
Appendix

Form. Dataset Model #Params k Acc

B1 MNIST

MLP-400 479K 4400 97.8

NIN 260K 250 97.2

Improv 1.8x 17.6x -0.6%

B1 SVHN

ResNet18 11.2M 4400 93.4

NIN 968K 2000 89.3

Improv 11.6x 2.2x -4.1%

A1/A2 CIFAR10

ResNet18 11.2M 500 45.8

DenseNet100 769K 500 47.5

Improv 14.6x - 1.7%

D CIFAR100-Task

ResNet18-S 1108K 1105 60.3

DenseNet100 794K 1105 62.1

Improv 1.4x - 1.8%

B2 CIFAR100-Class

ResNet18 11.2M 2000 24.1

DenseNet100 800K 2000 27.5

Improv 14.6x - 3.4%

Table 1. Minimizing the resource consumption (storage size and parameters).

1 Additional Experiments

We perform additional experiments to study variance of performance across
memory sizes, models, training timesteps on each dataset. We first study the
variation across models and different values of k and tabulate these results in
Table 1. For MNIST and SVHN, we could reduce the replay buffer size by over
17x and 2x respectively with small impact on performance, a good tradeoff.
For CIFAR10 and CIFAR100, we substitute the bulky ResNet18 model with a
DenseNetBC-100-12 [1] which gives us a major decrease of over 14x in parameters.
In CIFAR10 and CIFAR100 (Task-IL and Class-IL), we additionally improve
accuracy by 1.7%, 1.8% and 3.4% respectively after compressing the models. On
MNIST and SVHN, we could compress the size of stored dataset k , showing
existing formulations use too much memory. But as dataset complexity increases,
larger memory size is required. We could also compress the parameter storage
by large margins while increasing accuracy by substituting popular but efficient
models, showing the scope for using more efficient models for CL formulations.

We further study the trade-off between accuracy and training time of our
improved models on the improved k values by varying the passes on memory.



2 A. Prabhu, P. Torr, P. Dokania

Passes/Form. B1-MNIST B1-SVHN A1-CIFAR10 D B2 C2

k 250 2000 500 1105 2000 9000

NIN NIN DenseNet100 DenseNet100 DenseNet100 DenseNet100

8 91.7 (96.0) 72.5 (81.4) 28.4 (28.4) 49.5 (50.8) 7.3 (8.8) 32.3 (33.9)

16 95.9 (96.3) 85.1 (85.6) 32.3 (33.5) 52.6 (53.0) 10.0 (11.4) 39.4 (41.9)

32 96.9 (97.2) 88.8 (87.3) 37.8 (36.7) 56.2 (58.3) 15.0 (18.1) 47.2 (48.4)

64 97.4 (97.2) 89.2 (87.5) 39.9 (40.1) 60.6 (61.2) 21.9 (22.5) 54.0 (54.3)

128 97.4 (97.2) 89.2 (88.9) 43.9 (42.9) 62.1 (61.9) 26.5 (24.1) 56.9 (56.3)

256 96.6 (97.5) 88.4 (89.7) 46.4 (43.9) 62.0 (62.4) 27.6 (25.7) 54.1 (54.8)

512 96.1 (97.7) 86.9 (88.4) 47.5 (45.9) 62.3 (61.5) 27.6 (25.8) 54.0 (54.7)

Table 2. Accuracy of tweaked (NIN/DenseNet) GDumb models with number of passes.
The bolded accuracies represent the reported results in previous experiments, while
accuracies in (brackets) are obtained without cutmix regularization. We can halve the
training time with slight tradeoff of upto 1% accuracy.

We present the results in Table 2, with bold being the selected models, along
with (brackets) representing accuracies obtained by an ablation without cutmix
regularization. We show that we can further reduce our training time by half
with a minor (approx 1%) tradeoff in accuracy. We also observe that cutmix
regularization improves performance by 0.2% to 1.5% margins. We strongly
recommend regularization in GDumb since it only has access to the few samples
in memory.

2 Experiment formulations

We first detail each of the seven selected formulation and then present results on
each of them.

Formulation A1 ([2]): We benchmark on two datasets: MNIST and CI-
FAR10 from this setting. They randomly divided MNIST and CIFAR10 into
5 disjoint tasks of 2 classes each. The architectures used for MNIST is a MLP
with 2 hidden layers of 400 nodes and ResNet18 for CIFAR10. They use a small
limit (k) of 300 and 500 stored samples for MNIST and 200, 500 and 1000 stored
samples for CIFAR10. In MNIST, they select 1000 samples per task, while in
CIFAR10 they utilize 9,750 samples per task in the online stream. On MNIST,
we additionally compare with GSS [3] who use the same setup except they have
an MLP with 100 hidden size. We compare accuracy on the hold-out test set
after all tasks are done.

Formulation A2 ([4]): They split MNIST and CIFAR10 into 5 disjoint
subsets by their labels as different tasks. Each task consists of 1,000 online
training examples in MNIST and 10,000 training examples in CIFAR10 similar
to the above setup. The goal is to classify over all 10 classes on a held-out test
set when the training ends. The architectures used for MNIST is a MLP with 2
hidden layers of 100 nodes and ResNet18 for CIFAR10, identical to the above
setup. However, since the accuracies obtained for ER, GEM and ER-MIR are very



A Surprisingly Effective Approach for Continual Learning 3

different, we list them as a different formulation and compare our performance
against them.

Formulation A3 ([5]): They split MNIST and CIFAR10 into 5 disjoint
subsets. Each task consists of 1,000 online training examples in MNIST and 9,750
training examples in CIFAR10 similar to the A1. The goal is to classify over
all 10 classes on a held-out test set when the training ends. The architectures
used for MNIST is a MLP with 2 hidden layers of 100 nodes and ResNet18 for
CIFAR10, identical to the above setup. However, since the accuracies obtained
for ER, GEM and ER-MIR are very different (for MNIST), we list them as a
different formulation as merging tables is not possible.

Formulation B1 ([6,7]): It consists of two datasets: MNIST and SVHN,
randomly divided into 5 disjoint tasks of 2 classes each. The architecture used is
a MLP with 2 hidden layers of 400 nodes for MNIST and ResNet18 for SVHN.
The formulation controls the total static memory overhead among all proposed
approaches, resulting in storage capacity of 4400 for memory-based approaches [6].

Formulation B2 ([8]): The formulation use CIFAR100, split into 20 tasks
of 5 classes each. They use a ResNet-32 model and a limit of 2000 stored samples
(k). We additionally report the average of accuracy after each task as described in
[8] referred to as accuracy (avg in t), along with accuracy after all tasks referred
to as accuracy.

Formulation B3 ([9]): This formulation tests small-task increments on
CIFAR100 and Imagenet100. Given a class-order, they use the first 50 tasks for
pretraining and then subsequent 50 tasks with 1 class each in a CI-CL fashion
including the initial 50 classes. Hence, they have a CI-CL classification with
51-100 classes. They start off with 1000 samples in memory and add 20 samples
to memory for each subsequent task added. They use ResNet32 on CIFAR100 and
ResNet18 on Imagenet100 to match the formulation and provide 3 class-orders
for CIFAR100 and 1 class-order for Imagenet100 which we use. We measure
average and last-task accuracy on using the same set of class-orders, using the
same memory and networks as specified in the formulation.

Formulation C1 ([6]): It splits MNIST into 5 disjoint tasks of 2 classes
each. The architecture used is a MLP with 2 hidden layers of 400 nodes for
MNIST. The formulation controls the total static memory overhead, resulting in
storage capacity of 4400 for memory-based approaches. We use three different
class-to-task mappings to get performance.

Formulation C2 ([10]): TinyImagenet is divided into 10 disjoint tasks of
20 classes each in this formulation. We compare with the overall best accuracies
obtained (Table 10 in [10]). The table lists their best performance observed over
different architectures, regularization strategies, hyperparameter searches, etc. We
test for two stored sample limit (k): 4500 and 9000. We use DenseNetBC-100-12
architecture as detailed in subsequent sections. Note that although it differs from
the architectures tested; it is a fairly standard efficient architecture.

Formulation D ([11]): We borrow the benchmark on CIFAR100, consisting
of 20 disjoint tasks of 5 classes each. We train 17 tasks, store upto 13 samples
per class and use the same reduced ResNet18 architecture.



4 A. Prabhu, P. Torr, P. Dokania

Formulation E ([3]): It consists of two datasets (MNIST and CIFAR10)
with class-imbalanced, blurry boundary setting. Each has 5 tasks, each task
having 2 classes each. MNIST has 2000 online samples of current task and 200
from each other tasks for every task in the formulation. Similarly, in CIFAR10
we keep 90% of the data for each task, and introduce 10% of data from the other
tasks. The same architectures are used as in GSS [3], which are a 2-layer MLP
with hidden size 100 for MNIST and a ResNet18 for CIFAR10. The limit on
stored samples (k) is 300 for MNIST and 500 for CIFAR10.

References

1. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR. (2017)

2. Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M., Charlin, L., Tuytelaars, T.:
Online continual learning with maximally interfered retrieval. In: NeurIPS. (2019)

3. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for
online continual learning. In: NeurIPS. (2019)

4. Jin, X., Du, J., Ren, X.: Gradient based memory editing for task-free continual
learning. (2020)

5. Ji, X., Henriques, J., Tuytelaars, T., Vedaldi, A.: Automatic recall machines:
Internal replay, continual learning and the brain. arXiv preprint arXiv:2006.12323
(2020)

6. Hsu, Y.C., Liu, Y.C., Kira, Z.: Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. In: NeurIPS-W. (2018)

7. Rajasegaran, J., Hayat, M., Khan, S., Khan, F.S., Shao, L.: Random path selection
for incremental learning. In: NeurIPS. (2019)

8. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: CVPR. (2017)

9. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Small-task incremental
learning. In: ECCV. (2020)

10. De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., Tuytelaars, T.: Continual learning: A comparative study on how to defy
forgetting in classification tasks. arXiv preprint arXiv:1909.08383 (2019)

11. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with a-gem. In: ICLR. (2019)


	Appendix

