
Supplementary Materials for “DSMNet”


ଵ
ଶ
ଷ

ସ
ǡଵ࢝ହ

ǡସ࢝

ଵǡଶ࢝
ଵǡହ࢝

࢚ ͳ࢚ െͳ࢚ʹ࢚ ࢚ ͳ࢚ ࢘െ࢘െͳ࢚ʹ࢚ െͳ݀࢘2
݀ͳ
݀ʹ
݀


ଵ
ଶ
ଷ

ସ
ହ

(a) 8-connected graph (b) directed graph G1 (c) directed graph G2

Figure 1: Illustration of the graph construction. The 8-way connected graph is separated into two directed graphs G1 and G2.

1. Proof of Footnote 1
The proposed non-local filter is defined as:

CA
i (p) =

∑
q∈Gi

W (q,p)·C(q)

∑
q∈Gi

W (q,p) ,

W (q,p) = ∑
lq,p∈Gi

∏
e∈lq,p

ωe.
(1)

Following all the variable definitions in the paper, here, we prove that

∑
q∈Gi

W (q,p) = 1, if ∑
q∈Np

ωe(q,p) = 1. (2)

Since any path which reaches node p must pass through its neighborhoods q, we can expand W (q,p) to get that

∑
q∈Gi

W (q,p) = ωe(p,p)+ ∑
p′∈Np,p′ ̸=p

ωe(p′,p) ∑
q∈Gi

W (q,p′)

Following the order of p0,p1...pn...pN (Fig. 1), we can prove Eq. (2) by mathematical induction:
When n = 0, for p0, ∑

q∈Gi

W (q,p0) =W (p0,p0) = ωe(p0,p0) = 1

Assume when n ≤ t, ∑
q∈Gi

W (q,pn) = 1.

We can get that for n = t +1:

∑
q∈Gi

W (q,pt+1) = ωe(pt+1,pt+1)+ ∑
pk∈Npt+1 ,pk ̸=pt+1

ωe(pk,pt+1) ∑
q∈Gi

W (q,pk)

= ωe(pt+1,pt+1)+ ∑
pk∈Npt+1 ,pk ̸=pt+1

ωe(pk,pt+1) ·1

= ∑
pk∈Npt+1

ωe(pk,pt+1)

= 1.

Here, k ≤ t, since pk ∈ Npt+1 .
This yields the equivalence of Eq. (2).

1



2. Backpropagation
The proposed structure-preserving graph-based filter (SGF) can be realized as an iterative linear aggregation as:

CA
i (p) = ωe(p,p) ·C(p)+ ∑

q∈Np,q ̸=p
ωe(q,p) ·CA

i (q) (3)

The backpropagation for ωe and C(p) can be computed inversely. Assume the gradient from next layer is ∂E
∂CA

i
. The

backpropagation can be implemented as:

∂E
∂C(p) =

∂E
∂Cb

i (p)
·ωe(p,p),

∂E
∂ωe(p,p)

= ∂E
∂Cb

i (p)
·C(p),

∂E
∂ωe(q,p)

= ∂E
∂Cb

i (p)
·CA

i (q), q ∈ Np & q ̸= p

(4)

where, ∂E
∂Cb

i
is a temporary gradient variable which can be calculated iteratively (similar to Eq. (3)):

∂E
∂Cb

i (p)
=

∂E
∂CA

i (p)
+ ∑

q∈Np,q̸=p

∂E
∂Cb

i (q)
·ωe(q,p) (5)

The propagation of Eq. (5) is an inverse process and in an order of pN ,pN−1, ...p0

3. Details of the Architecture
Table 3 presents the details of the parameters of the DSMNet. It has seven SGF layers which are used in feature extraction

and cost aggregation. The proposed Domain Normalization layer is used to replace Batch Normalization after each 2D
convolutional layer in the feature extraction and guidance networks.

4. Efficiency and Parameters
As shown in Table 1, our proposed SGF is a linear process that can be realized efficiently. The inference time is increased

by about 5∼10% compared with the baseline. Moreover, no any new parameters are introduced for the proposed domain
normalization and SGF layers.

We also compare the memory requirements of state-of-the-art stereo matching models in Table 1 (test phase with KITTI
resolution: 1242 × 375). The memory requirements are PSMNet (4.6) vs. PSMNet-DSMNet (4.9) and GANet (6.4) vs.
DSMNet (5.8). DSMNet consumes less memory than GANet. It uses no LGA layers [11]. Compared with other non-local
strategies [4, 8, 9], our SGF is realized by iterative linear propagation and has a lower complexity in memory requirement.

Table 1: Comparisons of Memory, Elapsed Time and Number of Parameter

Methods Elapsed Time Parameter Number Memory (Test Phase, GB)

GANet-deep [11] 1.8s 60M 6.4
Baseline 1.4s 48M 5.5

Our DSMNet 1.5s 48M 5.8
PSMNet [1] 0.4s 52M 4.6

DSMNet (PSMNet) 0.42s 52M 4.9

5. Comparison with BN
In Fig. 3, we compare the batch normalization (BN) and our proposed domain normalization (DN). Mean and Variance

of the 32-channel features are computed using five different datasets. Different normalization strategies are implemented
and all other settings are kept the same. The two models (BN or DN) are trained on the same synthetic dataset and test on
five different datasets. The output of the last convolutional layer (with ReLU) in the feature extraction network is used to
calculate the mean and variance. We can find that, for BN, different datasets have different mean and variances in each of
the 32 feature channels. This will significantly influence the domain generalization abilities. As a comparison, our DN can
remove the mean and variance shifts between different datasets.

2



6. Carla Dataset
Since Sceneflow dataset only has limited number of stereo pairs for diving scenes, we use the Carla [3] platform to

produce the stereo pairs for outdoor driving scenes. As shown in Table 2, the new carla supplementary dataset has more
diverse settings, including two kinds of image resolutions (720× 1080 and 1080× 1920), three different focal lengths, and
six different camera baselines (in a range of 0.2-1.5m). This supplementary dataset can significantly improve the diversity of
the training set. As shown in Fig. 2, the Carla data still have significant domain differences (e.g. color, textures) compared
with the real scenes (e.g. KITTI, CityScapes), but, our DSMNet focus on extract shape and structure information for robust
stereo matching. These can be better transferred to the real scenes and produce more accurate disparity estimation.

Table 2: Statistics of the Carla Stereo Dataset

dataset number of pairs focal length baseline settings resolutions

SceneFlow 34,000 450, 1050 0.54 960×540
Carla stereo 20,000 640, 670, 720 0.2, 0.3, 0.5, 1.0, 1.2, 1.5 1280×720, 1920×1080

(a) left view (b) right view (c) disparity map

Figure 2: Example of the Carla stereo data.

7. More Results
7.1. Feature Visualization

As compared in Fig. 4, the features of the state-of-the-art models are mainly local patterns which can have a lot of artifacts
(e.g. noises) when suffering from domain shifts. Our DSMNet mainly captures the non-local structure and shape information,
which are robust for cross-domain generalization. There is no artifacts in the feature maps of our DSMNet.

7.2. Disparity Results on Different Datasets

More results and comparisons are provided in Fig. 5. All the models are trained on the synthetic dataset and tested on the
real KITTI, Middlebury, ETH3D and Cityscapes datasets.

7.3. Training with Other Datasets

Training on “Flyingthings3D”: We also tried to train only with “Flyingthings3D” dataset (without synthetic dirving
scenes) and evaluate on the KITTI 2015 real driving scenes. Without synthetic driving scenes for training, error rates (%)
are: PSMNet (25.1) vs. GANet (19.5) vs. DSMNet (9.8). DSMNet outperforms others by 9∼15%.

Indoor and outdoor domains: We test the cross-domain generalizations between KITTI (outdoor) and Middlebury (in-
door) scenes:

i) From KITTI to Middlebury, error rates (%) are PSMNet (33.6) vs. GANet (29.1) vs. DSMNet (20.5). DSMNet outperforms
the state of the arts by 8∼13% in accuracy.

ii) From Middlebury to KITTI, error rates (%) are PSMNet (15.0) vs. GANet (11.2) vs. DSMNet (6.3). Our DSMNet again
outperforms the state of the arts by 5∼9%.

7.4. Comparisons with Nonlocal Networks and Attentions

Our graph-based filtering strategy is better for capturing the structural and geometric context for robust domain-invariant
stereo matching. The non-local neural network denoising [9] and non-local attention [4] do not have spatial constraints that
usually lead to over smoothness of the depth edges and thin structures (as shown in Fig. 6).

3



References
[1] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5410–5418, 2018.
[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan

Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 3213–3223, 2016.

[3] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open urban driving simulator.
arXiv preprint arXiv:1711.03938, 2017.

[4] Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross attention for
semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 603–612, 2019.

[5] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A large dataset
to train convolutional networks for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4040–4048, 2016.

[6] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3061–3070, 2015.

[7] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić, Xi Wang, and Porter Westling. High-resolution
stereo datasets with subpixel-accurate ground truth. In German conference on pattern recognition, pages 31–42. Springer, 2014.

[8] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 7794–7803, 2018.

[9] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising for improving adversarial
robustness. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 501–509, 2019.

[10] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical discrete distribution decomposition for match density estimation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6044–6053, 2019.

[11] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggregation net for end-to-end stereo matching.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 185–194, 2019.

4



Table 3: Parameters of the network architecture of “DSMNet”

No. Layer Description Output Tensor
Feature Extraction

input normalized image pair as input H×W×3
1 3×3 conv, DN, ReLU H×W×32
2 3×3 conv, stride 3, DN, ReLU 1/3H×1/3W×32
3 3×3 conv, DN, ReLU 1/3H×1/3W×32
4 SGF, DN, ReLU 1/3H×1/3W×32
5 3×3 conv, stride 2, DN, ReLU 1/6H×1/6W×48
6 SGF, DN, ReLU 1/6H×1/6W×48
7 3×3 conv, DN, ReLU 1/6H×1/6W×48

8-9 repeat 5,7 1/12H×1/12W×64
10-11 repeat 8-9 1/24H×1/24W×96
12-13 repeat 8-9 1/48H×1/48W×128

14 3×3 deconv, stride 2, DN, ReLU 1/24H×1/24W×96
15 3×3 conv, DN, ReLU 1/24H×1/24W×96

16-17 repeat 14-15 1/12H×1/12W×64
18-19 repeat 14-15 1/6H×1/6W×48

20 SGF, DN, ReLU 1/6H×1/6W×48
21-22 repeat 14-15 1/3H×1/3W×32
23-41 repeat 4-22 1/3H×1/3W×32

42 SGF, DN, ReLU 1/3H×1/3W×32
concat

connection
(11,14), (9,16), (7,18), (4,21), (20,23), (17,25), (15,27), (13,33), (18,25)
(25,28), (23,30) (21,35), (19,37) (23, 40)

cost volume by feature concatenation 1/3H×1/3W×64×32
Guidance Branch

input concat 1 and up-sampled 35 as input H×W×64
(1) 3×3 conv, DN, ReLU H×W×16
(2) 3×3 conv, stride 3, DN, ReLU 1/3H×1/3W×32
(3) 3×3 conv, DN, ReLU 1/3H×1/3W×32
(4) 3×3 conv (no bn & relu) 1/3H×1/3W×20
(5) split, reshape, normalize 4× 1/3H×1/3W×5

(6)-(8) from (3), repeat (3)-(5) 4× 1/3H×1/3W×5
(9)-(11) from (6), repeat (6)-(8) 4× 1/3H×1/3W×5

(12) from (2), 3×3 conv, stride 2, DN, ReLU 1/6H×1/6W×32
(13) 3×3 conv, DN, ReLU 1/6H×1/6W×32
(14) 3×3 conv (no bn & relu) 1/6H×1/6W×20
(15) split, reshape, normalize 4× 1/6H×1/6W×5

(16)-(18) from (13), repeat (13)-(15) 4× 1/6H×1/6W×5
(19)-(21) from (16), repeat (13)-(15) 4× 1/6H×1/6W×5
(22)-(24) from (19), repeat (13)-(15) 4× 1/6H×1/6W×5

Cost Aggregation
input 4D cost volume 1/3H×1/3W×64×64
[1] 3×3×3, 3D conv 1/3H×1/3W×64×32
[2] SGA layer: weight matrices from (5) 1/3H×1/3W×64×32
[3] SGF layer 1/3H×1/3W×64×32
[4] 3×3×3, 3D conv 1/3H×1/3W×64×32

output 3×3×3, 3D to 2D conv, upsamping H×W×193
softmax, regression, loss weight: 0.2 H×W×1

[5] 3×3×3, 3D conv, stride 2 1/6H×1/6W×32×48
[6] SGA layer: weight matrices from (15) 1/6H×1/6W×32×48
[7] 3×3×3, 3D conv, stride 2 1/12H×1/12W×16×64
[8] 3×3×3, 3D deconv, stride 2 1/6H×1/6W×32×48
[9] 3×3×3, 3D conv 1/6H×1/6W×32×48
[10] SGA layer: weight matrices from (18) 1/6H×1/6W×32×48
[11] 3×3×3, 3D deconv, stride 2 1/3H×1/3W×64×32
[12] 3×3×3, 3D conv 1/3H×1/3W×64×32
[13] SGA layer: weight matrices from (8) 1/3H×1/3W×64×32
[14] SGF layer 1/3H×1/3W×64×32

output 3×3×3, 3D to 2D conv, upsamping H×W×193
softmax, regression, loss weight: 0.6 H×W×1

[15−24] repeat [5−14] 1/3H×1/3W×64×32
final

output
3×3×3, 3D to 2D conv, upsamping H×W×193
regression, loss weight: 1.0 H×W×1

connection concat: (6,8), (4,11), (9,15), (7,17), (16,18), (14,20); add: (1,4)

5



 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BN: Mean Value of the 32-Channel Features of Five Datasets

Sceneflow KITTI Middlebury CityScapes ETH 3D

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DN: Mean Value of the 32-Channel Features of Five Datasets

Sceneflow KITTI Middlebury CityScapes ETH 3D

 

 

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

BN: Variances of the 32-Channel Features of Five Datasets

Sceneflow KITTI Middlebury CityScapes ETH 3D

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

DN: Variances of the 32-Channel Features of Five Datasets

Sceneflow KITTI Middlebury CityScapes ETH 3D

Figure 3: Comparisons of BN and DN. Mean and Variance of the 32-channel features are computed for five different datasets. The output
of the feature extraction network is used to calculate the mean and variance.

6



(a) Input view (b) GANet-synthetic (c) GANet-finetune

(d) HD3-synthetic (e) PSMNet-synthetic (f) DSMNet-synthetic

Figure 4: Comparison and visualization of the feature maps for cross-domain test . (b) GANet [11], (d) HD3 [10], (e) PSMNet [1] are
trained on the synthetic dataset (Sceneflow [5]) and test on other real scenes/datasets (from top to bottom: Kitti [6], Middlebury [7] and
CityScapes [2]). The features are mainly local patterns and produce a lot of artifacts (e.g. noises) when suffering from domain shifts. (c)
GANet is finetuned on the test dataset for comparisons. The artifacts have been stressed after fine tuning. (f) Our DSMNet trained on
the synthetic data. No distortions and artifacts are introduced on the feature maps. It mainly captures the non-local structure and shape
information, which are more robust for cross-domain generalization.

7



(a) Input view (b) HD3 [10] (c) PSMNet [1] (d) Our DSMNet

Figure 5: Comparisons with the state-of-the-art models on four real dataset (from top to bottom: KITTI, Middlebury, ETH3D and
Cityscapes). All the models are trained on the synthetic dataset. Our DSMNet can produce accurate disparity estimation on other new
datasets without fine-tuning.

8



Figure 6: Comparisons with non-local attention mechanism [4] (second row) and non-local denoising [9] strategy (third row). When
using these strategies, the thin structures (e.g. poles) are easily eroded by the background. These non-local strategies easily smooth out the
disparity maps. As a comparison, our DSMNet (last row) can keep the thin structures of the disparity maps.

9


