
Supplementary Material: Towards Automated
Testing and Robustification by Semantic

Adversarial Data Generation

Rakshith Shetty1, Mario Fritz2, and Bernt Schiele1

1 Max Planck Institute for Informatics, Saarland Informatics Campus
{rshetty,schiele}@mpi-inf.mpg.de

2 CISPA Helmholtz Center for Information Security, Saarland Informatics Campus
fritz@cispa.saarland

In this supplementary material we provide additional material to support our
work, including architecture details, hyperparameters of adversarial optimization
and more visual examples of synthesized adversaries3. Section 1 provides further
details about the synthesizer architecture, left out from the main paper due to
space constraints. We also show more examples of appearance interpolations
produced by our model in Figure 2. Section 2 discusses hyperparameters used
during semantic adversarial appearance optimization and provides more visual
examples of intermediate images produced during adversarial optimization in
Figure 3. Section 3 presents more details of the human study with qualitative
examples and an analysis of the correlation of the typicality rating with the
detector performance. Section 4 presents qualitative examples of different failure
modes discovered by the semantic adversary in Figure 7 and discusses them.

1 Synthesizer Architecture

Synthesizer model consists for three sub networks 1) Shape encoder, 2) Appear-
ance encoder and 3) Decoder Network. Now we will discuss the architecture
details of each of these networks.

Shape Encoder. This network has a UNet [2] structure with a series of down-
sampling layers, residual bottleneck layers followed by bilinear upsampling layers
as shown in Table 1. The idea is to downsample and encode the input image into
low resolution feature vectors, using which part segmentation map is generated
by slowly upsampling these features. The downsampling bottleneck uses convo-
lution and pooling layers ImageNet pretrained VGG-19 model available in the
PyTorch Library. We retain 5 blocks from the VGG-19 architecture, and keep
only 4 max pooling layers to obtain the feature maps of 8x8 resolution and 512
dimensions. One-hot encoding of the class label is concatenated to above and
provided as additional conditioning to the first Residual block. This results in
input features of 8x8 resolution and 592 dimensions as seen second row of Table 1.
Input image is always 128x128 resolution and the output part segmentation map
is 64x64 resolution. We set the number of parts to 15. We experimented with

3 Code will be made available in github.com/rakshithShetty/SemanticAdversary

github.com/rakshithShetty/SemanticAdversary

2 R. Shetty et al.

Num Layer type Inp Spat Dim Inp Dim Out Dim Shortcut

1-5 VGG-19 backbone 128x128 3 512 -
6 Residual Block 8 x 8 592 592 -
7 Upsample 8 x 8 592 592 -
8 Residual Block 16 x 16 1184 336 4
9 Upsample 16 x 16 336 336 -
10 Residual Block 32 x 32 672 208 3
11 Upsample 32 x 32 208 208 -
12 Conv 1x1 64 x 64 208 16 -

Table 1: The architecture for the Shape encoder. The description of Residual Blocks is
presented in Table 2

Num Layer type Spat Dim Inp Dim Out Dim Shortcut

- Input w x h di - -
1 Conv2D 1x1 w x h di do -
2 Conv2D 1x1 w x h di do/2 -
3 BatchNorm2D + ReLU w x h do/2 do/2 -
4 Conv2D 3x3 w x h do/2 do/2 -
5 BatchNorm2D + ReLU w x h do/2 do/2 -
6 Conv2D 1x1 w x h do/2 do -
7 BatchNorm2D + ReLU w x h do do -
- Output w x h do do 1

Table 2: The architecture for the Residual block with input feature dimension di and
output feature dimension do. Note here that layer 2 takes the activations at the Input
layer and not the output of layer 1. Layer 1 is used to apply the shortcut when the
input and the output dimensions (di and do) are different.

part bottlenecks of 4,8,15 and 32 dimensions, and found that the model performs
well for either 8 or 15, with 15 having better image quality and 8 having slightly
better interpolation performance.

Appearance Encoder. Table 3 shows the architecture of our Appearance en-
coder. It has a similar UNet structure to the Shape encoder. The downsampling is
done again using the VGG-19 backbone. Instead of residual block, the appearance
encoder just uses Conv Layers with instance norm. It maps the input image of
128x128 resolution to a 64x64 resolution spatial appearance codes each of 256
dimensions. At layer 4, the generated part segmentation heatmap (15 dimensions)
is also concatenated with the feature vectors from the VGG backbone to get an
input feature vector of 223 dimensions. This gives appearance encoder the access
to the spatial part map generated by the Shape encoder and helps it extract
appearance codes for the right parts.

Supplementary: Semantic Adversarial Testing 3

Num Layer type Inp Spat Dim Inp Dim Out Dim

1-3 VGG-19 backbone 128x128 3 512 -
4 Conv2D 3x3 stride 2 64 x 64 223 256 -
5 InstNorm + LeakyRelu 32 x 32 256 256 -
6 Conv2D 3x3 stride 1 32 x 32 256 256 -
7 InstNorm + LeakyRelu 32 x 32 256 256 -
8 Conv2D 3x3 stride 1 32 x 32 256 256 -
9 Instnorm + LeakyRelu 32 x 32 256 256 -
10 Upsample 32 x 32 256 256 -
11 Conv2D 3x3 stride 1 64 x 64 512 256 5
12 InstNorm + LeakyRelu 64 x 64 256 256 -

Table 3: The architecture for the Appearance encoder. Note that the layers of the VGG
backbone are shared between the appearance and the shape encoder

Decoder Network. Figure 1 shows the architecture of our Decoder network.
At the first layer, it takes as input a downsampled binary part segmentation
map (resolution 4x4) along with the one-hot class label of the object to be
generated. This is followed by a series of residual block and spatially adpative
instance norm (SPADE) layers. At each residual block, apart from the features
from the previous layers, part segmentation map of appropriate resolution is also
input. The residual block used here has the same structure as described in Table 2,
except that batchnorm layers are skipped. This is because the normalization is
done in the SPADE layers. The SPADE layer [1] helps input the appearance codes
to the decoder. The apperance codes modulate the activations by controlling
the mean and variance applied to the features after instance normalization. Per
part appearance codes are converted to a spatial map by copying them to the
corresponding part locations using the binary part map. This spatial appearance
maps are passed through a 1x1 convolutional layers to obtain mean and variance
of the decoder feature vectors at the corresponding layer. The mean and variance
is different at each location based on the appearance code at that location. We
found in our experiments that this spatial adaptive normalization is key to obtain
high quality synthesis when dealing with big datasets like COCO with large
appearance diversity.

Figure 2 presents more examples comparing appearance interpolations pro-
duced with our model and the Gaussian bottleneck model on the COCO dataset.
We can see that using the binary part segmentation bottlneck helps preserve
the spatial structure much better. Lot of part details which get blurred in the
gaussian bottleneck model, is well preserved in our synthesizer.

2 Semantic Adversarial Optimization

Our semantic adversarial optimization of appearance is performed by optimizing
the interpolation co-efficients to maximize the detector loss. This optimization is

4 R. Shetty et al.

51
2

51
2

51
2

51
2

Project

Target Part Map

Target Appearance

2x 2x

95 64 64 4. . . .

. . . .

4x4

8x8

128x128

Downsample + 1x1 Conv

Residual Block
SPADE layer

Conv Layer

One-hot Class label

Fig. 1: Architecture of the decoder network

performed using signed gradient descent. That is gradients are computed for the
interpolation co-efficients and they are updated in the direction of these gradients
by using a fixed step size.

ank = ank + γ ∗ sign

[
∂Ldet

∂ank

]
(1)

We found that signed gradient descent converges faster than than using the
full gradients. This is because the detector objectness and class confidences is
often very high and in the saturation region. This causes very small gradient
magnitudes, causing optimization to often get stuck. Using sign of the gradient
and fixed step size γ avoids this problem. Our optimization is run for 10 steps
with γ = 0.5. At the end of 10 steps, the configuration which gives the highest
detector loss is picked.

For test and training data generation, appearance of a randomly selected
instance from the image is adversarially optimized to fool the detector. When
editing two objects, if there is only one valid object in the image, we randomly
synthesize a second object at a location which does not overlap with other objects,
and optimize it’s appearance. This way there are always at-least two object being
edited in this configuration.

Figure 3 shows more qualitative examples which illustrate the intermediate
outputs during appearance optimization. We can see that through appearance
manipulation, how in the eyes of the object detector a person turns into a parking
meter (row 1) or disappears (row 2), airplanes appear as kites (row 3 and 4),
a car turns into a truck (row 5), a bear turns into a cow and a bannana now
appears as toothbrush.

Supplementary: Semantic Adversarial Testing 5

x y

x y

x y

x
y

x
y

x y

Fig. 2: Appearance interpolations with our binary part segmentation bottleneck (2nd
rows) and the Gaussian bottleneck model (1st rows). The objects are generated using
shape code from x and appearance by interpolating vectors from x and y

6 R. Shetty et al.

Original iter = 0 iter = 2 iter = 4 iter = 6 iter = 8 iter = 10

person (0.81) person (0.87) person (0.77) person (0.77)
parking

meter (0.70)
parking

meter (0.80)
parking

meter (0.79)

person (0.67) person (0.62) person (0.63) person (0.58) No det No det No det

airplane (1.0) airplane (1.0) airplane (1.0) kite (1.0) Kite (1.0) Kite (1.0) Kite (1.0)

airplane (0.99) airplane (1.0) airplane (0.72) person (1.0) person (1.0) kite (1.0) kite (1.0)

car (0.99) car (1.00) truck (0.99) truck (0.99) truck (0.99) truck (0.99) truck (0.99)

bear (1.00) bear (0.99) cow (0.8) cow (0.99) cow (0.99) cow (0.99) cow (1.00)

bannana (0.99)bannana (0.99)bannana (0.30)
toothbrush

(0.98)
toothbrush

(1.00)
toothbrush

(0.99)
toothbrush

(0.99)

Fig. 3: Illustrating the intermediate results when optimizing the appearance to fool the
detector.

Fig. 4: Screenshot of the interface presented to the human observers in our study.

Supplementary: Semantic Adversarial Testing 7

book (0.) car (1.0) person (2.0) bottle (3.0) person (4.0) cup (5.0)

scissors(0.) car (1.0) person (2.0)
airplane

(3.0)
vase (4.0) clock (5.0)

Fig. 5: Qualitative examples illustrating the spectrum of human typicality ratings.
Top row shows real instances and bottom row shows adversarially semantically edited
instances. Each instance is annotated with the label and the average typicallity rating.
Typicallity rating of 0 are the cases where human observers judged that the object does
not belong to the specified class.

3 Human study analysis

We conduct a human study to understand if the semantic adversary is able to
preserve the edited object within the true class boundary. The object is within
the true class boundary if human observers agree that the shown instance belongs
to the designated class. Apart from keeping the edited appearance within the
class boundary, we also want the semantic adversary to generate hard samples
which are rare/novel combinations of appearances seen the training data. To
measure this we ask human observers to also rate how typical the shown object
instance is to that class. Each human observer is shown an image containing an
object highlighted with a red bounding box. They are asked to first judge if the
object belongs the specified class. If it does belong to the specified class, they
are asked to rate how typical the object instance is from 1 to 5, with 1 being
very rare and 5 being very typical. To prime the users, we present an example in
the instructions. Detailed instructions given to the participants are as follows.

1. Look closely at the object marked by the red bounding box.
2. If you can’t spot box, it might be surrounding the whole image. Look closely

at the borders.
3. First determine if this object is a class.
4. If it does belong to the specified category, rate how typical is the apperance

of this object for this category.
5. Typicallity rating goes from 1 to 5 with 1 being very unsual appearance to 5

being very common/typical.
6. For example a clearly visible yellow colored banana is considered very typical

(rating 5).
7. Similarly, a green banana could be considered rarer (rating 3), whereas

a purple/rainbow colored banana should be considered very rare/atypical
(rating 1) .

8 R. Shetty et al.

1 2 3 4 5
Average typicality rating

20

30

40

50

60

70

Av
er

ag
e

De
te

ct
or

 a
cc

ur
ac

y baseline
adversarially trained

Fig. 6: Comparing the accuracy of baseline and adverarially trained detector performance
across typicality rating of real test images. Here the typicallity rating shown is the
mean typicality rating given to the image by the three annotators.

8. The data contains a mix of real/synthetic images. However do not base your
judgement solely based on if the image is real/synthetic, but if the object
depicted matches your idea of a typical object of the prescribed category.

The interface of the user study is shown in Figure 4. To get a baseline for the
rating we also get same number of real instances annotated. These are mixed in
the order in which the instances are shown to an annotator is randomized. Each
instance is shown to three unique annotators and their responses are collected.
Majority vote is taken to obtain the results presented in table 2 of the main paper.
We saw from this table that in most of the instances (93%), human observers agree
that the semantically edited object preserves the class label. Figure 5 show some
qualitative examples to illustrate how the human observers rated the typicality
of different instances. We see from the real examples that clearly visible instances
are rated with high typicality, whereas the smaples which are unusual (bottle
with rating of 3.0) or difficult to see are rated with lower typicality. Simlarly with
synthetic samples, instances which have unusual appearance (airplane, person,
car) are rated lower.

Correlation of typicality with detector performance. Figure 6 shows the
average typicality rating of a real instance compared to the detector performance
on these instances. We measure the detector performance by using the accuracy of
the detector (confidence threshold=0.5) on these instances. Looking at the baseline
detector performance (blue curve) we clearly see a strong correlation between
detector performance and typicality. The baseline detector has a high accuracy of
7̃0% on very typical instances (rating=5), which drops down to 25% and 20% on
rare instances with typicality=2 and 3 respectively. This might partly explain the

Supplementary: Semantic Adversarial Testing 9

drop in performance we see with the semantic adversarial examples. Since our
semantic adversarial examples have lower typicality on average compared to the
real samples (see figure 7 in the main paper), detector fails to recognize them and
drops performance. Figure 6 also shows that adversarial training helps improve
the perfromance on less typical instances. We see that accuracy increases by 20%
on the least typical instances and by 5% on instances with typicality rating=4.

4 Qualitative examples of failure modes

Camouflag-
ing

Cow No det Bowl No det Dog No det

Occlusions

Person, PersonNo det, Person Cat, Toilet No det, Toilet Bird, Bird No det, Dog

Appear-
ance

Sheep Horse Dog Horse Kite Person, Surfboard

Contextual
Appear-

ance

Cow, Cow Horse, Horse Airplane, Kite Kite, Kite Airplane Bird, Chair

Fig. 7: Qualitative examples of the failure cases discovered by our semantic adversary.
Green boxes are correct detections, purple boxes indicate missed detections and red
boxes show the misclassified objects. Only relavant detections are marked.

Figure 7 presents more examples of the four types of error cases synthesized
by our semantic adversarial optimization.

– Camouflaging - First row of Figure 7 shows examples where appearance of
the object is altered to be less distinct and blending with the background,
causing missed detections. We see appearance of a cow, a bowl and a dog
being camouflaged, causing detector to not see these objects.

– Occlusion - Second row of Figure 7 show more examples of missed detections
due to occlusions created by the edited object by moving closer to other
objects in the image. We see a person occluding another, a cat getting

10 R. Shetty et al.

occluded by a toilet, and bird occluding another, all causing the detector to
miss the occluded objects.

– Appearance - Third row in Figure 7 shows examples of the new object
appearance confusing the detector into misclassifying the object. We see cases
of sheep and dog being misclassified as horse and kite being misclassified as
a person with a surfboard.

– Contextual Appearance - Last row of Figure 7 shows the examples where
with a change in appearance of the edited object causes contextual bias
to override and cause misclassification. While the edited airplane appears
as a kite in the middle column, in the other two examples objects which
are not modified are also mis-classified due to change in prediction on the
edited object. In the first column edited cow is classified as a horse, which
also affects the detection of nearby cow, now also misclassified as a horse.
Similarly in the last column, edited airplane appears as bird to the detector,
causing it to detect the nearby structure as a chair.

5 Comparison to pixel-level adversarial attacks

More commonly studied form of adversarial attacks are pixel-level attacks, which
break detectors with small changes not visible to the human eye. In contrast, our
work breaks the detector with visible appearance changes which does not alter
the class to a human viewer. This helps us discover different failure modes with
large appearance changes compared to a Lp norm restricted attacker. However, it
is useful to compare the effectiveness of our semantic adversarial attack against
the pixel-level Lp norm bounded attacks. It would also be interesting to see
if training against our semantic adversary has any benefits to robustness to
pixel-level adversarial attacks.

To study this, we apply the standard L∞ norm bounded PGD attack on
objects (restricted to single object box) on the baseline detector as well as our
best coco detector (SA#2 x4). We restrict the L∞ attack to a single object for
fair comparison to our attack, which also affects only the object area.

The results are presented in Table 4. From these results, we see that our
semantic adversarial training has a small but consistent improvement against the
L∞ adversary compared to the baseline detector. Repeating the same attack on
image-level with epsilon=8/255 shows the same trend with baseline dropping to
mAP=11.4 compared to mAP=13.4 of our model.

The above results also show that our semantic adversary has similar effec-
tiveness as the object-level L∞ attack, with epsilon = 8/255. Our attack on a
single object shown in Table 1 of the main paper, drops the detector mAP to
the same level as the object-level attack with e=8/255 (mAP = 58.7 vs 59.5
with our attack). Ofcourse, with larger ε, L∞ attack is more effective. Training

with adversary. We also compare the effectiveness of training with standard
adversarial data to our approach in Table 5. Adding the L∞ (with ε = 8/255)
adversarial data to the coco training set, we train with the same settings as our
models. Performance of the resulting model is shown in Table 5. We see that

Supplementary: Semantic Adversarial Testing 11

Epsilon ε = 2/255 ε = 4/255 ε = 8/255 ε = 32/255

Base+FT 76.2 70.1 58.7 44.0
SA#2 x4 77.3 71.9 59.6 44.5

Table 4: Results of attacking l∞ attacks on the baseline object detector and our
best detector trained with semantic adversarial data. There is a small but consistent
improvement in the robustness of our SA#2 x4 detector against L∞ adversary.

Testset COCO VOC Unrel

Baseline 46.2 66.9 38.8
L∞ 46.3 66.8 38.4
SA 46.7 67.3 39.4

Table 5: Comparing the effect of training with images produced by L∞ based attack
to training with our semantic adversarial data. For fair comparison, the version of our
model only attacking a single object is compared to the L∞ attack on a one object.

training with adversary does not improve generalization and under-performs our
model SA. This observation is inline with similar results in literature [3].

Together, these results show that our semantic adversarial training provides
better generalization than training on Lp norm adversary. It also provides a small
boost in robustness to Lp norm attacks

References

1. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-
adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2019) 3

2. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 234–241. Springer (2015) 1

3. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be
at odds with accuracy. In: Proceedings of the International Conference on Learning
Representations (ICLR) (2019) 11

