of the 4-D LF into a 2-D image leads to an inevitable
trade-off between spatial and angular resolution. Besides, the large amount of
data of captured LFs poses a great challenge to storage and transmission.

To preserve the LF resolution and simultaneously reduce the data size of
captured LFs, based on a traditional camera, the coded aperture camera was
designed, which modulates light rays through the main lens into one or multiple
coded measurements with the same size as that of the image sensor. Then,
by employing LF reconstruction algorithms, a full 4-D LF can be generated
from coded measurements. Earlier LF reconstruction methods [2, 17, 20, 21, 24,
39], which either require relatively many measurements or use dictionaries, are
limited by the representation ability. Recent deep learning-based methods [7, 9,
23] are able to reconstruct LFs from only a few measurements. However, these
methods are purely data-driven without taking the special characteristics of
LFs into account. That is, they employ networks for general purposes but not
specifically designed for tackling the problem of LF reconstruction from coded
measurements, e.g., the plain convolutional layers, the networks used in the
fully convolutional network (FCN) [18], and the very deep convolutional network
(VDSR) [13], and thus the reconstruction performance is still limited.



Deep Coded Aperture Light Field Imaging 3

In this paper, as shown in Fig. 1, we propose a novel deep learning-based
framework to reconstruct high-quality LFs with measurements from adaptively
learned coded apertures. First, the coded aperture is modeled and learned by a
2-D convolutional layer with specific configurations, denoted as acquisition layer
in the method. Based on the observation model of the coded measurements, we
formulate the LF reconstruction from measurements as an inverse problem with
an implicit regularization term. Then, we construct the regularization term with
a deep spatial-angular convolutional network instead of an deterministic mathe-
matical modeling with a limited representation ability, such that the underlying
complex structure can be comprehensively explored. Consequently, the LF recon-
struction from coded measurements is solved by training the end-to-end network.
Our LF capture and reconstruction method can breakthrough the limitations of
conventional optimization method and simultaneously take full advantage of the
strong representation ability of deep learning. Note that this paper is focused
on developing a novel LF reconstruction method from coded measurements. To-
gether with the experimentally verified robustness of our method against noise
as well as the well constructed hardware platforms of coded aperture LF imaging
in previous works [3,9,17,20,24], there is no technical barrier to implement the
proposed method with a real camera system.

2 Related Work

Based on the inputs, we divide the existing LF reconstruction methods into two
categories: sub-aperture image (SAI)-based reconstruction and coded measurement-
based reconstruction, which will be reviewed as follows.

2.1 LF Reconstruction from SAIs

For SAI-based LF reconstruction, the input consists of a sparse set of SAIs
belonging to a dense LF to be reconstructed. This kind of methods mainly in-
vestigate view synthesis to increase the angular resolution of a sparsely-sampled
LF, which is always fixed into a regular pattern, e.g., four-corner SAIs [12],
borders-diagonal SAIs [30], SAI-pairs [41], or multiplane images [22,44]. Specif-
ically, Shi et al. [30] reconstructed a dense LF from fixed SAI-sampling patterns
by exploiting the sparsity in Fourier domain. Yoon et al. [41] proposed a deep
learning method to synthesize novel SAI between a pair or stack of SAIs. Besides,
input SAIs obtained from different sampling patterns are processed separately
by three sub-networks, which is inefficient for LF super-resolution. Kalantari et
al. [12] used four-corner SAIs as the input of their algorithm. The quality of re-
constructed LFs is rather limited by using a series of hand-crafted features which
are extracted from warped images. In addition, it fails to handle the input only
with a single SAI as the hand-crafted features cannot be obtained. Such a weak-
ness also exists in the method by Wu et al. [38], which reconstructs a dense LF
by carrying out super-resolution on angular dimension of each epipolar plane
image (EPI) of the input LF. Yeung et al. [37] proposed an end-to-end deep
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learning method to reconstruct a dense LF in a coarse-to-fine manner. However,
the method [37] also cannot reconstruct a dense LF from few SAIs. Although
the method proposed by Srinivasan et al. [31] can reconstruct a dense LF from
a single SAI, it is only able to use information from the input SAI, and the
coherence among SAIs of LF is lost. Moreover, the quality of reconstructed LF
by the method relies heavily on the accuracy of depth estimation.

2.2 LF Reconstruction from Coded Measurements

For coded measurement-based LF reconstruction, earlier methods [2, 17, 24, 26]
require relatively many exposures to reconstruct the entire LF. With the in-
troduction of compressive sensing [1], the dense LF can be reconstructed from
coded measurements. Two challenges in LF compressive sensing are the design
of sensing matrix for projecting LF into proper measurements and the algorithm
for inversely reconstructing LF from measurements. Marwah et al. [20] designed
a sensing matrix by using conventional optimization method with an overcom-
plete dictionary. Then, the method in [20] formulates LF reconstruction from
measurements as a basis pursuit denoise problem which is solved by conventional
solvers. Chen et al. [3] constructed a dictionary based on perspective shifting of
center view of an LF. Miandji et al. [21] proposed to aggregate multidimensional
dictionary ensemble to encode and decode LFs efficiently in dictionary-based
compressive sensing. However, the sensing matrix in these model-based methods
has to be carefully designed to make the projection of LF as orthogonal as possi-
ble. Furthermore, a large scale of optimization techniques and training data are
likely used to improve the representing ability of dictionaries.

Recently, deep learning-based LF reconstruction methods were proposed,
which design network architectures to infer LFs from coded measurements by
training with a large amount of LF data. Based on the sensing matrix designed
by [20], Gupta et al. [7] proposed a deep learning-based method for LF compres-
sive sensing. Given coded measurements, the method in [7] employs two plain
network branches to generate two coarse LFs and then fuses them together to
generate the final LF. Nabati et al. [23] improved the sensing matrix which can
modulate both color and angular information of an LF into the 2-D coded mea-
surement. Then, the sensing matrix together with the coded measurements are
fed into an FCN-based network to reconstruct a dense LF. However, since all
these methods use a fixed sensing matrix to modulate LFs, the sensing process
is not flexible enough to extract information from LFs. Furthermore, all these
reconstruction networks are data-driven models without considering the signal
reconstruction principle. Inagaki et al. [9] adopted a 1 × 1 convolutional ker-
nel to simulate the coded aperture process. Then, they employed two sequential
sub-networks to reconstruct a dense LF from coded measurements. The first
sub-network is constructed by a series of stacked convolutional layers while the
second sub-network is a VDSR network [13]. Although all angular information
from different angular locations is selectively blended into coded measurements,
the reconstruction quality is rather limited due to the plain network architecture.
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3 Proposed Method

As shown in Fig. 1, we model the compressive LF reconstruction over coded
apertures within an end-to-end deep learning framework. Specifically, the mea-
surements are obtained by modulating 4-D LFs through a learning-based coded
aperture. For reconstruction, it is formulated as an inverse problem with a
deep spatial-angular regularizer, which elegantly incorporates an LF degrada-
tion model into the deep learning framework. In what follows, we demonstrate
each component in detail.

3.1 Learning Coded Apertures

In the following, we just consider a single color channel of the LF image in
RGB space for simplicity. The other two color channels will be processed in
the same manner. The 4-D LF denoted as L (u, v, x, y) ∈ RM×N×H×W can
be represented with the two-parallel plane parameterization, where {(u, v)|u ∈
[1,M ], v ∈ [1, N ]} and {(x, y)|x ∈ [1, H], y ∈ [1,W ]} are the angular and spatial
coordinates, respectively. As shown in Fig. 1, incident light rays are modulated
when passing through different aperture positions before converging at the image
sensor. Then, the camera captures a 2-D coded measurement Li(x, y) ∈ RH×W

of the LF. Specifically, the 2-D coded measurement can be formulated as

Li(x, y) =

M∑
u=1

N∑
v=1

ai(u, v)L (u, v, x, y), (1)

where ai(u, v) ∈ [0, 1] is the transmittance at aperture position (u, v) in the i-th
capturing of LF.

Based on the formulation, a coded measurement is the weighted summation
of all SAIs. Our method simulates this process by a 2-D convolutional layer with
specific configurations. The input of the layer is the entire 4-D LF while the
output is 2-D coded measurements corresponding to the input LF. In our simu-
lation, the convolutional operation is carried out on u−v plane, i.e., the angular
patch of the input LF, to fuse all M ×N elements in the angular dimension into
desired number of elements. We first shuffle the input LF to let the spatial di-
mension into one axis, i.e., the batch axis during training, to share a same kernel
with all angular patches. By setting a proper kernel size, padding and strides,
the kernel in the acquisition layer is able to fully cover or slide on the angular
patch to obtain desired number of measurements. For example, to capture an
LF with angular resolution 7× 7 into corresponding 1, 2, and 4 measurements,
we set the corresponding kernel size nu × nv to 7× 7, 7× 6 and 6× 6 with zero
padding and one-pixel stride to produce the desired number of measurements.
Besides, we limit the weights into [0, 1] and set bias to 0 in the acquisition layer
corresponding to the physical capturing process during training.

Note that the learned aperture can be realized by a typical programmable
device, e.g., liquid crystal on silicon (LCoS) display, in a real camera imple-
mentation [3, 9, 17, 20, 24]. Moreover, there is the color mask which provides an
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opportunity for modulating both color and angles of incident light rays [23].
Our method can also simulate color LF coded aperture capturing by using three
channels in the convolutional layer to modulate the R, G, B channels of the
input LF simultaneously. The results are demonstrated in Section 4.

3.2 Reconstruction with Deep Spatial-angular Regularization

The observation model. Based on the sensing mechanism in Sec. 3.1, the
observation model of coded aperture measurements can be written as

l = Ax + ε, (2)

where l = [l1; l2; ...; lk] ∈ RkHW is the set of k measurements with li ∈ RHW

(i = 1, 2, ..., k) being vectorial representation of the i-th measurement Li, x ∈
RHWMN is the vectorial representation of the original LF to be reconstructed,
A ∈ RkHW×HWMN denotes the linear degradation/sensing matrix, and ε ∈
RkHW denotes the additive noise.

Prior-driven solution. Since recovering x from l in Eq. (2) is an ill-posed
inverse problem, regularization has to be introduced to constrain the solution
space of x. Thus, the problem of LF reconstruction from measurements can be
generally cast as

min
x

1

2
‖l−Ax‖22 + λJ (x), (3)

where J (·) is the regularization term, and λ is a positive penalty parameter to
balance the two terms.

By introducing an auxiliary variable v ∈ RHWMN , the optimization problem
in Eq. (3) can be decoupled into two sub-problems correspondingly for the data
likelihood term and the regularization term [28,33]:

min
x,v

1

2
‖l−Ax‖22 + λJ (v), s.t. x = v. (4)

We further convert Eq. (4) into an unconstrained problem by moving the equality
constraint into the objective function as a penalty term, i.e.,

min
x,v

1

2
‖l−Ax‖22 + η ‖x− v‖22 + λJ (v), (5)

where η > 0 is a penalty parameter. Based on the half quadratic splitting method
[5,43], the optimization problem in Eq. (5) can be solved by alternatively solving
the following two sub-problems until convergence:

x(t+1) = arg min
x

1

2
‖l−Ax‖22 + η

∥∥∥x− v(t)
∥∥∥2
2
,

v(t+1) = arg min
v

η
∥∥∥x(t+1) − v

∥∥∥2
2

+ λJ (x(t+1)),

(6)
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Fig. 2: The architectures of the proposed iterative framework and the deep
spatial-angular regularization sub-network

where t is the iteration index. For the x-subproblem in Eq. (6), it can be com-
puted with a single step of gradient descent for an inexact solution:

x(t+1) = x(t) − δ[AT(Ax(t) − l) + η(x(t) − v(t))], (7)

where δ > 0 is the parameter controlling the step size. With regard to the
v-subproblem, the solution is the proximity term of J (v) at the point, i.e.,

v(t+1) = D(x(t+1)), (8)

where D(·) denotes the proximal operator with respect to a typical regularization
J (·).

Deep spatial-angular regularization. Due to the high-dimensional prop-
erty and complex geometry structure in LFs, it is difficult to use an explicit
regularization term in Eq. (8), which commonly has a limited representation
ability, for comprehensively exploring the underlying distribution. To this end,
as shown in Fig. 2, we adopt a deep implicit regularization which is constructed
by computationally-efficient spatial-angular separable (SAS) convolutional lay-
ers [37, 40]. The SAS convolution is able to thoroughly detect the dimensional
correlations of a 4-D pixel in the LF by alternatively conducting 2-D convolu-
tional operations on spatial and angular planes. Besides, SAS convolution does
not significantly increase the number of parameters compared against the 4-
D convolution. Furthermore, linear transformations which are implemented by
matrices in conventional optimization algorithms, i.e., Eqs. (7) and (8), can be
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replaced by convolutional layers or networks without impairing the convergence
property [5, 32, 42]. Since the degradation matrix A and its transpose AT in
Eq. (7) are linear projections, we can correspondingly replace them with a con-
volutional layer as mentioned in Sec. 3.1 and a corresponding deconvolutional
layer for inverse projection. Furthermore, in order to preserve the linear property
of the transformations, all these layers are not followed by activation functions
or bias units. The projection P(·) conducted by the the convolutional layer can
be regarded as a linear mapping function which projects x to l. On the contrary,
the inverse projection R(·) conducted by a deconvolutional layer is regarded as
a linear function which projects l to x, i.e.,

l = P(x),x = R(l). (9)

Thus, Eq. (8) and Eq. (7) can be respectively rewritten as{
v(t+1) = D(x(t), θtd),

x(t+1) = x(t) − δt[R(P(x(t), θtp)− l, θtr) + ηt(x
(t) − v(t+1))],

(10)

where θr, θp, and θd are the network parameters which will be learned by the
backpropagation algorithm during the training process. In order to enhance the
representing ability of the network, parameters in each iterative stage are inde-
pendently learned without being inherited.

Our iterative framework for reconstructing a 4-D LF from 2-D coded mea-
surements is demonstrated in Fig. 2. Given 2-D coded measurements l, we first
use an inverse projection R(l, θ0r) to produce an initialization x(0) for the re-
constructed LF. After being processed by the deep regularization D(x(0), θ0d),
an optimized LF x(1) which is better than that from last iterative stage is es-
timated. Such an iterative stage repeats n times to gradually generate a final
reconstructed LF.

3.3 Training and Implementation Details

Training strategy and parameter setting. In our method, the acquisition
layer is a 2-D convolutional layer without activation function or bias units for the
simulation of coded aperture modulation. The parameters, i.e., the kernel size,
padding and stride, in the layer can be flexibly set before training for different
simulation tasks. Correspondingly, the parameters in the deconvolutional layer
are the same as those in the convolutional layer. It is to ensure that the output
and input size of the deconvolutional layer are respectively the same as the input
and output size of the convolutional layer. The loss function is the `1 loss between
reconstructed LF and the ground-truth LF. In the regularization sub-network,
the kernel size in both spatial and angular convolutional layer is 3 × 3. The
number of feature maps in each layer is 64. The output of each convolutional
layer is mapped by a ReLU activation function. Besides, the number of SAS
convolutional layers is set to 9 according to our ablation studies in Sec. 4.2. At
the training stage, patches of spatial size 32 × 32 were randomly cropped from
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LFs contained in the training set. The batch size was set to 5. In order to increase
the number of training samples, we randomly cropped 4-D LF patch with size
of M ×N × 32× 32 from each LF image in the training datasets. The learning
rate was initially set to 1e − 4 and reduced to 1e − 5 when the loss stopped
decreasing. We chose Adam [14] as the optimizer with β1 = 0.9 and β2 = 0.999.
Our framework was implemented with PyTorch.

Datasets. The training dataset contains both synthetic and real-world LF im-
ages. Specifically, there are 100 real-world LF images of size 7 × 7 × 376 × 541
from Kalantari Lytro [12], 22 synthetic LF images of size 5× 5× 512× 512 from
HCI [8], and 33 synthetic LF images of size 5 × 5 × 512 × 512 from Inria [29].
The test set contains 30 LF images from Kalantari Lytro [12], 2 LF images from
HCI [8] and 4 LF images from Inria [29]. Please refer to the supplementary
material for more details of the employed training and testing data.

4 Experiments

In this section, we evaluated the proposed LF reconstruction method by com-
paring our method with three state-of-the-art methods, followed by a series of
comprehensive ablation studies.

4.1 Comparison with State-of-the-art Methods

We compared with one state-of-the-art deep learning-based LF reconstruction
method from coded aperture measurements, i.e., Inagaki et al. [9], and two deep
learning-based methods from sparsely sampled SAIs, i.e., Kalantari et al. [12] and
Yeung et al. [37]. According to Inagaki et al. [9], the performance of traditional
compressive sensing-based methods is far below that of deep learning-based ones.
Here we omitted the comparison with those methods. Specifically, the detailed
experimental settings are listed as follows for fair comparisons:

• all the networks under comparison were re-trained with the same datasets
using their source codes with suggested parameters;
• we conducted three tasks, i.e., 1 → 49, 2 → 49 and 4 → 49 (i → j denotes

using i measurements/SAIs to reconstruct an LF with angular resolution j)
on real-world dataset, while one task 2→ 25 on synthetic dataset;
• we used a same single-channel kernel in our acquisition layer to modulate

three color channels of LF, denoted as Ours (Single), for fairly comparing
with Inagaki et al. [9]. According to the analysis in Sec. 3.1, a three-channel
kernel was also trained in another model, denoted as Ours (Multiple);
• Kalantari et al. [12] cannot handle the task 1→ 49 or 1→ 25 since the hand-

craft features cannot be calculated in their algorithm. Besides, Kalantari et
al. [12] can accept flexible and irregular input patterns. As suggested in [10],
we re-trained it with choosing the optimal input patterns for comparison,
i.e., the angular coordinates are correspondingly (4, 2) and (4, 6) for task
2→ 49, while (2, 5), (3, 2), (5, 6) and (6, 3) for task 4→ 49;
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right: (a) Inagaki (1) [9], (b) Ours (Single) (1), (c) Kalantari (2) [12], (d) Ours
(Single) (2), (e) Yeung (4) [37], (f) Ours (Single) (4). The digits in brackets are
the number of input measurements/SAIs for each method

• and Yeung et al. [37] requires the input SAIs with a regular pattern, and it
cannot reconstruct an LF from only 1 or 2 SAIs. We thus re-trained it only
on the task 4→ 49 with the four-corner SAIs as inputs.

Quantitative comparison. We calculated the average PSNR and SSIM be-
tween the reconstructed LFs and ground-truth ones in RGB space to conduct
quantitative comparisons of different methods, as shown in Fig. 3. Besides, the
average PSNR at each SAI position of the reconstructed LFs from these methods
are shown in Fig. 4. From Figs. 3 and 4, we can draw the following conclusions:

• Ours (Multiple) has better performance than Ours (Single) under all tasks.
The possible reason is that the three color channels may have different distri-
butions, and the color channel-tailored aperture can adapt to each channel
better than that a common one for three channels;

• both Ours (Single) and Ours (Multiple) consistently outperform the coded
aperture method Inagaki et al. [9] under all tasks. The reason is that Inagaki
et al. [9] employs network architecture which is not specifically designed for
LF reconstruction, while our algorithm incorporates the observation model
for measurements into the deep learning framework elegantly to avoid relying
entirely on data-driven priors;
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Fig. 5: Visual comparisons of all methods over real LF images under various
reconstruction tasks: 1 → 49, 2 → 49 and 4 → 49. The error maps are calcu-
lated in gray-scale space. The digits in the brackets are the number of input
measurements/SAIs for the methods

• and our method can preserve a high-quality reconstruction at most aperture
positions. Conversely, the quality of SAI in Kalantari et al. [12] and Yeung
et al. [37] declines along with the increase of the distance from input SAIs.
The possible reason is that they can only extract features from input SAIs,
while our method can adaptively condense and utilize information from all
aperture positions through measurements.

Visual comparison of reconstructed LFs. The visual comparisons of recon-
structed LFs from all methods are shown in Figs. 5 and 6, where it can be ob-
served that our method can produce better details than other methods [9,12,37]
under all tasks. For Kalantari et al. [12] and Yeung et al. [37], the blurred arti-
facts and ghost effects exist at occlusion boundaries and high-frequency regions.
Additionally, our method can produce better details than Inagaki et al. [9] on
synthetic LFs with large disparities. The reason is that the deep spatial-angular
regularization in our method can fully exploit dimensional correlations in LFs
to achieve a better reconstruction on datasets with large disparities.

Comparison of the LF parallax structure. Since the parallax structure
among SAIs of an LF is the most valuable information, we conducted exper-



12 M. Guo et al.

Ground Truth

PSNR=37.27
SSIM=0.945

Inagaki(2)

PSNR=48.03
SSIM=0.996

Ours (Single) (2)

PSNR=42.26
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Fig. 6: Visual comparisons of our method against Inagaki [9] over synthetic LF
data under the task 2→ 25

Ground Truth Inagaki(1) Ours (Single) (1) Kalantari(2) Ours (Single) (2) Yeung(4) Ours (Single) (4)

Fig. 7: Comparisons of depth maps estimated with reconstructed LFs by different
methods under tasks 1→ 49, 2→ 49 and 4→ 49. The digits in the brackets are
the number of input measurements/SAIs for the methods

iments to evaluate such a structure embedded in the reconstructed LFs from
different methods. First, we compared the EPIs at the bottom of each subfig-
ure of Figs. 5 and 6, where it can be seen that the EPIs from our method
show clearer and more consistent straight lines compared with those from other
methods. Moreover, we conducted more investigations on this important issue.
However, due to the lack of standard evaluation metrics, we chose the following
two metrics to achieve the target:

(1). It is expected that with a typical LF depth estimation method, the
estimated depth maps from LFs with better parallax structure will be more
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Table 1: Running time (in second) of different reconstruction methods/average
EPI-SSIM of reconstructed LFs by different methods. “-” indicates that the
method cannot work on the task

1→ 49 2→ 49 4→ 49

Ours (Single) 80.71/0.935 80.18/0.981 80.54/0.986
Inagaki et al. [9] 218.94/0.901 179.36/0.968 179.36/0.973

Kalantari et al. [12] - 84.43/0.972 168.86/0.980
Yeung et al. [37] - - 0.85/0.974

accurate and closer to those from ground-truth LFs. Thus, We applied the same
depth estimation algorithm [4] on the reconstructed LFs by different methods
and the ground-truth ones. The visualized depth maps illustrated in Fig. 7 show
that our method can preserve sharper edges at the occlusion boundaries, which
are most similar to those of ground truth, which demonstrates the advantage of
our method on preserving the LF parallax structure indirectly.

(2). Considering that the line appearance of EPIs can reflect the parallax
structure of LFs, we applied SSIM [35] that measures the similarity between
two images by using the structural information on EPIs extracted from the
reconstructed LFs, denoted as EPI-SSIM, from different methods to provide a
quantitative evaluation towards the LF parallax structure. The average SSIM
values listed in Table 1 show that the EPIs from the reconstructed LFs by our
method have higher SSIM values, which validates that our reconstructed LFs
preserve better parallax structures to some extent.

Comparison of running time. We also compared the efficiency of different
methods. And the results are shown in Table 1, where it can be observed that
our method is faster than all methods except Yeung et al. [37]. Note that all
methods were implemented on a desktop with Intel CPU i7-8700 @ 3.70GHz,
32GB RAM and NVIDIA GeForce RTX 2080Ti.

4.2 Ablation Study

The number of iterative stages and SAS convolutional layers. In our
method, the crucial step is alternately updating the x(t+1) and v(t+1) from the
results of the t-th iterative stage. The number of iterative stages and SAS convo-
lutional layers in the deep regularizer are both key factors to the reconstruction
quality. Taking the task 2→ 25 as an example, we separately carried out ablation
studies on these two factors.

First, three iterative-stage numbers, i.e., 1, 3 and 6, were set, while the num-
ber of SAS was fixed to 9. The quantitative results shown in Fig. 8(a) indicate
that with the number of iterative stages increasing, the quality of reconstructed
LFs improves. Besides, the improvement is more obvious from 1 stage to 3 stages
but very slight from 3 stages to 6 stages. In practice, the numbers of iterative
stages and SAS convolutional layers can be optimally set according to the avail-
able computational resources. Then, we set three SAS numbers, i.e., 3, 6 and 9,
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Fig. 8: Comparisons of different numbers of iterative stages(a), different num-
bers of SAS convolutional layers in deep spatial-angular regularization(b), and
different levels of noise(c)

and fixed the number of iterative stages to 6. The results are shown in Fig. 8(b).
With the number of SAS convolutional layers increasing, the quality of recon-
structed LFs also improves. We hence chose 6 stages and 9 SAS convolutional
layers to trade-off the quality of LF reconstruction and the computational costs
in our method.

Noisy measurements. Due to the small size of coded aperture and low-light
conditions in practice, the measurements are used to be affected by noise. In
order to evaluate the robustness of our method in real applications, we added
different levels of Gaussian noise onto the measurements during training and
testing. We set three standard deviations for one measurement: σ = 3, σ = 6,
and σ = 30 to control the noise level. Here we took the task 2 → 25 on the
synthetic LFs as an example. The PSNR value shown in Fig. 8(c) indicate that
our method with noisy inputs can preserve the comparable performance on the
noise-free case when the testing noise level is lower or slightly higher than that
of training. If the noise level is too high (e.g., σ = 30), the performance declines
rapidly.

5 Conclusion and Future Work

We proposed a novel deep learning-based LF reconstruction method from coded
aperture measurements, which links the observation model of measurements and
deep learning elegantly, making it more physically interpretable. To be specific,
we design a deep regularization term with an efficient spatial-angular convolu-
tional sub-network to implicitly and comprehensively explore the signal distribu-
tion. Extensive experiments over both real and synthetic datasets demonstrate
that our method outperforms state-of-the-art approaches to a significant extent
both quantitatively and qualitatively.
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