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Abstract. Embodied perception refers to the ability of an autonomous
agent to perceive its environment so that it can (re)act. The responsive-
ness of the agent is largely governed by latency of its processing pipeline.
While past work has studied the algorithmic trade-off between latency
and accuracy, there has not been a clear metric to compare different
methods along the Pareto optimal latency-accuracy curve. We point out
a discrepancy between standard offline evaluation and real-time appli-
cations: by the time an algorithm finishes processing a particular image
frame, the surrounding world has changed. To these ends, we present an
approach that coherently integrates latency and accuracy into a single
metric for real-time online perception, which we refer to as “streaming
accuracy”. The key insight behind this metric is to jointly evaluate the
output of the entire perception stack at every time instant, forcing the
stack to consider the amount of streaming data that should be ignored
while computation is occurring. More broadly, building upon this metric,
we introduce a meta-benchmark that systematically converts any image
understanding task into a streaming perception task. We focus on the
illustrative tasks of object detection and instance segmentation in ur-
ban video streams, and contribute a novel dataset with high-quality and
temporally-dense annotations. Our proposed solutions and their empir-
ical analysis demonstrate a number of surprising conclusions: (1) there
exists an optimal “sweet spot” that maximizes streaming accuracy along
the Pareto optimal latency-accuracy curve, (2) asynchronous tracking
and future forecasting naturally emerge as internal representations that
enable streaming image understanding, and (3) dynamic scheduling can
be used to overcome temporal aliasing, yielding the paradoxical result
that latency is sometimes minimized by sitting idle and “doing nothing”.

1 Introduction

Embodied perception refers to the ability of an autonomous agent to perceive its
environment so that it can (re)act. A crucial quantity governing the responsive-
ness of the agent is its reaction time. Practical applications, such as self-driving
vehicles or augmented reality and virtual reality (AR/VR), may require reac-
tion time that rivals that of humans, which is typically 200 milliseconds (ms)
for visual stimuli [14]. In such settings, low-latency algorithms are imperative to
ensure safe operation or enable a truly immersive experience.

Historically, the computer vision community has not particularly focused
on algorithmic latency. This is one reason why a disparate set of techniques
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Fig. 1. Latency is inevitable in a real-world perception system. The system takes a
snapshot of the world at ¢1 (the car is at location A), and when the algorithm finishes
processing this observation, the surrounding world has already changed at t2 (the car
is now at location B, and thus there is a mismatch between prediction A and ground
truth B). If we define streaming perception as a task of continuously reporting back the
current state of the world, then how should one evaluate vision algorithms under such
a setting? We invite the readers to watch a video on the project website that compares
a standard frame-aligned visualization with our latency-aware visualization [Link].

(and conference venues) have been developed for robotic vision. Interestingly,
latency has been well studied recently (e.g., fast but not necessarily state-of-
the-art accurate detectors such as [25,18,16]). But it has still been primarily
explored in an offfine setting. Vision-for-online-perception imposes quite different
latency demands as shown in Fig. 1, because by the time an algorithm finishes
processing a particular image frame — say, after 200ms — the surrounding
world has changed! This forces perception to be ultimately predictive of the
future. In fact, such predictive forecasting is a fundamental property of human
vision (e.g., as required whenever a baseball player strikes a fast ball [22]). So
we argue that streaming perception should be of interest to general computer
vision researchers.

Contribution (meta-benchmark) To help explore embodied vision in a truly
online streaming context, we introduce a general meta-benchmark that systemat-
ically converts any image understanding task into a streaming image understand-
ing task. Our key insight is that streaming perception requires understanding
the state of the world at all time instants — when a new frame arrives, streaming
algorithms must report the state of the world even if they have not done process-
ing the previous frame. Within this meta-benchmark, we introduce an approach
to measure the real-time performance of perception systems. The approach is as
simple as querying the state of the world at all time instants, and the quality of
the response is measured by the original task metric. Such an approach natu-
rally merges latency and accuracy into a single metric. Therefore, the trade-off
between accuracy versus latency can now be measured quantitatively. Interest-
ingly, our meta-benchmark naturally evaluates the perception stack as a whole.
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For example, a stack may include detection, tracking, and forecasting modules.
Our meta-benchmark can be used to directly compare such modular stacks to
end-to-end black-box algorithms [19]. In addition, our approach addresses the
issue that overall latency of concurrent systems is hard to evaluate (e.g., latency
cannot be simply characterized by the runtime of a single module).

Contribution (analysis) Motivated by perception for autonomous vehicles, we
instantiate our meta-benchmark on the illustrative tasks of object detection and
instance segmentation in urban video streams. Accompanied with our streaming
evaluation is a novel dataset with high-quality, high-frame-rate, and temporally-
dense annotations of urban videos. Our evaluation on these tasks demonstrates a
number of surprising conclusions. (1) Streaming perception is significantly more
challenging than offline perception. Standard metrics like object-detection av-
erage precision (AP) dramatically drop (from 38.0 to 6.2), indicating the need
for the community to focus on such problems. (2) Decision-theoretic schedul-
ing, asynchronous tracking, and future forecasting naturally emerge as internal
representations that enable accurate streaming image understanding, recovering
much of the performance drop (boosting performance to 17.8). With simulation,
we can verify that infinite compute resources modestly improves performance
to 20.3, implying that our conclusions are fundamental to streaming processing,
no matter the hardware. (3) It is well known that perception algorithms can be
tuned to trade off accuracy versus latency. Our analysis shows that there ex-
ists an optimal “sweet spot” that uniquely maximizes streaming accuracy. This
provides a different perspective on such well-explored trade-offs. (4) Finally, we
demonstrate the effectiveness of decision-theoretic reasoning that dynamically
schedules which frame to process at what time. Our analysis reveals the para-
dox that latency is minimized by sometimes sitting idle and “doing nothing”!
Intuitively, it is sometimes better to wait for a fresh frame rather than to begin
processing one that will soon become “stale”.

2 Related Work

Latency evaluation Latency is a well-studied subject in computer vision. One
school of research focuses on reducing the FLOPS of backbone networks [12,28],
while another school focuses on reducing the runtime of testing time algorithms
[25,18,16]. We follow suit and create a latency-accuracy plot under our exper-
iment setting (Fig. 2). While such a plot is suggestive of the trade-off for of-
fline data processing (e.g., archived video footage), it fails to capture the fact
that when the algorithm finishes processing, the surrounding world has already
changed. Therefore, we believe that existing plots do not reveal the streaming
performance of these algorithms. Aside from computational latency, prior work
has also investigated algorithmic latency [21], evaluated by running algorithms
on a video in the offline fashion and measuring how many frames are required
to detect an object after it appears. In comparison, our evaluation is done in the
more realistic online real-time setting, and applies to any single image under-
standing task, instead of just object detection.
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Real-time evaluation There has not
been much prior effort to evaluate vision
algorithms in the real-time fashion in the
research community. Notable exceptions
include work on real-time tracking and
real-time simultaneous localization and
mapping (SLAM). First, the VOT2017
tracking benchmark specifically included
a real-time challenge [15]. Its benchmark
toolkit sends out frames at 20 FPS to par-
ticipants’ trackers and asks them to report
back results before the next frame arrives.
If the tracker fails to respond in time,
the last reported result is used. This is
equivalent to applying zero-order hold to
trackers’ outputs. In our benchmarks, we
adopt a similar zero-order hold strategy,
but extend it to a broader context of ar-
bitrary image understanding tasks and al-
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Fig. 2. Prior art routinely explores the
trade-off between detection accuracy
versus runtime. We generate the above
plot by varying the input resolution
of each detection network. We argue
that such plots are exclusive to offline
processing and fail to capture latency-
accuracy trade-offs in streaming per-
ception. AP stands for average preci-

sion, and is a standard metric for ob-

low for a more delicate interplay between * ;
ject detection [17].

detection, tracking, and forecasting. Sec-
ond, the literature on real-time SLAM also considers benchmark evaluation un-
der a “hard-enforced” real-time requirement [4,8]. Our analysis suggests that
hard-enforcement is too stringent of a formulation; algorithms should be allowed
to run longer than the frame rate, but should still be scored on their ability to
report the state of the world (e.g., localized map) at frame rate.

Progressive and anytime algorithms There exists a body of work on pro-
gressive and anytime algorithms that can generate outputs with lower latency.
Such work can be traced back to classic research on intelligent planning under
resource constraints [3] and flexible computation [11], studied in the context
of Al with bounded rationality [26]. Progressive processing [30] is a paradigm
that splits up an algorithm into sequential modules that can be dynamically
scheduled. Often, scheduling is formulated as a decision-theoretic problem un-
der resource constraints, which can be solved in some cases with Markov decision
processes (MDPs) [29,30]. Anytime algorithms are capable of returning a solution
at any point in time [29]. Our work revisits these classic computation paradigms
in the context of streaming perception, specifically demonstrating that classic
visual tasks (like tracking and forecasting) naturally emerge in such bounded
resource settings.

3 Proposed Evaluation

In the previous section, we have shown that existing latency evaluation fails to
capture the streaming performance. To address this issue, here we propose a new
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Fig. 3. Our proposed streaming perception evaluation. A streaming algorithm f is
provided with (timestamped) observations up until the current time ¢ and refreshes
an output buffer with its latest prediction of the current state of the world. At the
same time, the benchmark constantly queries the output buffer for estimates of world
states. Crucially, f must consider the amount of streaming observations that should
be ignored while computation is occurring.

method of evaluation. Intuitively, a streaming benchmark no longer evaluates a
function, but a piece of executable code over a continuous time frame. The code
has access to a sensor input buffer that stores the most recent image frame. The
code is responsible for maintaining an output buffer that represents the up-to-
date estimate of the state of the world (e.g., a list of bounding boxes of objects
in the scene). The benchmark examines this output buffer, comparing it with a
ground truth stream of the actual world state (Fig. 3).

3.1 Formal definition

We model a data stream as a set of sensor observations, ground-truth world
states, and timestamps, denoted respectively as {(z;,yi,t;)}~,. Let f be a
streaming algorithm to be evaluated. At any continuous time t, the algorithm f
is provided with observations (and timestamps) that have appeared so far:

{(@i, ti)|t; < t} [accessible input at time ¢] (1)

We allow the algorithm f to generate an output prediction at any time. Let s; be
the timestamp that indicates when a particular prediction g; is produced. The
subscript j indexes over the N outputs generated by f over the entire stream:

{(@5.8)} 75 [all outputs by f] (2)

Note that this output stream is not synchronized with the input stream, and NV
has no direct relationship with 7. Generally speaking, we expect algorithms to
run slower than the frame rate (N < T).

We benchmark the algorithm f by comparing its most recent output at time
t; to the ground-truth y;. We first compute the index of the most recent output:

p(t) = argmaxs; <t [real-time constraint] (3)
J
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This is equivalent to the benchmark applying a zero-order hold for the algo-
rithm’s outputs to produce continuous estimation of the world states. Given an
arbitrary single-frame loss L, the benchmark formally evaluates:

Lstreaming = L({(yla gtp(h))};le) [evaluation] (4)

By construction, the streaming loss above can be applied to any single-frame
task that computes a loss over a set of ground truth and prediction pairs.

3.2 Emergent tracking and forecasting

b2

At first glance, “instant” evaluation may seem unreasonable: the benchmark at
time ¢ queries the state at time t. Although z; is made available to the algo-
rithm, any finite-time algorithm cannot make use of it to generate its prediction.
For example, if the algorithm takes time At to perform its computation, then
to make a prediction at time ¢, it can only use data before time t — At. We
argue that this is the realistic setting for streaming perception, both in biolog-
ical and robotic systems. Humans and autonomous vehicles must react to the
instantaneous state of the world when interacting with dynamic scenes. Such
requirements strongly suggest that perception should be inherently predictive
of the future. Our benchmark similarly “forces” algorithms to reason and fore-
cast into the future, to compensate for the mismatch between the last processed
observation and the present.

One may also wish to take into account the inference time of downstream
actuation modules (that say, need to optimize a motion plan that will be ex-
ecuted given the perceived state of the world). It is straightforward to extend
our benchmark to require algorithms to generate a forecast of the world state
when the downstream module finishes its processing. For example, at time ¢ the
benchmark queries the state of the world at time ¢ 4 7, where 1 > 0 represents
the inference time of the downstream actuation module.

In order to forecast, the algorithms need to reason temporally through track-
ing (in the case of object detection). For example, constant velocity forecasting
requires the tracks of each object over time in order to compute the velocity.
Generally, there are two categories of trackers — post-hoc association [2] and
template-based visual tracking [20]. In this paper, we refer them in short as
“association” and “tracking”, respectively. Association of previously computed
detections can be made extremely lightweight with simple linking of bounding
boxes (e.g., based on the overlap). However, association does not make use of
the image itself as done in (visual) tracking. We posit that trackers may pro-
duce better streaming accuracy for scenes with highly unpredictable motion. As
part of emergent solutions to our streaming perception problem, we include both
association and tracking in our experiments in the next section.

Finally, it is natural to seek out an end-to-end system that directly optimizes
streaming perception accuracy. We include one such method in Appendix C.2 to
show that tracking and forecasting-based representations may also emerge from
gradient-based learning.
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3.3 Computational constraints

(a) Single GPU model (b) Infinite GPU model

Fig. 4. Two computation models considered in our evaluation. Each block represents
an algorithm running on a device and its length indicates its runtime.

Because our metric is runtime dependent, we need to specify the compu-
tational constraints to enable a fair comparison between algorithms. We first
investigate a single GPU model (Fig. 4a), which is used for existing latency
analysis in prior art. In the single GPU model, only a single GPU job (e.g., de-
tection or visual tracking) can run at a time. Such a restriction avoids multi-job
interference and memory capacity issues. Note that a reasonable number of CPU
jobs are allowed to run concurrently with the GPU job. For example, we allow
bounding box association and forecasting modules to run on the CPU in Fig. 7.

Nowadays, it is common to have multiple GPUs in a single system. We in-
vestigate an infinite GPU model (Fig. 4b), with no restriction on the number
of GPU jobs that can run concurrently. We implement this infinite computation
model with simulation, described in the next subsection.

3.4 Challenges for practical implementation

While our benchmark is conceptually simple, there are several practical hur-
dles. First, we require high-frame-rate ground truth annotations. However, due
to high annotation cost, most existing video datasets are annotated at rather
sparse frame rates. For example, YouTube-VIS is annotated at 6 FPS, while
the video data rate is 30 FPS [27]. Second, our evaluation is hardware depen-
dent — the same algorithm on different hardware may yield different streaming
performance. Third, stochasticity in actual runtimes yields stochasticity in the
streaming performance. Note that the last two issues are also prevalent in ez-
isting offline runtime analyses. Here we present high-level ideas for the solutions
and leave additional details to Appendix A.2 & A.3.

Pseudo ground truth We explore the use of pseudo ground truth labels as a
surrogate to manual high-frame-rate annotations. The pseudo labels are obtained
by running state-of-the-art, arbitrarily expensive offline algorithms on each frame
of a benchmark video. While the absolute performance numbers (when bench-
marked on ground truth and pseudo ground truth labels) differ, we find that
the rankings of algorithms are remarkably stable. The Pearson correlation coef-
ficient of the scores of the two ground truth sets is 0.9925, suggesting that the
real score is literally a linear function of the pseudo score. Moreover, we find
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that offline pseudo ground truth could also be used to self-supervise the training
of streaming algorithms.

Simulation While streaming performance is hardware dependent, we now demon-
strate that the benchmark can be evaluated on simulated hardware. In simula-
tion, the benchmark assigns a runtime to each module of the algorithm, instead
of measuring the wall-clock time. Then based on the assigned runtime, the sim-
ulator generates the corresponding output timestamps. The assigned runtime to
each module provides a layer of abstraction on the hardware.

The benefit of simulation is to allow us to assess the algorithm performance
on non-existent hardware, e.g., a future GPU that is 20% faster or infinite GPUs
in a single system. Simulation also allows our benchmark to inform practitioners
about computation platforms necessary to obtain a certain level of accuracy.

Runtime-induced variance Due to algorithmic choice and system scheduling,
different runs of the same algorithm may end up with different runtimes. This
variation across runs also affects the overall streaming performance. Fortunately,
we empirically find that such variance causes a standard deviation of up to
0.5% under our experiment setting. Therefore, we omit variance report in our
experiments.

4 Solutions and Analysis

In this section, we instantiate our meta-benchmark on the illustrative task of
object detection. While we show results on streaming detection, several key ideas
also generalize to other tasks. An instantiation on instance segmentation can be
found in Appendix A.6. We first explain the setup and present the solutions and
analysis. For the solutions, we first consider single-frame detectors, and then
add forecasting and tracking one by one into the discussion. We focus on the
most effective combination of detectors, trackers, and forecasters which we have
evaluated, but include additional methods in Appendix C.

4.1 Setup

We extend the publicly available video dataset Argoverse 1.1 [5] with our own an-
notations for streaming evaluation, which we name Argoverse-HD (High-frame-
rate Detection). It contains diverse urban outdoor scenes from two US cities.
We select Argoverse for its embodied setting (autonomous driving) and its high-
frame-rate sensor data (30 FPS). We focus on the task of 2D object detection
for our streaming evaluation. Under this setting, the state of the world y; is a
list of bounding boxes of the objects of interest. While Argoverse has multiple
sensors, we only use the center RGB camera for simplicity. We collect our own
annotations since the dataset does not provide dense 2D annotations'. For the

1 It is possible to derive 2D annotations from the provided 3D annotations, but we
find that such derived annotations are highly imprecise.
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Dataset AP AP APy APs APso APr75
MS COCO 37.6 50.3 41.4 20.7 59.8 40.5
Argoverse-HD (Ours) 30.6 52.4 33.1 12.2 52.3 31.2
Fig.5. Comparison between our dataset and MS COCO [17]. Top shows an example

image from Argoverse 1.1 [5], overlaid with our dense 2D annotation (at 30 FPS).
Bottom presents results of Mask R-CNN [10] (ResNet 50) evaluated on the two datasets.
AP, APy and APgs denote AP for large, medium and small objects respectively.
APs0, AP75 denote AP with IoU (Intersection over Union) thresholds at 0.5 and 0.75
respectively. We first observe that the APs are roughly comparable, showing that our
annotation is reasonable in evaluating object detection performance. Second, we see
a significant drop in APgs from COCO to ours, suggesting that the detection of small
objects is more challenging in our setting. For self-driving vehicle applications, those
small objects are important to identify when the ego-vehicle is traveling at a high speed
or making unprotected turns.

annotations, we follow MS COCO [17] class definitions and format. For example,
we include the “iscrowd” attribute for ambiguous cases where each instance can-
not be identified, and therefore the algorithms will not be wrongfully penalized.
We use only a subset of 8 classes (from 80 MS COCO classes) that are directly
relevant to autonomous driving: person, bicycle, car, motorcycle, bus, truck, traf-
fic light, and stop sign. This definition allows us to evaluate off-the-shelf models
trained on MS COCO. No training is involved in the following experiments un-
less otherwise specified. All numbers are computed on the validation set, which
contains 24 videos ranging from 15-30 seconds each (the total number of frames
is 15k). Figure 5 shows a comparison of our annotation with that of MS COCO.
Additional comparison with other related datasets can be found in Appendix
A.4. All output timing is measured on a single Geforce GTX 1080 Ti GPU (a
Tesla V100 counterpart is provided in Appendix A.7).

4.2 Detection-Only

Table 1 includes the main results of using just detectors for streaming perception.
We first examine the case of running a state-of-the-art detector — Hybrid Task
Cascade (HTC) [6], both in the offline and the streaming settings. The AP drops
significantly in the streaming setting. Such a result is not entirely surprising
due to its high runtime (700ms). A commonly adopted strategy for real-time
applications is to run a detector that is within the frame rate. We point out that
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Table 1. Performance of existing detectors for streaming perception. The number after
@ is the input scale (the full resolution is 1920 x 1200). * means using GPU for image
pre-processing as opposed to using CPU in the off-the-shelf setting. The last column
is the mean runtime of the detector for a single frame in milliseconds (mask branch
disabled if applicable). The first baseline is to run an accurate detector (row 1), and
we observe a significant drop of AP in the online real-time setting (row 2). Another
commonly adopted baseline for embodied perception is to run a fast detector (row 3—4),
whose runtime is smaller than unit time interval (33ms for 30 FPS streams). Neither of
these baselines achieves good performance. Searching over a wide suite of detectors and
input scales, we find that the optimal solution is Mask R-CNN (ResNet 50) operating
at 0.5 input scale (row 5-6). In addition, our scheduling algorithm (Alg. 1) boosts the
performance by 1.0/2.3 for AP/APr (row 7). In the hypothetical infinite GPU setting,
a more expensive detector yields better trade-off (input scale switching from 0.5 to
0.75, almost doubling the runtime), and it further boosts the performance to 14.4 (row
8), which is the optimal solution achieved by just running the detector. Simulation
suggests that 4 GPUs suffice to maximize streaming accuracy for this solution

ID Method Detector AP AP APy APs APso AP7s Runtime
1 Accurate (Offline) HTC @ s1.0 38.0 64.3 40.4 17.0 60.5 38.5 700.5
2 Accurate HTC @ s1.0 6.2 93 36 09 11.1 59 700.5
3 Fast RetinaNet R50 @ s0.2 55 149 04 00 99 56 36.4
4 Fast* RetinaNet R50 @ s0.2 6.0 181 0.5 0.0 103 6.3 31.2
5 Optimized Mask R-CNN R50 @ s0.5 10.6 21.2 6.3 0.9 22.5 838 77.9
6 Optimized* Mask R-CNN R50 @ s0.5 12.024.3 7.9 1.0 25.1 10.1 56.7
7 4 Scheduling (Alg. 1) Mask R-CNN R50 @ s0.5 13.0 26.6 9.2 1.1 26.8 11.1 56.7
8 + Infinite GPUs Mask R-CNN R50 @ s0.75 14.4 24.3 11.3 2.8 30.6 12.1 92.7

this strategy may be problematic, since such a hard-constrained time budget
results in poor accuracy for challenging tasks (Table 1 row 3—4). In addition, we
find that many existing network implementations are optimized for throughput
rather than latency, reflecting the bias of the community for offline versus online
processing! For example, image pre-processing (e.g., resizing and normalizing) is
often done on CPU, where it can be pipelined with data pre-fetching. By moving
it to GPU, we save 21ms in latency (for an input of size 960 x 600).

In our benchmarks, it is a choice for the streaming algorithm to decide when
and what to process. Figure 6 compares a straight-forward schedule with our
dynamic schedule (Alg. 1). Such subtlety is the result of temporal quantization.
While spatial quantization has been studied in computer vision [10], temporal
quantization in the streaming setting has not been well explored. Noteably, it
is difficult to pre-compute the optimal schedule because of the stochasticity of
actual runtimes. Our proposed scheduling policy (Alg. 1) minimizes the expected
temporal mismatch of the output stream and the data stream, thus increasing
the overall streaming performance. Empirically, we find that it raises the AP
for the detector (Table 1 row 7). We provide theoretical reasoning showing its
superiority and results for a wide suite of detectors in Appendix B.1. Note that
Alg. 1 is by construction task agnostic (not specific to object detection).
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Fig. 6. Algorithm scheduling for streaming perception with a single GPU. (a) A fast
detector finishes processing the current frame before the next frame arrives. An accurate
(and thus slow) detector does not process every frame due to high latency. In this
example, frame 1 is skipped. Note that the goal of streaming perception is not to
process every frame but to produce accurate state estimations in a timely manner.
(b) A straight-forward schedule for slow algorithms (runtime > unit time interval)
is to always process the latest available frame upon the completion of the previous
processing (idle-free). However, the latest available frame might be stale, and we find
that it might be better to sit idle and wait (our dynamic schedule, Alg. 1). In this
illustration, when the algorithm finishes processing frame 1, Alg. 1 determines that
frame 2 is stale and decides to wait for frame 3 by comparing the tails 72 and 73.

Algorithm 1 Shrinking-tail policy

1: Given finishing time s and algorithm runtime r in the unit of frames (assuming
r > 1), this policy returns whether the algorithm should wait for the next frame

2: Define tail function 7(t) =t — |¢]

3: return [7(s + 1) < 7(s)] (Iverson bracket)

4.3 Forecasting

Now we expand our solution space to include forecasting methods. We experi-
mented with both constant velocity models and first-order Kalman filters. We
find good performance with the latter, given a small modification to handle asyn-
chronous sensor measurements (Fig. 7). The classic Kalman filter [13] operates
on uniform time steps, coupling prediction and correction updates at each step.
In our case, we perform correction updates only when a sensor measurement is
available, but predict at every step. Second, due to frame-skipping, the Kalman
filter should be time-varying (the transition and the process noise depend on the
length of the time interval, details can be found in Appendix B.2). Association
for bounding boxes across frames is required to update the Kalman filter, and we
apply IoU-based greedy matching. For association and forecasting, the compu-
tation involves only bounding box coordinates and therefore is very lightweight
(< 2ms on CPU). We find that such overhead has little influence on the overall
AP. The results are summarized in Table 2.

Streamer (meta-detector) Note that our dynamic scheduler (Alg. 1) and
asynchronous Kalman forecaster can be applied to any off-the-shelf detector,
regardless of its underlying latency (or accuracy). This means that we can as-
semble these modules into a meta-detector — which we call Streamer — that
converts any detector into a streaming detection system that reports real-time
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Fig. 7. Scheduling for association and forecasting. Association takes place immediately
after a new detection result becomes available, and it links the bounding boxes in two
consecutive detection results. Forecasting takes place right before the next time step
and it uses an asynchronous Kalman filter to produce an output as the estimation of
the current world state. By default, the prediction step also updates internal states in
the Kalman filter and is always called before the update step. In our case, we perform
multiple update-free predictions (green blocks) until we receive a frame result.

Table 2. Streaming perception with joint detection, association, and forecasting. As-
sociation is done by IoU-based greedy matching, while forecasting is done by an asyn-
chronous Kalman filter. First, we observe that forecasting greatly boosts the perfor-
mance (from Table 1 row 7’s 13.0 to row 1’s 16.7). Also, with forecasting compensating
for algorithm latency, it is now desirable to run a more expensive detector (row 2).
Searching again over a large suite of detectors after adding forecasting, we find that
the optimal detector is still Mask R-CNN (ResNet 50), but at input scale 0.75 instead
of 0.5 (runtime 93ms and 57ms)

ID Method AP AP APy APs APsg APrs
1 Detection + Scheduling + Association + Forecasting 16.7 39.9 14.9 1.2 31.2 16.0
2  + Re-optimize Detection (s0.5 — s0.75) 17.8 33.3 16.3 3.2 35.2 16.5
3 + Infinite GPUs 20.3 38.5 19.9 4.0 39.1 189

detections at an arbitrary framerate. Appendix B.4 evaluates the improvement
in streaming AP across 80 different settings (8 detectors x 5 image scales x 2
compute models), which vary from 4% to 80% with an average improvement of
33%.

4.4 Visual tracking

Visual tracking is an alternative for low-latency inference, due to its faster speed
than a detector. For our experiments, we adopt the state-of-the-art multi-object
tracker [1] (which is second place in the MOT’19 challenge [7] and is open
sourced), and modify it to only track previously identified objects to make it
faster than the base detector (see Appendix B.3). This tracker is built upon a
two-stage detector and for our experiment, we try out the configurations of Mask
R-CNN with different backbones and with different input scales. Also, we need
a scheduling scheme for this detection plus tracking setting. For simplicity, we
only explored running detection at fixed strides of 2, 5, 15, and 30. For example,
stride 30 means that we run the detector once and then run the tracker 29 times,
with the tracker getting reset after each new detection. Table 3 row 1 contains
the best configuration over backbone, input scale, and detection stride.
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Table 3. Streaming perception with joint detection, visual tracking, and forecasting.
We see that initially visual trackers do not outperform simple association (Table 2)
with the corresponding setting in the single GPU case. But that is reversed if the
tracker can be optimized to run faster (2x) while maintaining the same accuracy (row
6). Such an assumption is not unreasonable given the fact that the tracker’s job is as
simple as updating locations of previously detected objects

ID Method AP AP APy APgs APso APrs
1 Detection + Visual Tracking 12.0 29.7 11.2 0.5 23.3 11.3
2+ Forecasting 13.7 382 142 0.5 24.6 13.6
3+ Re-optimize Detection (s0.5 — s0.75) 16.5 31.0 14.5 2.8 334 14.8
4+ Infinite GPUs w/o Forecasting 14.4 242 11.2 2.8 30.6 12.0
5 + Forecasting 20.1 38.3 19.7 3.9 389 18.7
6 Detection + Simulated Fast Tracker (2x) + Forecasting + Single GPU 19.8 39.2 20.2 3.4 38.6 18.1

5 Discussion

Streaming perception remains a challenge Our analysis suggests that
streaming perception involves careful integration of detection, tracking, fore-
casting, and dynamic scheduling. While we present several strong solutions for
streaming perception, the gap between the streaming performance and the of-
fline performance remains significant (20.3 versus 38.0 in AP). This suggests
that there is considerable room for improvement by building a better detector,
tracker, forecaster, or even an end-to-end model that blurs boundary of these
modules.

Formulations of real-time computation Common folk wisdom for real-time
applications like online detection requires that detectors run within the sensor
frame rate. Indeed, classic formulations of anytime processing require algorithms
to satisfy a “contract” that they will finish under a compute budget [29]. Our
analysis suggests that this view of computation might be too myopic as evidenced
by contemporary robotic systems [24]. Instead, we argue that the sensor rate and
compute budget should be seen as design choices that can be tuned to optimize a
downstream task. Our streaming benchmark allows for such a global perspective.

Generalization to other tasks By construction, our meta-benchmark and
dynamic scheduler (Alg. 1) are not restricted to object detection. We illustrate
such generalization with an additional task of instance segmentation (Fig. 9).
However, there are several practical concerns that need to be addressed. Densely
annotating video frames for instance segmentation is almost prohibitively expen-
sive. Therefore, we adopt offline pseudo ground truth (Section 3.4) to evaluate
streaming performance. Another concern is that the forecasting module is task-
specific. In the case of instance segmentation, we implement it as forecasting
the bounding boxes and then warping the masks accordingly. Please refer to
Appendix A.6 for the complete streaming instance segmentation benchmark.
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Det Fast

Real-Time

Det fast Det Opt Det Opt j + A1 & Forecast Det + Forecast + Infinite GPUs
a) Offline vs Real-Time b) Det Fast vs Det Opt c)+ Alg 1 & Forecasting d) = Infinite GPUs

Offljse Real-Time

Fig. 8. Qualitative results. Video results can be found on the project website [Link].

a) Pseudo ground truth b) Real-time latency ¢) Instance mask forecasting

Fig. 9. Generalization to instance segmentation. (a) The offline pseudo ground truth we
adopt for evaluation is of high quality. (b) A similar latency pattern can be observed for
instance segmentation as in object detection. (c¢) Forecasting for instance segmentation
can be implemented as forecasting the bounding boxes and then warping the masks
accordingly.

6 Conclusion and Future Work

We introduce a meta-benchmark for systematically converting any image under-
standing task into a streaming perception task that naturally trades off compu-
tation between multiple modules (e.g., detection versus tracking). We instantiate
this meta-benchmark on tasks of object detection and instance segmentation. In
general, we find online perception to be dramatically more challenging than its
offline counterpart, though significant performance can be recovered by incorpo-
rating forecasting. We use our analysis to develop a simple meta-detector that
converts any detector (with any internal latency) into a streaming perception
system that can operate at any frame rate dictated by a downstream task (such
as a motion planner). We hope that our analysis will lead to future endeavor
in this under-explored but crucial aspect of real-time embodied perception. For
example, streaming benchmarks can be used to motivate attentional processing;
by spending more compute only on spatially [9] or temporally [23] challenging
regions, one may achieve even better efficiency-accuracy tradeoffs.
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