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Abstract. This paper studies the problem of learning semantic seg-
mentation from image-level supervision only. Current popular solutions
leverage object localization maps from classifiers as supervision signals,
and struggle to make the localization maps capture more complete object
content. Rather than previous efforts that primarily focus on intra-image
information, we address the value of cross-image semantic relations for
comprehensive object pattern mining. To achieve this, two neural co-
attentions are incorporated into the classifier to complimentarily capture
cross-image semantic similarities and differences. In particular, given a
pair of training images, one co-attention enforces the classifier to recog-
nize the common semantics from co-attentive objects, while the other
one, called contrastive co-attention, drives the classifier to identify the
unshared semantics from the rest, uncommon objects. This helps the clas-
sifier discover more object patterns and better ground semantics in image
regions. In addition to boosting object pattern learning, the co-attention
can leverage context from other related images to improve localization
map inference, hence eventually benefiting semantic segmentation learn-
ing. More essentially, our algorithm provides a unified framework that
handles well different WSSS settings, i.e., learning WSSS with (1) precise
image-level supervision only, (2) extra simple single-label data, and (3)
extra noisy web data. It sets new state-of-the-arts on all these settings,
demonstrating well its efficacy and generalizability.

Keywords: Semantic Segmentation · Weakly Supervised Learning

1 Introduction

Recently, modern deep learning based semantic segmentation models[6,7], trained
with massive manually labeled data, achieve far better performance than be-
fore. However, the fully supervised learning paradigm has the main limitation
of requiring intensive manual labeling effort, which is particularly expensive for
annotating pixel-wise ground-truth for semantic segmentation. Numerous efforts
are motivated to develop semantic segmentation with weaker forms of supervi-
sion, such as bounding boxes [47], scribbles [38], points [3], image-level labels [48],
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Fig. 1. (a) Current WSSS methods only use single-image information for object pattern
discovering. (b-c) Our co-attention classifier leverages cross-image semantics as class-
level context to benefit object pattern learning and localization map inference.

etc. Among them, a prominent and appealing trend is using only image-level
labels to achieve weakly supervised semantic segmentation (WSSS), which de-
mands the least annotation efforts and is followed in this work.

To tackle the task of WSSS with only image-level labels, current popular
methods are based on network visualization techniques [79, 85], which discover
discriminative regions that are activated for classification. These methods use
image-level labels to train a classifier network, from which class-activation maps
are derived as pseudo ground-truths for further supervising pixel-level semantics
learning. However, it is commonly evidenced that the trained classifier tends to
over-address the most discriminative parts rather than entire objects, which be-
comes the focus of this area. Diverse solutions are explored, typically adopting:
image-level operations, such as region hiding and erasing [32, 70], regions grow-
ing strategies that expand the initial activated regions [29, 64], and feature-level
enhancements that collect multi-scale context from deep features [35,72].

These efforts generally achieve promising results, which demonstrates the im-
portance of discriminative object pattern mining for WSSS. However, as shown
in Fig. 1(a), they typically use only single-image information for object pattern
discovering, ignoring the rich semantic context among the weakly annotated
data. For example, with the image-level labels, not only the semantics of each
individual image can be identified, the cross-image semantic relations, i.e., two
images whether sharing certain semantics, are also given and should be used as
cues for object pattern mining. Inspired by this, rather than relying on intra-
image information only, we further address the value of cross-image semantic
correlations for complete object pattern learning and effective class-activation
map inference (see Fig. 1(b-c)). In particular, our classifier is equipped with
a differentiable co-attention mechanism that addresses semantic homogeneity
and difference understanding across training image pairs. More specifically, two
kinds of co-attentions are learned in the classifier. The former one aims to cap-
ture cross-image common semantics, which enables the classifier to better ground
the common semantic labels over the co-attentive regions. The latter one, called
contrastive co-attention, focuses on the rest, unshared semantics, which helps
the classifier better separate semantic patterns of different objects. These two



Mining Cross-Image Semantics for WSSS 3

co-attentions work in a cooperative and complimentary manner, together making
the classifier understand object patterns more comprehensively.

In addition to benefiting object pattern learning, our co-attention provides
an efficient tool for precise localization map inference (see Fig. 1(c)). Given a
training image, a set of related images (i.e., sharing certain common semantics)
are utilized by the co-attention for capturing richer context and generating more
accurate localization maps. Another advantage is that our co-attention based
classifier learning paradigm brings an efficient data augmentation strategy, due
to the use of training image pairs. Overall, our co-attention boosts object dis-
covering during both the classifier’s training phase as well as localization map
inference stage. This provides the possibility of obtaining more accurate pseudo
pixel-level annotations, which facilitate final semantic segmentation learning.

Our algorithm is a unified and elegant framework, which generalizes well
different WSSS settings. Recently, to overcome the inherent limitation in WSSS
without additional human supervision, some efforts resort to extra image-level
supervision from simple single-class data readily available from other existing
datasets [37,50], or cheap web-crawled data [20,54,55,71]. Although they improve
the performance to some extent, complicated techniques, such as energy function
optimization [20,59], heuristic constraints [13,55], and curriculum learning [71],
are needed to handle the challenges of domain gap and data noise, restricting
their utility. However, due to the use of paired image data for classifier training
and object map inference, our method has good tolerance to noise. In addition,
our method also handles domain gap naturally, as the co-attention effectively
addresses domain-shared object pattern learning and achieves domain adaption
as a part of co-attention parameter learning. We conduct extensive experiments
on PASCAL VOC 2012 [11], under three WSSS settings, i.e., learning WSSS
with (1) PASCAL VOC image-level supervision only, (2) extra simple single-
label data, and (3) extra web data. Our algorithm sets state-of-the-art on each
case, verifying its effectiveness and generalizability.

2 Related Work

Weakly Supervised Semantic Segmentation. Recently, lots of WSSS meth-
ods have been proposed to alleviate labeling cost. Various weak supervision forms
have been explored, such as bounding boxes [10,47], scribbles [38], point super-
vision [3], etc. Among them, image-level supervision, due to its less annotation
demand, gains most attention and is also adopted in our approach.

Current popular solutions for WSSS with image-level supervision rely on
network visualization techniques [79, 85], especially the Class Activation Map
(CAM) [85], which discovers image pixels that are informative for classification.
However, CAM typically only identifies small discriminative parts of objects.
Therefore, numerous efforts are made towards expanding the CAM-highlighted
regions to the whole objects. In particular, some representative approaches make
use of image-level hiding and erasing operations to drive a classifier to focus on
different parts of objects [32, 36, 70]. A few ones instead resort to a regions
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growing strategy, i.e., view the CAM-activated regions as initial “seeds” and
gradually grow the seed regions until cover the complete objects [2, 24, 29, 64].
Meanwhile, some researchers investigate to directly enhance the activated re-
gions on feature-level [33, 35, 72]. When constructing CAMs, they collect multi-
scale context, which is achieved by dilated convolution [72], multi-layer feature
fusion [35], saliency-guided iterative training [64], or stochastic feature selec-
tion [33]. Some others accumulate CAMs from multiple training phases [25], or
self-train a difference detection network to complete the CAMs with trustable
information [56]. In addition, a recent trend is to utilize class-agnostic saliency
cues to filter out background responses [12, 24, 33, 36, 64, 70, 72] during pseudo
ground-truth generation.

Since the supervision provided in above problem setting is so weak, another
category of approaches explores to leverage more image-level supervision from
other sources. There are mainly two types: (1) exploring simple and single-label
examples [37, 50] (e.g., images from existing datasets [17, 53]); or (2) utilizing
near-infinite yet noisy web-sourced image [20,54,55,71] or video [20,34,59] data
(also referred as webly supervised semantic segmentation [26]). In addition to the
common challenge of domain gap between the extra data and target semantic
segmentation dataset, the second-type methods need to handle data noise.

Past efforts only consider each image individually, while only few excep-
tions [12, 54] address cross-image information. [54] simply applies off-the-shelf
co-segmentation [27] over the web images to generate foreground priors, instead
of ours encoding the semantic relations into network learning and inference.
For [12], although also exploiting correlations within image pairs, the core idea
is to use extra information from a support image to supplement current visual
representations. Thus the two images are expected to better contain the same se-
mantics, and unmatched semantics would bring negative influences. In contrast,
we view both semantic homogeneity and difference as informative cues, driving
our classifier to more explicitly identify the common as well as unshared objects,
respectively. Moreover, [12] only utilizes single image to infer the activated ob-
jects, but our method comprehensively leverages the cross-image semantics in
both classifier training and localization map inference stages. More essentially,
our framework is neat and flexible, which is not only able to learn WSSS from
clean image-level supervision, but general enough to naturally make use of ex-
tra noisy web-crawled or simple single-label data, contrarily to previous efforts
which are limited to specific training settings and largely dependent on compli-
cated optimization methods [20,59] or heuristic constraints [55].

Deterministic Neural Attention. Differentiable attention mechanisms en-
able a neural network to focus more on relevant elements of the input than
on irrelevant parts. With their popularity in the field of natural language pro-
cessing [8, 39, 43, 49, 60], attention modeling is rapidly adopted in various com-
puter vision tasks, such as image recognition [14, 23, 58, 66, 73], domain adapta-
tion [67, 83], human pose estimation [9, 63, 77], object detection [4] and image
generation [76, 81, 86]. Further, co-attention mechanisms become an essential
tool in many vision-language applications and sequential modeling tasks, such
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as visual question answering [41,44,75,78], visual dialog [74,84], vision-language
navigation [68], and video segmentation [42,61], showing its effectiveness in cap-
turing the underlying relations between different entities. Inspired by the general
idea of attention mechanisms, this work leverages co-attention to mine semantic
relations within training image pairs, which helps the classifier network learn
complete object patterns and generate precise object localization maps.

3 Methodology

Problem Setup. Here we follow current popular WSSS pipelines: given a set of
training images with image-level labels, a classification network is first trained
to discover corresponding discriminative object regions. The resulting object lo-
calization maps over the training samples are refined as pseudo ground-truth
masks to further supervise the learning of a semantic segmentation network.

Our Idea. Unlike most previous efforts that treat each training image individ-
ually, we explore cross-image semantic relations as class-level context for un-
derstanding object patterns more comprehensively. To achieve this, two neural
co-attentions are designed. The first one drives the classifier to learn common
semantics from the co-attentive object regions, while the other one enforces the
classifier to focus on the rest objects for unshared semantics classification.

3.1 Co-attention Classification Network

Let us denote the training data as I={(In, ln)}n, where In is the nth training
image, and ln∈{0, 1}K is the associated ground-truth image label for K semantic
categories. As shown in Fig. 2(a), image pairs, i.e., (Im, In), are sampled from
I for training the classifier. After feeding Im and In into the convolutional
embedding part of the classifier, corresponding feature maps, Fm∈ RC×H×W and
Fn∈ RC×H×W, are obtained, each with H×W spatial dimension and C channels.

As in [25, 33, 34], we can first separately pass Fm and Fn to a class-aware
fully convolutional layer ϕ(·) to generate class-aware activation maps, i.e., Sm=
ϕ(Fm)∈RK×H×W and Sn=ϕ(Fn)∈RK×H×W, respectively. Then, we apply global
average pooling (GAP) over Sm and Sn to obtain class score vectors sm∈RK

and sn∈RK for Im and In, respectively. Finally, the sigmoid cross entropy (CE)
loss is used for supervision:

Lmn
basic

(
(Im, In), (lm, ln)

)
=LCE(sm, lm)+LCE(sn, ln),

=LCE

(
GAP(ϕ(Fm)), lm

)
+LCE

(
GAP(ϕ(Fn)), ln

)
.

(1)

So far the classifier is learned in a standard manner, i.e., only individual-image
information is used for semantic learning. One can directly use the activation
maps to supervise next-stage semantic segmentation learning, as done in [24,
34]. Differently, our classifier additionally utilizes a co-attention mechanism for
further mining cross-image semantics and eventually better localizing objects.
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Fig. 2. (a) In addition to mining object semantics from single-image labels, seman-
tic similarities and differences between paired training images are both leveraged for
supervising object pattern learning. (b) Co-attentive and contrastive co-attentive fea-
tures complimentarily capture the shared and unshared objects. (c) Our co-attention
classifier is able to learn object patterns more comprehensively. Zoom-in for details.

Co-Attention for Cross-Image Common Semantics Mining. Our co-
attention attends to the two images, i.e., Im and In, simultaneously, and captures
their correlations. We first compute the affinity matrix P between Fm and Fn:

P = F>mWPFn ∈RHW×HW , (2)

where Fm ∈ RC×HW and Fn ∈ RC×HW are flattened into matrix formats, and
WP ∈RC×C is a learnable matrix. The affinity matrix P stores similarity scores
corresponding to all pairs of positions in Fm and Fn, i.e., the (i, j)th element of
P gives the similarity between ith location in Fm and jth location in Fn.

Then P is normalized column-wise to derive attention maps across Fm for
each position in Fn, and row-wise to derive attention maps across Fn for each
position in Fm:

Am =softmax(P )∈ [0, 1]HW×HW, An =softmax(P>)∈ [0, 1]HW×HW, (3)

where softmax is performed column-wise. In this way, An and Am store the
co-attention maps in their columns. Next, we can compute attention summaries
of Fm (Fn) in light of each position of Fn (Fm):

Fm∩n
m = FnAn∈RC×H×W , Fm∩n

n = FmAm∈RC×H×W , (4)

where Fm∩n
m and Fm∩n

n are reshaped into RC×W×H . Co-attentive feature Fm∩n
m ,

derived from Fn, preserves the common semantics between Fm and Fn and locate
the common objects in Fm. Thus we can expect only the common semantics
lm∩ ln1 can be safely derived from Fm∩n

m , and the same goes for Fm∩n
n . Such co-

attention based common semantic classification can let the classifier understand
the object patterns more completely and precisely.

1 The set operation ‘∩’ is slightly extended here to represent bitwise-and.
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To make things intuitive, consider the example in Fig. 2, where Im contains
Table and Person, and In has Cow and Person. As the co-attention is essen-
tially the affinity computation between all the position pairs between Im and
In, only the semantics of the common objects, Person, will be preserved in the
co-attentive features, i.e., Fm∩n

m and Fm∩n
n (see Fig. 2(b)). If we feed Fm∩n

m and
Fm∩n
n into the class-aware fully convolutional layer ϕ, the generated class-aware

activation maps, i.e., Sm∩n
m =ϕ(Fm∩n

m )∈RK×H×W and Sm∩n
n =ϕ(Fm∩n

n )∈RK×H×W,
are able to locate the common object Person in Im and In, respectively. After
GAP, the predicted semantic classes (scores) sm∩nm ∈RK and sm∩nn ∈RK should
be the common semantic labels lm∩ ln of Im and In, i.e., Person.

Through co-attention computation, not only the human face, the most dis-
criminative part of Person, but also other parts, such as legs and arms, are
highlighted in Fm∩n

m and Fm∩n
n (see Fig. 2(b)). When we set the common class

labels, i.e., Person, as the supervision signal, the classifier would realize that the
semantics preserved in Fm∩n

m and Fm∩n
n are related and can be used to recog-

nize Person. Therefore, the co-attention, computed across two related images,
explicitly helps the classifier associate semantic labels and corresponding object
regions and better understand the relations between different object parts. It
essentially makes full use of the context across training data.

Intuitively, for the co-attention based common semantic classification, the
labels lm∩ ln shared between Im and In are used to supervise learning:

Lmn
co-att

(
(Im, In), (lm, ln)

)
=LCE(sm∩nm , lm∩ln)+LCE(sm∩nn , lm∩ln),

=LCE

(
GAP(ϕ(Fm∩n

m )), lm∩ln
)
+

LCE

(
GAP(ϕ(Fm∩n

n )), lm∩ln
)
.

(5)

Contrastive Co-Attention for Cross-Image Exclusive Semantics Min-
ing. Aside from the co-attention described above that explores cross-image com-
mon semantics, we propose a contrastive co-attention that mines semantic dif-
ferences between paired images. The co-attention and contrastive co-attention
complementarily help the classifier better understand the concept of the objects.

As shown in Fig. 2(a), for Im and In, we first derive class-agnostic co-
attentions from their co-attentive features, i.e., Fm∩n

m and Fm∩n
n , respectively:

Bm∩n
m =σ(WBFm∩n

m )∈ [0, 1]H×W, Bm∩n
n =σ(WBFm∩n

n )∈ [0, 1]H×W, (6)

where σ(·) is the sigmoid activation function, and the parameter matrix WB ∈
R1×C learns for common semantics collection and is implemented by a convolu-
tional layer with 1×1 kernel. Bm∩n

m and Bm∩n
n are class-agnostic and highlight all

the common object regions in Im and In, respectively, based on which we derive
contrastive co-attentions:

Am\n
m = 1−Bm∩n

m ∈ [0, 1]H×W, An\m
n = 1−Bm∩n

n ∈ [0, 1]H×W. (7)

The contrastive co-attention A
m\n
m of Im, as its superscript suggests, addresses

those unshared object regions that are only of Im, but not of In, and the same
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goes for A
n\m
n . Then we get contrastive co-attentive features, i.e., unshared se-

mantics in each images:

Fm\n
m = Fm⊗Am\n

m ∈ RC×H×W, F n\m
n = Fn⊗An\m

n ∈ RC×H×W. (8)

‘⊗’ denotes element-wise multiplication, where the attention values are copied
along the channel dimension. Next, we can sequentially get class-aware activation

maps, i.e., S
m\n
m = ϕ(F

m\n
m ) ∈ RK×H×W and S

n\m
n = ϕ(F

n\m
n ) ∈ RK×H×W , and

semantic scores, i.e., s
m\n
m = GAP(S

m\n
m ) ∈ RK and s

n\m
n = GAP(S

n\m
n ) ∈ RK .

For s
m\n
m and s

n\m
n , they are expected to identify the categories of the unshared

objects, i.e., lm\ln and ln\lm2.
Compared with the co-attention that investigates common semantics as infor-

mative cues for boosting object patterns mining, the contrastive co-attention ad-
dresses complementary knowledge from the semantic differences between paired
images. Fig. 2(b) gives an intuitive example. After computing the contrastive
co-attentions between Im and In (Eq. 7), Table and Cow, which are unique
in their original images, are highlighted. Based on the contrastive co-attentive

features, i.e., F
m\n
m and F

n\m
n , the classifier is required to accurately recognize

Table and Cow classes, respectively. When the common objects are filtered out
by the contrastive co-attentions, the classifier has a chance to focus more on the
rest image regions and mine the unshared semantics more consciously. This also
helps the classifier better discriminate the semantics of different objects, as the
semantics of common objects and unshared ones are disentangled by the con-
trastive co-attention. For example, if some parts of Cow are wrongly recognized

as Person-related, the contrastive co-attention will discard these parts in F
n\m
n .

However, the rest semantics in F
n\m
n may be not sufficient enough for recognizing

Cow. This will enforce the classifier to better discriminate different objects.
For the contrastive co-attention based unshared semantic classification, the

supervision loss is designed as:

Lmn
co-att

(
(Im, In), (lm, ln)

)
=LCE(sm\nm , lm\ln)+LCE(sn\mn , ln\lm),

=LCE

(
GAP

(
ϕ(Fm\n

m )
)
, lm\ln

)
+

LCE

(
GAP

(
ϕ(F n\m

n

)
, ln\lm

)
.

(9)

More In-Depth Discussion. One can interpret our co-attention classifier from
a view of auxiliary-task learning [16, 45], which is investigated in self-supervised
learning field to improve data efficiency and robustness, by exploring auxiliary
tasks from inherent data structures. In our case, rather than the task of single-
image semantic recognition which has been extensively studied in conventional
WSSS methods, we explore two auxiliary tasks, i.e., predicting the common and
uncommon semantics from image pairs, for fully mining supervision signals from
weak supervision. The classifier is driven to better understand the cross-image
semantics by attending to (contrastive) co-attentive features, instead of only

2 The set operation ‘\’ is slightly extend here, i.e., ln\lm = ln− ln∩lm.
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relying on intra-image information (see Fig. 2(c)). In addition, such strategy
shares a spirit of image co-segmentation [42,62]. Since the image-level semantics
of training set are given, the knowledge about some images share or unshare
certain semantics should be used as a cue, or supervision signal, to better locate
corresponding objects. Our co-attention based learning pipeline also provides an
efficient data augmentation strategy, due to the use of paired samples, whose
amount is near the square of the number of single training images.

3.2 Co-Attention Classifier Guided WSSS Learning

Training Co-Attention Classifier. The overall training loss for our co-attention
classifier ensembles the three terms defined in Eq. 1, 5, and 9:

L=
∑

m,n
Lmn
basic + Lmn

co-att + Lmn
co-att. (10)

The coefficients of different loss terms are set as 1 in our all experiments. During
training, to fully leverage the co-attention to mine the common semantics, we
sample two images (Im, In) with at least one common class, i.e., lm∩ln 6=0.
Generating Object Localization Maps. Once our image classifier is trained,
we apply it over the training data I = {(In, ln)}n to produce corresponding
object localization maps, which are essential for semantic segmentation network
training. We explore two different strategies to generate localization maps.

– Single-round feed-forward prediction, made over each training image individ-
ually. For each training image In, running the classifier and directly using its
class-aware activation map (i.e., Sn∈RK×H×W ) as the object localization map
Ln, as most previous network visualization based methods [25,34,55] done.

– Multi-round co-attentive prediction with extra reference information, which is
achieved by considering extra information from other related training images
(see Fig. 1(c)). Specifically, given a training image In and its associated label
vector ln, we generate its localization map Ln in a class-wise manner. For each
semantic class k ∈ {1, · · · ,K} labeled for In, i.e., ln,k = 1 and ln,k is the kth

element of ln, we sample a set of related images R={Ir}r from I, which are
also annotated with label k, i.e., lr,k = 1. Then we compute the co-attentive
feature Fm∩r

n from each related image Ir∈R to In, and get the co-attention
based class-aware activation map Sm∩r

n . Given all the class-aware activation
maps {Sm∩r

n }r from R, they are integrated to infer the localization map only

for class k, i.e., Ln,k = 1
|R|
∑

r∈RS
m∩r
n,k . Here Ln,k ∈ RH×W and S

(·)
n,k ∈ RH×W

indicate the feature map at kth channel of Ln∈RK×H×W and S
(·)
n ∈RK×H×W,

respectively. ‘|·|’ numerates the elements. After inferring the localization maps
for all the annotated semantic classes of In, we can get Ln.

These two localization map generation strategies are studied in our experi-
ments (§4.4), and the last one is more favored, as it uses both intra- and inter-
image semantics for object inference, and shares a similar data distribution of
the training phase. One may notice that the contrastive co-attention is not used
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here. This is because contrastive co-attentive feature (Eq. 8) is from its origi-
nal image, which is effective for boosting feature representation learning during
classifier training, while contributes little for localization maps inference (with
limited cross-image information). Related experiments can be found at §4.4.

Learning Semantic Segmentation Network. After obtaining high-quality
localization maps, we generate pseudo pixel-wise labels for all the training sam-
ples I, which can be used to train arbitrary semantic segmentation network. For
pseudo groundtruth generation, we follow current popular pipeline [22, 24, 25,
33, 34, 80], that uses localization maps to extract class-specific object cues and
adopts saliency maps [21,40] to get background cues. For the semantic segmen-
tation network, as in [22,25,33,34], we choose DeepLab-LargeFOV [6].

Learning with Extra Simple Single-Label Images. Some recent efforts
[37, 50] are made towards exploring extra simple single-label images from other
existing datasets [17,53] for further boosting WSSS. Though impressive, specific
network designs are desired, due to the issue of domain gap between addition-
ally used data and the target complex multi-label dataset, i.e., PASCAL VOC
2012 [11]. Interestingly, our co-attention based WSSS algorithm provides an al-
ternate that addresses the challenge of domain gap naturally. Here we revisit the
computation of co-attention in Eq. 2. When Im and In are from different do-
mains, the parameter matrix WP , in essence, learns to map them into a unified
common semantic space [46] and the co-attentive features can capture domain-
shared semantics. Therefore, for such setting, we learn three different parameter
matrixes for WP , for the cases where Im and In are from (1) the target seman-
tic segmentation domain, (2) the one-label image domain, and (3) two different
domains, respectively. Thus the domain adaption is efficiently achieved as a part
of co-attention learning. We conduct related experiments in §4.2.

Learning with Extra Web Images. Another trend of methods [20,26,55,71]
address webly supervised semantic segmentation, i.e., leveraging web images as
extra training samples. Though cheaper, web data are typically noisy. To han-
dle this, previous arts propose diverse effective yet sophisticated solutions, such
as multi-stage training [26] and self-paced learning [71]. Our co-attention based
WSSS algorithm can be easily extended to this setting and solve data noise el-
egantly. As our co-attention classifier is trained with paired images, instead of
previous methods only relying on each image individually, our model provides a
more robust training paradigm. In addition, during localization map inference,
a set of extra related images are considered, which provides more comprehen-
sive and accurate cues, and further improves the robustness. We experimentally
demonstrate the effectiveness of our method in such a setting in §4.3.

3.3 Detailed Network Architecture

Network Configuration. In line with conventions [25,72,82], our image classi-
fier is based on ImageNet [31] pre-trained VGG-16 [57]. For VGG-16 network, the
last three fully-connected layers are replaced with three convolutional layers with
512 channels and kernel size 3×3, as done in [25,82]. For the semantic segmenta-
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tion network, for fair comparison with current top-leading methods [2,25,33,56],
we adopt the ResNet-101 [19] version Deeplab-LargeFOV architecture.
Training Phases of the Co-Attention Classifier and Semantic Segmen-
tation Network. Our co-attention classifier is fully end-to-end trained by
minimizing the loss defined in Eq. 10. The training parameters are set as: initial
learning rate (0.001) which is reduced by 0.1 after every 5 epochs, batch size (5),
weight decay (0.0002), and momentum (0.9). Once the classifier is trained, we
generate localization maps and pseudo segmentation masks over all the training
samples (see §3.2). Then, with the masks, the semantic segmentation network is
trained in a standard way [25] using the hyper-parameter setting in [6].
Inference Phase of the Semantic Segmentation Network. Given an unseen
test image, our segmentation network works in the standard semantic segmentation
pipeline [6], i.e., directly generating segments without using any other images.
Then CRF [30] post-processing is performed to refine predicted masks.

4 Experiment

Overview. Experiments are first conducted over three different WSSS settings:
(1) The most standard paradigm [24, 25, 56, 70] that only allows image-level
supervision from PASCAL VOC 2012 [11] (see §4.1). (2) Following [37, 50],
additional single-label images can be used, yet bringing the challenge of domain
gap (see §4.2). (3) Webly supervised semantic segmentation paradigm [26,34,55],
where extra web data can be accessed (see §4.3). Then, in §4.4, ablation studies
are made to assess the effectiveness of essential parts of our algorithm.
Evaluation Metric. In our experiments, the standard intersection over union
(IoU) criterion is reported on the val and test sets of PASCAL VOC 2012 [11].
The scores on test set are obtained from official PASCAL VOC evaluation server.

4.1 Experiment 1: Learn WSSS only from PASCAL VOC [11] Data

Experimental Setup: We first conduct experiment following the most standard
setting that learns WSSS with only image-level labels [24, 25, 56, 70], i.e., only
image-level supervision from PASCAL VOC 2012 [11] is accessible. PASCAL
VOC 2012 contains a total of 20 object categories. As in [6, 70], augmented
training data from [18] are also used. Finally, our model is trained on totally
10,582 samples with only image-level annotations. Evaluations are conducted on
the val and test sets, which have 1,449 and 1,456 images, respectively.
Experimental Results: Table 1a compares our approach and current top-
leading WSSS methods with image-level supervision, on both PASCAL VOC12
val and test sets. We can observe that our method achieves mIoU scores of 66.2
and 66.9 on val and test sets respectively, outperforming all the competitors. The
performance of our method is 87% of the DeepLab-LargeFOV [6] trained with
fully annotated data, which achieved an mIoU of 76.3 on val set. When compared
to OAA+ [25], current best-performing method, our approach obtains the im-
provement of 1.0% on val set. This verifies that the localization maps produced
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Table 1. Experimental results for WSSS under three different settings. (a) Standard
setting where only PASCAL VOC 2012 images are used (§4.1). (b) Additional single-
label images are used (§4.2). (c) Additional web-crawled images are used (§4.3).

Methods Publication Val Test

Using PASCAL VOC data only

DCSM [69] ECCV16 44.1 45.1

SEC [29] ECCV16 50.7 51.7

AFF [51] ECCV16 54.3 55.5

DCSP [5] BMVC17 60.8 61.9

CBTS [52] CVPR17 52.8 53.7

AE-PSL [70] CVPR17 55.0 55.7

Oh et al. [20] CVPR17 55.7 56.7

TPL [28] ICCV17 53.1 53.8

MEFF [15] CVPR18 - 55.6

GAIN [36] CVPR18 55.3 56.8

MDC [72] CVPR18 60.4 60.8

MCOF [65] CVPR18 60.3 61.2

DSRG [24] CVPR18 61.4 63.2

PSA [2] CVPR18 61.7 63.7

SeeNet [22] NIPS18 63.1 62.8

IRN [1] CVPR19 63.5 64.8

FickleNet [33] CVPR19 64.9 65.3

SSDD [56] ICCV19 64.9 65.5

OAA+ [25] ICCV19 65.2 66.4

Ours - 66.2 66.9

(a)

Methods Publication Val Test

Using extra simple single-label images

MCNN [59] ICCV15 - 36.9

MIL-ILP [50] CVPR15 32.6 -

MIL-sppxl [50] CVPR15 36.6 35.8

MIL-bb [50] CVPR15 37.8 37.0

MIL-seg [50] CVPR15 42.0 40.6

AttnBN [37] ICCV19 62.1 63.0

Ours - 67.1 67.2

(b)

Methods Publication Val Test

Using extra noisy web images/videos

MCNN [59] ICCV15 38.1 39.8

Shen et al. [54] BMVC17 56.4 56.9

STC [71] PAMI17 49.8 51.2

Hong et al. [20] CVPR17 58.1 58.7

WebS-i1 [26] CVPR17 51.6 -

WebS-i2 [26] CVPR17 53.4 55.3

Shen et al. [55] CVPR18 63.0 63.9

Ours - 67.7 67.5

(c)

by our co-attention classifier effectively detect more complete semantic regions
towards the whole target objects. Note that our network is elegantly trained end-
to-end in a single phase. In contrast, many other recent approaches use extra
networks [2, 25, 56] to learn auxiliary information (e.g., integral attention [25],
pixel-wise semantic affinity [56], etc.), or adopt multi-step training [1, 70,72].

4.2 Experiment 2: Learn WSSS with Extra Simple Single-Label Data

Experimental Setup: Following [37, 50], we train our co-attention classifier
and segmentation network with PASCAL images and extra single-label images.
The extra single-label images are borrowed from the subsets of Caltech-256 [17]
and ImageNet CLS-LOC [53], and whose annotations are within 20 VOC object
categories. There are a total of 20,057 extra single-label images.
Experimental Results: The comparisons are shown in Table 1b. Our method
significantly improves the most recent method (i.e., AttnBN [37]) in this setting
by 5.0% and 4.2% in val and test sets, respectively. With the fact that objects of
the same category but from different domains share similar visual patterns [37],
our co-attention provides an end-to-end strategy that efficiently captures the
common, cross-domain semantics, and learns domain adaption naturally. Even
AttnBN is specifically designed for addressing such setting by knowledge transfer,
our method still suppresses it by a large margin. Compared with the setting in
§4.1 where only PASCAL images are used for training, our method obtains
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Table 2. Ablation study for different object localization map generate strategies, re-
ported on PASCAL VOC12 val set. See §4.4 for details.

Method Inference Mode Input Image(s) Val

Basic Classifier Single-round feed-forward Test image only 61.7

Our Variant
Single-round feed-forward Test image only 64.7
Multi-round co-attention Test image

66.2and contrastive co-attention and other related images

Full Model Multi-round co-attention
Test image

66.2and other related images

improvements on both val and test sets, verifying that it successfully mines
knowledge from extra simple single-label data and copes with domain gap well.

4.3 Experiment 3: Learn WSSS with Extra Web-Sourced Data

Experimental Setup: We also conduct experiments using both PASCAL VOC
images and webly craweled images as training data. We use the web data pro-
vided by [55], which are retrieved from Bing based on class names. The final
dataset contains 76,683 images across 20 PASCAL VOC classes.
Experimental Results: Table 1c gives performance comparisons with previous
webly supervised segmentation methods. As seen our method outperforms all
other approaches and sets new state-of-the-arts with mIoU score of 67.7 and
67.5 on PASCAL VOC 2012 val and test sets, respectively. Among the compared
methods, Hong et al. [20] utilize richer information of the temporal dynamics
provided by additional large-scale videos. In contrast, although only using static
data, our method still outperforms it on the val and test sets by 9.6% and 8.8%,
respectively. Compared with Shen et al. [55] using the same web data as ours,
our method substantially improves it by a clear margin of 3.6% on the test set.

4.4 Ablation Studies

Inference Strategies. Table 2 shows mIoU scores on PASCAL VOC 2012 val
set w.r.t. different inference modes (see §3.2). When using the traditional in-
ference mode “single-round feed-forward”, our method substantially suppresses
basic classifier, by improving mIoU score from 61.7 to 64.7. This evidences that
co-attention mechanism (trained in an end-to-end manner) in our classifier im-
proves the underlying feature representations and more object regions are iden-
tified by the network. We can observe that by using more images to generate
localization maps, our method obtains consistent improvement from “Test image
only” (64.7), to “Test images and other related images” (66.2). This is because
more semantic context are exploited during localization map inference. In addi-
tion, using contrastive co-attention for localization map inference doesn’t boost
performance (66.2). This is because the contrastive co-attentive features for one
image are derived from the image itself. In contrast, co-attentive features are
from the other related image, thus can be effective in the inference stage.
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Table 3. Ablation study for our co-attention and contrastive co-attention mechanisms
for training, reported on PASCAL VOC12 val set. See §4.4 for details.

Method (Contrastive) Co-Attention Training Loss Val

Basic Classifier - Lbasic (Eq. 1) 61.7

Our Variant co-attention only Lbasic (Eq. 1)+Lco-att (Eq. 5) 65.5

Full Model
co-attention Lbasic (Eq. 1)+Lco-att (Eq. 5)+Lco-att (Eq. 9)

66.2
+contrastive co-attention = L (Eq. 10)

(Contrastive) Co-Attention. As seen in Table 3, by only using co-attention
(Eq. 5), we already largely suppress the basic classifier (Eq. 1) by 3.8%. When
adding additional contrastive co-attention (Eq. 9), we obtain mIoU improvement
of 0.7%. Above analysis verify our two co-attentions indeed boost performance.

Table 4. Ablation study for using differ-
ent numbers of related images during ob-
ject localization map generation, reported
on PASCAL VOC12 val set (see §4.4).

Method Extra Related Images (#) Val

Our Variant

0 64.7
1 65.9
2 66.0
4 66.1
5 66.0

Full Model 3 66.2

Number of Related Images for
Localization Map Inference. For
localization map generation, we use 3
extra related images (§3.2). Here, we
study how the number of reference im-
ages affect the performance. From Ta-
ble 4, it is easily observed that when
increasing the number of related im-
ages from 0 to 3, the performance gets
boosted consistently. However, when
further using more images, the perfor-
mance degrades. This can be attributed to the trade-off between useful semantic
information and noise brought by related images. From 0 to 3 reference im-
ages, more semantic information is used and more integral regions for objects
are mined. When further using more related images, useful information reaches
its bottleneck and noise, caused by imperfect localization of the classifier, takes
over, decreasing performance.

5 Conclusion

This work proposes a co-attention classification network to discover integral ob-
ject regions by addressing cross-image semantics. With this regard, a co-attention
is exploited to mine the common semantics within paired samples, while a con-
trastive co-attention is utilized to focus on the exclusive and unshared ones
for capturing complimentary supervision cues. Additionally, by leveraging extra
context from other related images, the co-attention boosts localization map in-
ference. Further, by exploiting additional single-label images and web images,
our approach is proven to generalize well under domain gap and data noise.
Experiments over three WSSS settings consistently show promising results.
Acknowledgements This work was partially supported by Zhejiang Lab’s
Open Fund (No. 2019KD0AB04), Zhejiang Lab’s International Talent Fund for
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