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Abstract. Advances in deep learning techniques have allowed recent
work to reconstruct the shape of a single object given only one RBG
image as input. Building on common encoder-decoder architectures for
this task, we propose three extensions: (1) ray-traced skip connections
that propagate local 2D information to the output 3D volume in a physi-
cally correct manner; (2) a hybrid 3D volume representation that enables
building translation equivariant models, while at the same time encoding
fine object details without an excessive memory footprint; (3) a recon-
struction loss tailored to capture overall object geometry. Furthermore,
we adapt our model to address the harder task of reconstructing mul-
tiple objects from a single image. We reconstruct all objects jointly in
one pass, producing a coherent reconstruction, where all objects live in a
single consistent 3D coordinate frame relative to the camera and they do
not intersect in 3D space. We also handle occlusions and resolve them by
hallucinating the missing object parts in the 3D volume. We validate the
impact of our contributions experimentally both on synthetic data from
ShapeNet as well as real images from Pix3D. Our method improves over
the state-of-the-art single-object methods on both datasets. Finally, we
evaluate performance quantitatively on multiple object reconstruction
with synthetic scenes assembled from ShapeNet objects.

1 Introduction

3D reconstruction is key to genuine scene understanding, going beyond 2D anal-
ysis. Despite its importance, this task is exceptionally hard, especially in its
most general setting: from one RGB image as input. Advances in deep learning
techniques have allowed recent work [25,6,47,33,35,30,45,7,10,48] to reconstruct
the shape of a single object in an image.

In this paper, we first propose several improvements for the task of recon-
structing a single object. As in [10,50], we build a neural network model which
takes a RGB input image, encodes it and then decodes it into a reconstruction
of the full volume of the scene. We then extract object meshes in a second stage.
We extend this simple model with three technical contributions: (1) Ray-traced
skip connections as a way to propagate local 2D information to the output 3D
volume in a physically correct manner (sec. 3.3). They lead to sharp reconstruc-
tion details because visible object parts can draw information directly from the
image; (2) A hybrid 3D volume representation that is both regular and implicit
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Fig. 1: 3D reconstructions from a single RGB image, produced by our model. Left:
Coherent reconstruction of multiple objects in a synthetic scene (shown from a view
matching the input image, and another view). We reconstruct all objects in their cor-
rect spatial arrangement in a common coordinate frame, enforce space exclusion, and
hallucinate occluded parts. Right: Reconstructing an object in a real-world scene. The
top image shows the reconstruction overlaid on the RGB input. The bottom row shows
the input next to two other views of the reconstruction.

(sec. 3.1). It enables building translation equivariant 3D models using standard
convolutional blocks, while at the same time encoding fine object details with-
out an excessive memory footprint. Translation equivariance is important for our
task, since objects can appear anywhere in space; (3) A reconstruction training
loss tailored to capture overall object geometry, based on a generalization of
the intersection-over-union metric (IoU) (sec. 3.4). Note that our model recon-
structs objects at the pose (translation, rotation, scale) seen from the camera,
as opposed to a canonical pose in many previous works [7,10,25,50].

We validate the impact of our contributions experimentally on synthetic data
from ShapeNet [4] (sec. 4.1) as well as real images from Pix3D [42] (sec 4.2).
The experiments demonstrate that (1) our proposed ray-traced skip connections
and IoU loss improve reconstruction performance considerably; (2) our proposed
hybrid volume representation enables to reconstruct at resolutions higher than
the one used during training; (3) our method improves over the state-of-the-art
single-object 3D reconstruction methods on both ShapeNet and Pix3D datasets.

In the second part of this paper, we address the harder task of reconstructing
scenes consisting of spatial arrangements of multiple objects. In addition to the
shape of individual objects at their depicted pose, we also predict the semantic
class of each object. We focus on coherent reconstruction in this scenario, where
we want to (1) reconstruct all objects and the camera at their correct relative
pose in a single consistent 3D coordinate frame, (2) detect occlusions and re-
solve them fully, hallucinating missing parts (e.g . a chair behind a table), and
(3) ensure that each point in the output 3D space is occupied by at most one
object (space exclusion constraint). We achieve this through a relatively simple
modification of our single-object pipeline. We predict a probability distribution
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over semantic classes at each point in the output 3D space and we make the final
mesh extraction step aware of this.

The technical contributions mentioned above for the single-object case are
even more relevant for reconstructing scenes containing multiple objects. Ray-
traced skip connections allow the model to propagate occlusion boundaries and
object contact points detected on the 2D image into 3D, and to also understand
the depth relations among objects locally. The IoU loss teaches our model to
output compact object reconstructions that do not overlap in 3D space. The
hybrid volume representation provides a fine discretization resolution, which
can compensate for the smaller fraction of the scene volume allocated to each
object in comparison to the single object case.

We experimentally study our method’s performance on multiple object re-
construction with synthetic scenes assembled from ShapeNet objects (sec. 4.3).
We validate again the impact of our technical contributions, and study the effect
of the degree of object occlusion, distance to the camera, number of objects in
the scene, and their semantic classes. We observe that ray-traced skip connec-
tions and the IoU loss bring larger improvements than in the single object case.
We show that our model can handle multiple object scenes well, losing only a
fraction of its performance compared to the single object case.

Finally, we study the effect of image realism on reconstruction performance
both in the single-object (sec. 4.1) and multi-object (sec. 4.3) cases. We ren-
der our images with either (1) local illumination against uniform background
like most previous works [25,47,33,45,7,10] or (2) a physically-based engine [32],
adding global illumination effects, such as shadows and reflections, non-trivial
background, and complex lighting from an environment map and finite extent
light sources. We publicly release these images, our models, and scene layouts [1].

2 Related work

Single object reconstruction. In the last few years there has been a surge
of methods for reconstructing the 3D shape of one object from a single RGB
image. Many of them [7,10,48,50,51] employ voxel grids in their internal repre-
sentation, as they can be handled naturally by convolutional neural networks.
Some works have tried to go beyond voxels: (1) by using a differentiable voxels-
to-mesh operation [21]; (2) by producing multiple depth-maps and/or silhouettes
from fixed viewpoints that can be subsequently fused [38,35,33,52]; (3) by op-
erating on point clouds [8,24], cuboidal primitives [45,30], and even directly on
meshes [47,5]. A recent class of methods [31,25,6] use a continuous volume rep-
resentation through implicit functions. The model receives a query 3D point as
part of its input and returns the occupancy at that point.

We build on principles from these works and design a new type of hybrid rep-
resentation that is both regular like voxels and continuous like implicit functions
(sec. 3.1). We also address more complex reconstruction tasks: we reconstruct
objects in the pose as depicted in the image and we also tackle scenes with multi-
ple objects, predicting the semantic class of each object. Finally, we experiment
with different levels of rendering realism.
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Multi-object reconstruction. IM2CAD [15] places multiple CAD models
from a database in their appropriate position in the scene depicted in the in-
put image. It only reconstructs the pose of the objects and copies over their
whole CAD models, without trying to reconstruct their particular 3D shapes as
they appear in the input image. 3D-RCNN [18] learns a per-class linear shape
basis from a training dataset of 3D models. It then uses a render-and-compare
approach to fit the coefficients of this basis to objects detected in the test im-
age. This method only outputs 3D shapes that lie on a simple linear subspace
spanning the training samples. Instead our model can output arbitrary shapes,
and the mapping between image appearance and shape is more complex as it
is modeled by a deep neural network. Tulsiani et. al. [44] first detects object
proposals [53] and then reconstructs a pose and a voxel grid for each, based on
local features for the proposal and a global image descriptor. Mesh-RCNN [9]
extends Mask-RCNN [13] to predict a 3D mesh for each detected object in an
image. It tries to predict the objects positions in the image plane correctly, but
it cannot resolve the fundamental scale/depth ambiguity along the Z-axis.

All four methods [15,18,44,9] first detect objects in the 2D image, and then
reconstruct their 3D shapes independently. Instead, we reconstruct all objects
jointly and without relying on a detection stage. This allows us to enforce space
exclusion constraints and thus produce a globally coherent reconstruction.

The concurrent work [29] predicts the 3D pose of all objects jointly (after
2D object detection). Yet, it still reconstructs their 3D shape independently,
and so the reconstructions might overlap in 3D space. Moreover, in contrast
to [29,44,15,18] our method is simpler as it sidesteps the need to explicitly predict
per-object poses, and instead directly outputs a joint coherent reconstruction.

Importantly, none of these works [15,18,9,29] offers true quantitative eval-
uation of 3D shape reconstruction on multiple object scenes. One of the main
reasons for this is the lack of datasets with complete and correct ground truth
data. One exception is [44] by evaluating on SunCG [39], which is now banned.
In contrast, we evaluate our method fully, including the 3D shape of multiple
objects in the same image. To enable this, we create two new datasets of scenes
assembled from pairs and triplets of ShapeNet objects, and we report perfor-
mance with a full scene evaluation metric (sec. 4.3).

Finally, several works tackle multiple object reconstruction from an RGB-D
image [28,40], exploiting the extra information that depth sensors provides.

Neural scene representations. Recent works [34,36,26,27,37,23] on neural
scene representations and neural rendering extract latent representations of the
scene geometry from images and share similar insights to ours. In particular,
[16,46] use unprojection, a technique to accumulate latent scene information
from multiple views, related to our ray-traced skip connections. Others [34,37]
can also reconstruct (single-object) geometry from one RGB image.

3 Proposed approach

For simplicity and compactness of exposition, we present directly our full method,
which can reconstruct multiple objects in the same image. Our reconstruction
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Fig. 2: Left: 2D slice of the output grid (yellow points) and a decoder layer grid (blue
points). The output grid is offset by ō from the origin. The decoder grid, which has k
times lower resolution, by kō. Right: Side-cut of our model’s architecture. Ray-traced
skip connections (red) propagate data from the encoder to the decoder, ō is appended
to the channels of select decoder layers (green).

pipeline takes a single RGB image as input and outputs a set of meshes – one
for each object in the scene. It is trained to jointly predict the object shapes,
their pose relative to the camera, and their class label.

At the core of our pipeline is a neural network model that receives a single
RGB image and a set of volume query points as input and outputs a probability
distribution over C possible classes at each of these points. One of the classes is
void (i.e. empty space), while the rest are object classes, such as chair and table.
Predicting normalized distributions creates competition between the classes and
forces the model to learn about space exclusion. For single object models, we
use two classes (foreground and void, C = 2).

To create a mesh representation, we first reconstruct a fine discretization
of the output volume (sec. 3.5). We query the model repeatedly, at different
locations in 3D space, and we integrate the obtained outputs. We then apply
marching cubes [20] over the discretization, in a way that enforces the space
exclusion constraint. We jitter the query points randomly during training. For
single object models, we treat all meshes as parts of one single output object.

3.1 3D volume representation

We want our model to reconstruct the large 3D scene volume at a fine spatial
resolution, so we can capture geometric details of individual objects, but without
an excessive memory footprint. We also want it to be translation equivariant :
if the model sees e.g . chairs only in one corner of the scene during training, it
should still be able to reconstruct chairs elsewhere. This is especially important
in a multi-object scenario, where objects can appear anywhere in space.

A recent class of models [25,6,31] address our first requirement through an
implicit volume representation. They input a compact code, describing the vol-
ume contents, and a query point. They output the occupancy of the volume at
that point. These models can be used for reconstruction by conditioning on a
code extracted from an image, but are not translation equivariant by design.

Models based on a voxel grid representation [7,10] are convolutional in nature,
and so address our translation equivariance requirement, but require excessive
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memory to represent large scenes at fine resolutions (cubic in the number of
voxels per dimension).

We address both requirements with a new hybrid volume representation and
a model architecture based on it. Our model produces a multinomial distribution
over the C possible classes on a regular grid of points. The structure of the grid
is fixed (i.e. fixed resolution W×H×D and distance between points v), but we
allow the grid to be placed at an arbitrary spatial offset ō, smaller than v (fig. 2).
The offset value is an input to our model, which then enables fine-resolution
reconstruction (see below).

This representation combines the best of voxel grids and implicit volumes.
The regular grid structure allows to build a fully convolutional model that is
translation equivariant by design, using only standard 3D convolution building
blocks. The variable grid offset allows to reconstruct regular samplings of the
output volume at any desired resolution (multiple of the model grid’s resolution),
while keeping the model memory footprint constant. To do this, we call our model
repeatedly with different appropriately chosen grid offsets during inference (sec.
3.5) and integrate the results into a single, consistent, high-resolution output.
We sample the full output volume with random grid offsets ō during training.

3.2 Core model architecture

We construct our model on top of an encoder-decoder skeleton (fig. 2). A cus-
tom decoder transforms the output of a standard ResNet-50 [14] encoder into
a W×H×D×C output tensor – a probability distribution over the C possible
classes for each point in the output grid. The decoder operations alternate be-
tween upscaling, using transposed 3D convolutions with stride larger than 1, and
data mixing while preserving resolution, using 3D convolutions with stride 1.

We condition the decoder on the grid offset ō. We further create ray-traced
skip connections that propagate information from the encoder to the decoder
layers in a physically accurate manner in sec. 3.3. We inject ō and the ray-traced
skip connections before select data mixing operations.

3.3 Ray traced skip connections Decoder layer

Encoder layer

Fig. 3: Pixels in the 2D encoder embed local
image information, which ray-traced skip
connections propagate to all 3D decoder
grid points in the corresponding frustum.

So far we relied purely on the encoder
to learn how to reverse the physical
process that converts a 3D scene into
a 2D image. This process is well un-
derstood however [12,32] and many
of its elements have been formalized
mathematically. We propose to inject
knowledge about it into the model, by
connecting each pixel in the input im-
age to its corresponding frustum in the output volume (fig. 3).

We assume for now that the camera parameters are known. We can compute
the 2D projection on the image plane of any point in the 3D output volume
and we use this to build ray-traced skip connections. We choose a source 2D
encoder layer and a target 3D decoder layer. We treat the We×He×Ce encoder
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layer as a We×He image with Ce channels, taken by our camera. We treat the
Wd×Hd×Dd×Cd decoder layer as a Wd×Hd×Dd grid of points. We project the
decoder points onto the encoder image, then sample it at the resulting 2D coor-
dinates, and finally carry the sampled data over to the 3D decoder. This creates
skip connections in the form of rays that start at the camera image plane, pass
through the camera pinhole and end at the decoder grid point (fig. 3). We con-
nect several of the decoder layers to the encoder in this manner, reducing the
channel count beforehand to 0.75 · Cd by using 1×1 convolutions.

Decoder grid offset. An important detail is how to choose the parameters
of the decoder layer’s grid. The resolution is determined by the layer itself (i.e.
Wd×Hd×Dd). It has k times lower resolution than the output grid (by design).
We choose vd = kv for distance between the grid points and ōd = kō for grid
offset (fig. 2). This makes the decoder grid occupy the same space as the final
output grid and respond to changes in the offset ō in a similar way. In turn, this
aids implicit volume reconstruction in sec. 3.5 with an additional parallax effect.

Obtaining camera parameters. Ray-traced skip connections rely on known
camera parameters. In practice, the intrinsic parameters are often known. For in-
dividual images, they can be deduced from the associated metadata (e.g . EXIF in
JPEGs). For 3D datasets such as Pix3D [42] and Matterport3D [3] they are usu-
ally provided. When not available, we can assume default intrinsic parameters,
leading to still plausible 3D reconstructions (e.g . correct relative proportions but
wrong global object scale). The extrinsic parameters in contrast are usually un-
known. We compensate for this by reconstructing relative to the camera rather
than in world space, resulting in an identity extrinsic camera matrix.

3.4 IoU training loss

The output space of our model is a multinomial distribution over the C possible
classes (including void), for each point in 3D space. This is analog to multi-class
recognition in 2D computer vision and hence we could borrow the categorical
cross-entropy loss common in those works [14,13]. In our case, most space in the
output volume in empty, which leads to most predicted points having the void
label. Moreover, as only one object can occupy a given point in space, then all
but one of the C values at a point will be 0. This leads to even more sparsity. A
better loss, designed to deal with extreme class imbalance, is the focal loss [22].

Both categorical cross-entropy and the focal loss treat points as a batch
of independent examples and average the individual losses. They are not well
suited for 3D reconstruction, as we care more about overall object geometry, not
independent points. The 3D IoU metric is better suited to capture this, which
inspired us to create a new IoU loss, specifically aiming to minimize it. Similar
losses have been successfully applied to 2D image segmentation problems [41,2].

We generalize IoU, with support for continuous values and multiple classes:

IoUg(g, p) =

∑
i∈G

C−1∑
c=1

min(gic, pic) · µ(gic)

∑
i∈G

C−1∑
c=1

max(gic, pic) · µ(gic)
, µ(gic) =

{
1 , if gic = 1

1
C−1 , if gic = 0

(1)
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Fig. 4: Single object experiments (sec. 4.1). Left: Scenes reconstructed by h7, shown
from two different viewpoints. Our model handles thin structures and hallucinates
invisible back-facing object parts. Right: Scenes reconstructed by y1. Despite the low
resolution of y1 (323, second row), we reconstruct high-quality meshes (first row) by
sampling y1 with 43 grid offsets (see sec. 3).

where i loops over the points in the grid, c – over the C − 1 non-void classes,
gic ∈ {0, 1} is the one-hot encoding of the ground truth label, indicating whether
point i belongs to class c, and pic ∈ [0, 1] is the predicted probability. µ(gic)
balances for the sparsity due to multiple classes, as C − 1 values in the ground
truth one-hot encoding will be 0.

With two classes (i.e. C = 2) and binary values for p and g, IoUg is equivalent
to the intersection-over-union measure. The max operator acts like logical and,
min like logical or, and µ(gic) is always one. In the case where there is a single
object class to be reconstructed we use 1−IoUg as a loss (sec. 4.1). With multiple
objects, we combine IoUg with categorical cross entropy into a product (sec. 4.3)

3.5 Mesh reconstruction

Our end-goal is to extract a set of meshes that represent the surface of the objects
in the scene. To do this, we first reconstruct an arbitrary fine discretization
of the volume, with a resolution that is an integer multiple n of the model’s
output resolution. We call the model n3 times, each time with a different offset

ō ∈
{

0+0.5
n v, 1+0.5

n v, ..., n−1+0.5
n v

}3
and we interleave the obtained grid values.

The result is a nW×nH×nD×C discretization of the volume.
We then extract meshes. We break the discretization into C slices of shape

nW×nH×nD, one for each class. We run marching cubes [20] with threshold 0.5
on each slice independently and we output meshes, except for the slice corre-
sponding to the void class. The 0.5 threshold enforces space exclusion, since at
most one value in a probability distribution can be be larger than 0.5.

4 Experiments

We first present experiments on single object reconstruction on synthetic images
from ShapeNet [4] (sec. 4.1) and on real images from Pix3D [42] (sec. 4.2). Then
we evaluate performance on multiple object reconstruction in sec. 4.3.
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skip rea- IoU
id conn. loss lism mean glob. F@1%

h1 No focal low 50.8 52.0 45.0
h2 No IoU low 53.0 53.9 47.8

h3 Yes Xent low 54.1 55.2 52.9
h4 Yes focal low 56.6 57.5 54.4
h5 Yes IoU low 57.9 58.7 57.5

h6 Yes Focal high 58.1 58.4 57.3
h7 Yes IoU high 59.1 59.3 59.5

skip rea- IoU
id data conn. loss lism mean glob.

m1 pairs no focal high 34.9 46.4
m2 pairs no IoU high 33.1 43.4

m3 pairs yes focal low 40.4 49.7
m4 pairs yes IoU low 41.8 50.6

m5 pairs yes Xent high 30.0 43.5
m6 pairs yes focal high 42.7 52.4
m7 pairs yes IoU high 43.1 52.7

m8 tripl. yes focal high 43.0 49.1
m9 tripl. yes IoU high 43.9 49.8

m10 single yes focal high 43.4 53.9
m11 single yes IoU high 46.9 56.4

Table 1: Reconstruction performance in % for (a) our single object experiments on
the left, and (b) our multiple object experiments on the right.

4.1 Single object reconstruction on ShapeNet

Dataset. We use ShapeNet [4], following the setting of [7].
We consider the same 13 classes, train on 80% of the object
instances and test on 20% (the official ShapeNet-trainval
and ShapeNet-test splits). We normalize and center each
object in the unit cube and render it from 24 random view-
points, with two levels of photorealism (see inset figure on
the right): low realism, using local illumination on a uni-
form background, with no secondary effects such as shadows and reflections; and
high realism, with full global illumination using PBRT’s renderer [32], against an
environment map background, and with a ground plane. The low realism setting
is equivalent to what was used in previous works [25,47,7].

Default settings. Unless specified otherwise, we train and evaluate at the same
grid resolution (1283), and we use the same camera parameters in all scenes. We
evaluate intersection-over-union as a volumetric metric, reporting mean over the
classes (mIoU) as well as the global mean over all object instances. We also
evaluate the predicted meshes with the F@1%-score [43] as a surface metric. As
commonly done [31,25,6], we pre-process the ground-truth meshes to make them
watertight and to remove hidden and duplicate surfaces. We sample all meshes
uniformly with 100K points, then compute F-score for each class, and finally
report the average over classes.

Reconstruction performance. We report the effect of hyper parameters on
performance in table 1(a) and show example reconstructions in fig. 4. Ray-traced
skip connections improve mIoU by about 5% and F@1% by 10%, in conjunction
with any loss. Our IoU loss performs best, followed by focal and categorical cross
entropy (Xent). Somewhat surprisingly, results are slightly better on images
with high realism, even though they are visually more complex. Shadows and
reflections might be providing additional reconstruction cues in this case. Our
best model for low realism images is h5 and for high realism it is h7.
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ONN∗ 52.6 45.8 45.1 43.8 54.0 58.5 55.4 39.5 57.0 48.0 68.0 50.7 68.3 49.9
h2 53.0 46.9 44.3 44.7 56.4 57.4 53.8 35.9 58.1 53.4 67.2 49.7 70.9 49.9
h5 57.9 53.0 50.8 50.9 57.3 63.0 57.2 42.1 60.8 64.6 70.6 55.5 73.1 54.0

3D-R2N2 49.3 42.6 37.3 66.7 66.1 43.9 44.0 28.1 61.1 37.5 62.6 42.0 61.1 48.2
Pix2Mesh 48.0 42.0 32.3 66.4 55.2 39.6 49.0 32.3 59.9 40.2 61.3 39.5 66.1 39.7

ONN 57.1 57.1 48.5 73.3 73.7 50.1 47.1 37.1 64.7 47.4 68.0 50.6 72.0 53.0

Table 2: Comparison to state of the art. The first three rows compare ONN [25] to
our models h2 and h5, all trained on our data. The next three rows are taken from [25]
and report performance of 3D-R2N2 [7], Pix2Mesh [47], and ONN [25] on their data.

Comparison to state-of-the-art. We compare our models to state-of-the art
single object reconstruction methods [25,50,7,47]. We start with an exact com-
parison to ONN [25]. For this we use the open source implementation provided
by the authors to train and test their model on our low-realism images train and
test sets. We then use our evaluation procedure on their output predictions. As
table 2 shows, ONN achieves 52.6% mIoU on our data with our evaluation (and
51.5% with ONN’s evaluation procedure). This number is expectedly lower than
the 57.1% reported in [25] as we ask ONN to reconstruct each shape at the pose
depicted in the input image, instead of the canonical pose. From ONN’s per-
spective, the training set contains 24 times more different shapes, one for each
rendered view of an object. Our best model for low-realism renderings h5 out-
performs ONN on every class and achieves 57.9% mIoU. ONN’s performance is
comparable to h2, our best model that, like ONN, does not use skip connections.

We then compare to 3D-R2N2 [7], Pix2Mesh [47], and again ONN [25], using
their mIoU as reported by [25] (table 2). Our model h5 clearly outperforms 3D-
R2N2 (+8.6%) and Pix2Mesh (+9.9%). It also reaches a slightly better mIoU
than ONN (+0.8%), while reconstructing in the appropriate pose for each input
image, as opposed to a fixed canonical pose. We also compare on the Chamfer
Distance surface metric, implemented exactly as in [25]. We obtain 0.15, which is
better than 3D-R2N2 (0.278), Pix2Mesh (0.216), and ONN (0.215), all compared
with the same metric (as reported by [25]). 1

Finally, we compare to Pix2Vox [50] and its extension Pix2Vox++ [51] (con-
current work to ours). For a fair comparison we evaluate our h5 model on a
323 grid of points, matching the 323 voxel grid output by [50,51]. We compare
directly to the mIoU they report. Our model h5 achieves 68.9% mIoU in this
case, +2.8% higher than Pix2Vox (66.1% for their best Pix2Vox-A model) and
+1.9% higher than Pix2Vox++ (67.0% for their best Pix2Vox++/A model).

1 Several other works [8,11], including very recent ones [5,52], report Chamfer Distance
and not IoU. They adopt subtly different implementations, varying the underlying
point distance metric, scaling, point sampling, and aggregation across points. Thus,
they report different numbers for the same works, preventing direct comparison.



CoReNet: Coherent 3D scene reconstruction from a single RGB image 11

Reconstructing at high resolutions. Our model can perform reconstruction
at a higher resolution than the one used during training (sec. 3.1). We study this
here by reconstructing at 2× and 4× higher resolution. We train one model (y1)
using a 323 grid and one (y2) using a 643 grid, with ray-traced skip connections,
images with low realism, and focal loss. We then reconstruct a 1283 discretization
from each model, by running inference multiple times at different grid offsets (64
and 8 times, respectively, sec. 3.5). At test time, we always measure performance
on the 1283 reconstruction, regardless of training resolution.

Fig. 4 shows example reconstructions. We compare performance to h4 from
table 1, which was trained with same settings but at native grid resolution 1283.
Our first model (trained on 323 and producing 1283) achieves 53.1% mIoU. The
second model (trained on 643 and producing 1283) gets to 56.1%, comparable to
h4 (56.6%). This demonstrates that we can reconstruct at substantially higher
resolution than the one used during training.

4.2 Single object reconstruction on Pix3D

We evaluate the performance of our method on real images using the Pix3D
dataset [42], which contains 10069 images annotated with 395 unique 3D models
from 9 classes (bed, bookcase, chair, desk, misc, sofa, table, tool, wardrobe).
Most of the images are of indoor scenes, with complex backgrounds, occlusion,
shadows, and specular highlights.

The images often contain multiple objects, but Pix3D provides annotations
for exactly one of them per image. To deal with this discrepancy, we use a single
object reconstruction pipeline. At test time, our method looks at the whole
image, but we only reconstruct the volume inside the 3D box of the object
annotated in the ground-truth. This is similar to how other methods deal with
this discrepancy at test time2.

Generalization across domains (ShapeNet to Pix3D). We first perform
experiments in the same settings as previous works [7,42,50], which train on
synthetic images of ShapeNet objects. As they do, we focus on chairs. We train
on the high-realism synthetic images from sec. 4.1. For each image we crop out
the chair and paste it over a random background from OpenImages [19,17], a
random background from SunDB [49], and a white background. We start from a
model pre-trained on ShapeNet (h7, sec. 4.1) and continue training on this data.

We evaluate on the 2894 Pix3D images with chairs that are neither occluded
nor truncated. We predict occupancy on a 323 discretization of 3D space. This
is the exact same setting used in [7,42,50,51]. Our model achieves 29.7% IoU,
which is higher than Pix2Vox [50] (28.8%, for their best Pix2Vox-A model),
the Pix3D method [42] (28.2%, for their best ‘with pose’ model), 3D-R2N2 [7]
(13.6%, as reported in [42]), and the concurrent work Pix2Vox++ [51] (29.2%
for their best Pix2Vox++/A model).

2 Pix2Vox [50] and Pix2Vox++ [51] crop the input image before reconstruction, using
the 2D projected box of the ground-truth object. MeshRCNN [9] requires the ground-
truth object 3D center as input. It also crops the image through the ROI pooling
layers, using the 2D projected ground-truth box to reject detections with IoU < 0.3.
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Fig. 5: Qualitative results on Pix3D. For each example, the large image shows our
reconstruction overlaid on the RGB input. The smaller images show the RGB input,
and our reconstruction viewed from two additional viewpoints.

This setting is motivated by the fact that most real-world images do not
come with annotations for the ground-truth 3D shape of the objects in them.
Therefore, it represents the common scenario of training from synthetic data
with available 3D supervision.

Fine tuning on real data from Pix3D. We now consider the case where we
do have access to a small set of real-world images with ground-truth 3D shapes
for training. For this we use the S1 and S2 train/test splits of Pix3D defined
in [9]. There are no images in common between the test and train splits in both
S1 and S2. Furthermore, in S2 also the set of object instances is disjoint between
train and test splits. In S1 instead, some objects are allowed to be in both the
splits, albeit with a different pose and against a different background.

We train two models, one for S1 and one for S2. In both cases, we start
from a model pre-trained on ShapeNet (h7) and we then continue training on
the respective Pix3D train set. On average over all 9 object classes, we achieve
33.3% mIoU on the test set of S1, and 23.6% on the test set of S2, when evaluating
at 1283 discretization of 3D space (fig. 5).

As a reference, we compare to a model trained only on ShapeNet. As above,
we start from h7 and we augment with real-world backgrounds. We evaluate
performance on all 9 object classes on the test splits of S1 and S2. This leads to
20.9% mIoU for S1 and 20.0% for S2. This confirms that fine-tuning on real-world
data from Pix3D performs better than training purely on synthetic data.
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Fig. 6: Pairs and triplets reconstructed by m7 and m9, shown from the camera and from
one additional viewpoint. Our model hallucinates the occluded parts and reconstructs
all objects in their correct spatial arrangement, in a common coordinate frame.

4.3 Multiple object reconstruction

Datasets and settings. We construct two datasets by assembling objects from
ShapeNet. The first is ShapeNet-pairs, with several pairs of object classes: bed-
pillow, bottle-bowl, bottle-mug, chair-table, display-lamp, guitar-piano, motorcycle-
car. The second is ShapeNet-triplets, with bottle-bowl-mug and chair-sofa-table.
We randomly sample the object instances participating in each combination
from ShapeNet, respecting its official trainval and test splits. For each image we
generate, we random sample two/three object instances, place them at random
locations on the ground plane, with random scale and rotation, making sure they
do not overlap in 3D, and render the scene from a random camera viewpoint
(yaw and pitch). We construct the same number of scenes for every pair/triplet
for training and testing. Note how the objects’ scales and rotations, as well as the
camera viewpoints, vary between the train and test splits and between images
within a split (but their overall distribution is the same). Like the single-object
case, the object instances are disjoint in the training and test splits. In total, for
pairs we generate 365’600 images on trainval and 91’200 on test; for triplets we
make 91’400 on trainval and 22’000 on test.

We perform experiments varying the use of ray-traced skip connections, the
image realism, and the loss. Besides categorical cross entropy (Xent) and focal
loss, we also combine Xent and IoUg (1) into a product. The IoU part pushes
the model to reconstruct full shapes, while Xent pushes it to learn the correct
class for each 3D point. We train on the train and val splits together, and test
on the test split, always with grid resolution 1283.

Reconstruction performance. Table 1(b) summarizes our results, includ-
ing also multi-class reconstruction of images showing a single ShapeNet object
for reference (bottom row, marked ‘single’). We show example reconstructions in
fig. 6. On ShapeNet-pairs, using ray-traced skip connections improves mIoU sub-
stantially (by 8−10%), in conjunction with any loss function. The improvement is
twice as large than in the single object case (table 1), confirming that ray-traced
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skip connections indeed help more for multiple objects. They allow the model
to propagate occlusion boundaries and object contact points detected on the 2D
image into 3D, and also to understand the depth relations among objects locally.
When using skip connections, our IoU loss performs best, followed closely by the
focal loss. The cross-entropy loss underperforms in comparison (−13% mIoU).
As with the single-object case, results are slightly better on higher image realism.

Importantly, we note that performance for pairs/triplets is only mildly lower
than for the easier single-object scenario. To investigate why, we compare the
single-object modelsm11 and h7 from table 1. They differ in the number of classes
they handle (14 for m11, 2 for h7) but have otherwise identical settings. While
the difference in their mean IoUs is 12% (46.9% vs. 59.1%), their global IoUs
are close (56.4% vs. 59.3%). Hence, our model is still good at reconstructing the
overall shapes of objects, but makes some mistakes in assigning the right class.

Finally, we note that reconstruction is slightly better overall for triplets rather
than for pairs. This is due to the different classes involved. On pairs composed
of the same classes appearing in the triplets, results are better for pairs.

In conclusion, these results confirm that we are able to perform 3D recon-
struction in the harder multiple object scenario.

Fig. 7: mIoU vs. object occlu-
sion and depth.

Occlusion and distance. In fig. 7, we break
down the performance (mIoU) of m7 by the de-
gree of object occlusion (blue), and also by the
object depth for unoccluded objects (i.e. distance
to the camera, green). The performance gracefully
degrades as occlusion increases, showing that our
model can handle it well. Interestingly, the per-
formance remains steady with increasing depth,
which correlates to object size in the image. This
shows that our model reconstructs far-away objects about as well as nearby ones.

Generalizations. In the suppl. material we explore even more challenging sce-
narios, where the number of objects varies between training and test images, and
where the test set contains combintations of classes not seen during training.

5 Conclusions

We made three contributions to methods for reconstructing the shape of a sin-
gle object given one RBG image as input: (1) ray-traced skip connections that
propagate local 2D information to the output 3D volume in a physically correct
manner; (2) a hybrid 3D volume representation that enables building transla-
tion equivariant models, while at the same time producing fine object details
with limited memory; (3) a reconstruction loss tailored to capture overall ob-
ject geometry. We then adapted our model to reconstruct multiple objects. By
doing so jointly in a single pass, we produce a coherent reconstruction with all
objects in one consistent 3D coordinate frame, and without intersecting in 3D
space. Finally, we validated the impact of our contributions on synthetic data
from ShapeNet as well as real images from Pix3D, including a full quantitative
evaluation of 3D shape reconstruction of multiple objects in the same image.
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