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Abstract. Automatic satellite-based reconstruction enables large and
widespread creation of urban areas. However, satellite imagery is often
noisy and incomplete, and is not suitable for reconstructing detailed
building facades. We present a machine learning-based inverse proce-
dural modeling method to automatically create synthetic facades from
satellite imagery. Our key observation is that building facades exhibit
regular, grid-like structures. Hence, we can overcome the low-resolution,
noisy, and partial building data obtained from satellite imagery by syn-
thesizing the underlying facade layout. Our method infers regular facade
details from satellite-based image-fragments of a building, and applies
them to occluded or under-sampled parts of the building, resulting in
plausible, crisp facades. Using urban areas from six cities, we compare our
approach to several state-of-the-art image completion/in-filling methods
and our approach consistently creates better facade images.

Keywords: Image synthesis and completion, Inverse procedural mod-
eling, Satellite imagery

1 Introduction

Urban inverse procedural modeling is beneficial for many simulation, training,
and entertainment applications. Using satellite data enables large scale, poten-
tially global reconstructions. However, satellite data is challenging to work with
due to limitations in resolution, noise, complex camera models, partial coverage,
and occlusions. These aspects hinder high quality urban reconstruction.

Our key observation is that buildings in dense urban areas typically exhibit
a regular, grid-like facade structure. We exploit this observation via a machine
learning-based inverse procedural modeling approach to determine procedural
parameters for a number of facade grammars in the presence of incomplete data.
The grammars are then applied to the faces of reconstructed 3D building models
during a facade completion phase. This methodology significantly improves the
resilience to occluded/noisy images and produces more accurate facade layouts as
compared to alternative segmentation-based methods. Since satellite images have
a very limited off-nadir view (e.g., at most 20 to 40 degrees), and building surface
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Fig. 1: Examples of facade synthesis and completion. Our method automatically
creates procedural facades from satellite-based images despite noise, occlusions,
and incomplete coverage.

coverage is limited (e.g., the orbital path of the satellite is not able to capture
all building sides), often only fragments of a building are seen. Furthermore,
facades that are observed may only be seen at very oblique angles, resulting in
low resolution and stretched facade images. Nonetheless, a procedural approach
has the ability to recreate the observed portion as well as create a plausible
synthesized facade reconstruction of the occluded/not-sampled fragments. The
result is plausible, complete building facades.

Our approach takes as input 3D building models obtained from point-clouds
(e.g., [19]), as well as satellite image fragments projected onto the faces of the
building models. The image fragments are used together with trained deep net-
works to find a representative sample of a facade with minimal noise, and infer
its style and procedural parameters. The parameters are then used to complete
the rest of the facade, and potentially other non-observed facades of a building.
In the end, our approach produces complete facade layouts applied to building
models. Figure 1 shows example results of our approach. Since we have a pro-
cedural output (instead of an image), we can zoom-in to any part of the facade
and still have a crisp result, as observed in the close-up views.

Our results yield improvements over other methods applied to the same data.
Over our six test areas, each spanning 1-2 km2, our method is consistently bet-
ter than the prior work we compare to quantitatively and qualitatively, and the
average accuracy of several performance metrics is 85.4% despite significant oc-
clusions, noise, and strong blurriness. Further, our deep networks are trained on
a new dataset of rectified satellite facade views with ground truth segmentation
that we also offer as a contribution. As far as we know, our work is the first
pipeline to handle façade reconstruction based on satellite imagery despite the
occlusions and resolution limitations of such imagery.

Our main contributions include: (1) A machine learning based pipeline ad-
dressing occlusion and regularity for satellite facade patterns. (2) A facade com-
pletion technique to generate plausible facade layouts based on the predicted
grammars and building geometry. (3) A satellite facade dataset with ground
truth window and door segmentation.
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2 Related Work

Related work can be divided into building-envelope reconstruction, facade recon-
struction, and forward/inverse procedural modeling. Musialski et al. [18] provides
a review of urban reconstruction. Despite having the highest-resolution com-
mercially available satellite imagery (i.e., WorldView3), the main structure of a
building occupies on average 90x90 pixels on the ground plane and on average
the best observation of a facade is 20 pixels tall. Aside from the relatively low
resolution of satellite imagery, there are several other aspects that differentiate
satellite-based multi-view stereo reconstruction from ground/aerial multi-view
stereo reconstruction [21, 22]. First, satellites use scan-line sensors producing
images with a different projection model than standard frame cameras. Usually
a rational polynomial coefficient (RPC) model is used. Such RPCs are hard to
calibrate, require iterative processes, need many ground control points, and per-
forming 3D to 2D as well as 2D to 3D mapping is difficult [34]. Second, the image
quality can vary a lot due to a number of factors, including the viewing angles of
satellite sensors are greatly limited by the orbit (i.e., not very off-nadir), images
of an area might be days/weeks/months apart yielding different illumination and
potentially physical changes, and radiometric quality is lower despite attempts
of atmospheric corrections (see Figure 2). While our work does not address the
problem of 3D building reconstruction, building geometry is reconstructed au-
tomatically from a SOTA multi-view stereo point cloud obtained from satellite
images, similar to and by extending [13, 32]. It’s important to note that the
above limitations affect the quality of the reconstructed models, which are used
by our facade synthesis method. Thus we cannot expect to have perfect building
geometry with which to produce synthetic facade layouts.

Fig. 2: Satellite Image and Facade Closeups. Example satellite image and views
of some typical facades.

Almost all facade reconstruction methods use ground or aerial imagery, typi-
cally rectified and rectangular. Many approaches have been followed (e.g., using
dynamic programming [3], using lattices [23], using matrix approximations [29],
and inferring grammars from pre-labelled segments [15, 12, 7]). However, these
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methods do not perform well for our very under-sampled facades. For example,
see our comparisons in the results section.

More recently, deep learning based facade parsing has obtained excellent re-
sults for ground-level imagery. For example, Liu et al. [14] and Fathalla et al. [6]
perform facade segmentation but assume high-resolution frontal views. Nishida
et al. [20] further assumes hand-specified building silhouettes and their facade
stage depends on having clear boundaries between floors and between columns.
Further, none of these account for the significant occlusions in satellite-based fa-
cades. Kelly et al. [10] could automatically and realistically decorate buildings by
synthesizing geometric details/textures. However, their work requires style refer-
ences (e.g., façade and roof textures, window layouts) and such references from
satellite would be very low-resolution and heavily occluded. Kozinski et al. [11]
(and partially Mathias et al. [16]) include provisions for occlusions but depend
on many assumed structural priors for numerous object classes and SIFT feature
vectors. On average the facades we encounter are only 20x90 pixels in size (of-
ten significantly worse) and thus make it prohibitive to determine such detailed
structure. Image-to-image translation, such as Isola et al. [9] and Zhu et al. [35],
has been proposed but does not support all of regularity, occlusions, and satellite
data. From the semantic segmentation point of view, facade parsing could also
be considered as a segmentation task. Many papers (e.g. DeepLabv3+ [2], Enc-
Net [31], etc.) have shown great success with segmentation, but none of them use
satellite facade data. Thus we trained those neural networks from scratch using
our created satellite facade dataset (see Results section) and observe that these
state-of-the-art segmentation neural networks also suffer from the low-quality of
satellite facade data and cannot generate crisp facades.

Filling-in missing pixels of an image, often referred as image in-painting or
completion, is an important task in computer vision. Deep learning and GAN-
based approaches (e.g., DeepFill [30], PICNet [33]) have achieved promising re-
sults in this task. However, image in-painting is ill-suited for resolving shadows
and occlusions in satellite facade images. First, detection of these areas is a very
challenging problem, especially for satellite data. Second, even assuming these
areas could be detected automatically, image in-painting approaches cannot in-
fer correctly due to the low quality of satellite facade data. We also show in the
Results section comparisons to these approaches.

Inverse procedural modeling (IPM) attempts to determine the procedure
(e.g., rules and/or parameter values) yielding a desired geometric output. IPM
has been used to stochastically derive a procedural model [26, 24], infer Manhattan-
world buildings from aerial imagery [28], or arbitrary buildings from polygonal
data [1, 5, 4]. However, none of these methods have been used to infer building
facade layouts from satellite data.

3 Facade Synthesis

While there might be 1-20 satellite images observing portions of buildings, there
is usually not a high quality satellite observation of every facade on a building
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due to shadows, foliage/occlusions, and limited resolution. Thus simply applying
satellite images to building faces via projective texture mapping is inadequate.
Further, such texture mapping depends on very accurate image-to-image regis-
tration, geometric modeling, and complete coverage of all building facades. Our
approach attempts to overcome these issues by synthesizing procedural facades
using a selected subset of the available satellite imagery, and then applying these
facades across the entire building. This approach has the following advantages:

– Crisp Results. The produced facade details will be crisp and visible at any
resolution.

– Exploits Best Observations. Without relying on accurate RPCs and image
registration, we choose the best, potentially fragmented, observations of each
building and use it to obtain facade details.

– Completes Missing Fragments. Even if a facade/fragment is missing, we can
fill-in the facade with details from a partial observation (or in worst case
with details from neighboring facades).

Fig. 3: Pipeline. The pipeline of our multi-stage approach for facade completion
and synthesis.

We provide an overview of the proposed procedural facade approach in Fig-
ure 3 and in the following we describe the pipeline starting with our selection
method, followed by our deep-learning based facade style classification and pa-
rameter estimation, and finally our facade and building completion.

3.1 Selection

In a first stage, we choose the satellite image that has low grazing angle and does
not have much dark pixels as the best view of the facade, and the resultingim-
age is used as input to the rest of the pipeline. In many cases, even the best
observation of a facade is not useful due to noise, shadows, trees, and occlusions.
Thus we employ a deep-learning based rejection model to prevent further pro-
cessing of any such facades. Rejected facades will not undergo classification or
parameter estimation, but can still receive synthetic facade layouts as part of
the completion phase (Section 3.3).
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Rejection Model

Accept

Reject

Figure: The first row shows facades that our selection 
model will accept. The second row shows facades that 
our selection model will reject.

Fig. 4: Accept or Reject. The first row
shows facades that our rejection model
will accept. The second row shows fa-
cades that will be rejected.

Our rejection network is based on
a pre-trained ResNet [8] model, in
which we modify the last fully con-
nected layer to two classes: one for
”good” facades to be accepted and the
other for ”bad” facades to be rejected.
We used 120 examples of ”good” fa-
cades from our facade data set and
120 examples of ”bad” facades, result-
ing in 1920 training images in total af-
ter applying data augmentation such
as flip, rotation, random crop and in-
tensity variations. The model performs with 92% accuracy when tested on 200
test images. Figure 4 shows some examples of accepted and rejected facades.

3.2 Classification and Parameter Estimation

In a second stage, our approach estimates the style and parameters of an equiva-
lent procedural facade representation. Our method extracts a ”chip” from the se-
lected facade image because i) satellite-based images often suffer from occlusions
and thus assuming a full facade view would be prohibitive, and ii) otherwise the
parameter space would be unnecessarily large as the number of floors/windows
may vary significantly yet the spacing between floors and windows is regular.
The procedural representation for the entire facade is obtained from the chip
and then used during the next stage to complete each facade.

Chip Extraction

Figure: Multi-scale façade maps for chip extraction. a) 

Original facade. b) Multi-scale chip scheme. c)Apply b) 

to a). d) The best chip

c) d)

a) b)

…

Fig. 5: Chip Extraction. a) Original fa-
cade. b) Division of a) into tiles and
demonstration of how chips are formed.
c) Apply b) to a). d) The best chip.

Chip Extraction To choose the best
chip to extract, we divide the original
facade image into a set of N tiles each
of size 6x6 meters. Each chip is formed
by selecting a tile as the center and
then varying the chip size to 6, 12,
or 18 meters and varying the aspect
ratio (e.g., 1:1, 1:2, or 2:1). In total,
9N different candidate chips are pro-
duced for each facade. Please see Fig-
ure 5 for a visual depiction. We eval-
uate each chip by passing it through
our rejection network and evaluating
its rejection score. The chip with the
lowest rejection score is considered to
be the cleanest chip found for the fa-
cade, and is selected to represent this
facade further in the pipeline.
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Segmentation During segmentation, we only label each pixel as belonging
to window/door or non-window/non-door since other facade classes are usu-
ally not visible in satellite imagery. During development, we experimented with
several state-of-the-art deep-network based semantic segmentation models (e.g.,
DeepLabv3+ [2], EncNet [31], and Pix2Pix [9]). Please see Segmentation models
in the Results section for quantitative and qualitative comparisons among these
architectures. We found that the architecture of Pix2Pix [9] performs among the
best ones, and in particular we specify the generator architecture to consist of
ResNet blocks, the discriminator architecture to be 34x34 PatchGAN, and the
input image size to be 96x96. We train the segmentation network from scratch
using our own manually created satellite facade dataset. Specifically, we train
with 120 facade images (960 after applying the aforementioned data augmenta-
tion) along with ground truth from our dataset.

After segmentation, we have binary segmented chip facades with two labels:
one representing windows and doors (black), and one representing the building
wall (white). Using a binary representation eases the burden for deep-network
based recognition and parameter estimation. In addition, we apply some image
processing techniques to further refine the segmented image. First we perform
a small amount of dilation (e.g. rectangular dilation with a kernel size of 3
pixels) to reduce some of the noisy black window/door pixels. Next, since some
facades are not perfectly rectified (due to errors in image registration and/or
geometry), we perform a global image rotation computed automatically to force
rows of windows/doors to be horizontal. Further, each window/door is replaced
by a filled-in version of its rectangular bounding box. The end result is a binary
image with rectangular windows and doors representing the facade, and serves
as the input to our recognition and estimation networks.

Grammar Classification and Estimation We represent a synthetic facade
by one of six possible grammars each with a number of parameters, defined in a
systematic fashion. While a single grammar with many parameters might be able
to express more facades we found its generality to result in overall lower quality
given the low-resolution nature of our facade imagery. For our grammar classifi-
cation, a facade may contain doors and windows, or only windows. Further, the
windows can be arranged as a grid of disjoint windows, as columns of vertically
abutting windows, or as rows of horizontally abutting windows (see Figure 2 and
Figure 6). Since window shapes are hard to differentiate with satellite data, we
treat all windows as rectangles.

Which grammar a facade belongs to, along with the parameters for said
grammar, is determined with a set of deep networks based on ResNet [8]. There
is a classification network, which determines the grammar, followed by six pa-
rameter estimation networks, for determining the parameters specific to each
grammar. The classification network is a ResNet [8] with modification of the
last fully-connected layer to the number of grammars. The final output layer of
this network yields confidence values for each of the aforementioned grammars.
After classifying a facade via this network, the segmented facade chip is then
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sent through the parameter estimation network that corresponds to the highest
confidence value in the classification output.

To robustly find the procedural parameters for the classified grammar, we
use a separate deep network for each individual grammar, all of which are also
based on ResNet [8]. They differ only in the last fully-connected layer, where
we modify the number of parameters to match that of the grammar. We also
use mean squared error as the loss function for our estimation networks. The
predicted parameters (e.g., window rows, columns, relative size, etc.) altogether
yield a synthetic facade that is similar to the input image.

c c

Supplemental Figure 2: Grammars. Our grammars of (1-3) three styles of
only windows and (4-6) three styles with doors at the base. “f” stands for the
number of floors. “c” is the number of column boundaries. “d” is the number
of doors. “h” is the relative height and “w” is the relative width. Please check
the close-ups for the window/door grids in different grammars.

f

c

f
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Fig. 6: Grammars. Our grammars of (1-3) three styles of only windows and (4-6)
three styles with doors at the base. “f” stands for the number of floors. “c” is the
number of column boundaries. “d” is the number of doors. “h” is the relative
height and “w” is the relative width. Please see the close-ups for additional
parameters in the different grammars.

To train the estimation networks by systematically iterating over possible fa-
cade parameter configurations, we synthesized 200,000, 20,000, 20,000, 400,000,
50,000, and 50,000 facades from grammars 1 to 6 in Figure 6, respectively, based
on the different number of parameters for each. We also perform data augmen-
tation accounting for noise and errors in the segmentation (i.e., up to 10% noise
such as perturbation of boundaries in windows/doors) and randomly remove
up to 10% of windows/doors. To train the classification network, we collected
108,000 images in total from the aforementioned training images, distributed
evenly among all six grammars.

Optimization After recognition and parameter estimation, we perform a coarse-
to-fine refinement for each chip. Segmentation suffers from noise, shadows, trees,
and occlusions. Fortunately, our parameter estimation network is able to re-
cover a procedural facade that fills-in occluded content though there might be
an overall translation or scale error. Thus, we define an objective function, using
F-score [25], as:

F =
2 · precision · recall
precision + recall

P ∗ = argmax
P

F, (1)
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In the above, P stands for the grammar parameters in Figure 6, P ∗ is the
optimal parameter set, Accuracy is the percentage of pixels labelled accurately,
Precision and Recall are computed by considering the label windows/doors as
positive and the label wall as negative. Precision is the number of true positives
divided by the sum of true and false positives (e.g., how correct is the windows
and doors labelling in our results). Recall is the number of true positives divided
by the sum of true positives and false negatives where for false negatives we use
the number of incorrectly labeled wall pixels (e.g., how many windows and doors
pixels our result can correctly label). Overall, F is essentially the harmonic mean
of Precision and Recall.

Our optimizer tries to maximize this function using Monte Carlo stochastic
optimization (e.g. altering P such as the number of floors, windows and window
size) so as to create a synthetic facade that improves the F -score with respect
to the segmentation result. Please see Optimization in Results section for details
and comparisons.

3.3 Completion

In a third and final stage, our method applies the estimated procedural parame-
ters to all facades and generates windows and doors with the estimated sizes and
spacing. Although the prior step determined parameters for rectangular chips,
the actual facades on the buildings are not limited to rectangles but instead may
have irregular shapes. To this end, we logically divide a building facade into a set
of horizontally-adjacent rectangular sections. Since doors only appear at the bot-
tom of a facade, we partition each rectangular section, that touches ground level,
into two subsections: a door subsection extending from the bottom of the facade
up to the door height, and a window subsection covering the remainder. Doors
are placed horizontally-centered in the door subsections and sized according to
the estimated parameters. The window subsections are then further subdivided
into window cells, also sized and spaced according to the estimated parameters,
with one window placed into each cell. The tallest window subsections determine
vertical window placement such that building floors are level across all sections.

Since each chip’s parameters are estimated independently, neighboring fa-
cades will in general have different door/window sizes and spacing, and poten-
tially different grammars. To remedy this issue, we first group facades together
based on similar heights. All facades within each group are then forced to use
the grammar of the highest scoring facade in the group, scored according to the
grammar classification confidence value from the previous stage, with parameter
values averaged over matching grammars in the group.

The resulting facades have windows and doors, which are colored according
to the average window/door color as determined by the segmentation. Similarly,
the facade wall is colored according to the average non-window color.
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4 Results

Our method is implemented using OpenCV, OpenGL, and PyTorch, and it runs
on an Intel i7 workstation with NVIDIA GTX 1080 cards. We have applied
our method to six test areas in the United States captured by WorldView3
satellite images: a portion of (A1) Jacksonville, Florida (2.0 km2), (A2) UC
San Diego, California (1 km2), (A3) San Fernando, California (1 km2), (A4)
Omaha, Nebraska (2.2 km2), (A5) San Diego, California (1.2 km2) and (A6)
USC, California (2 km2). Collectively, the areas have a few hundred buildings and
medium to tall buildings and have from 20 to a few hundred windows/doors each.
Our method runs automatically yielding facades for 14 buildings per minute. The
training time for our classification network is about 12 hours, and the training
time for our estimation networks from grammars 1) to 6) is about 20 hours, 3
hours, 3 hours, 36 hours, 8 hours, and 8 hours, respectively.

Dataset. In order to train our neural network models, evaluate our method,
and compare with other methods, we present a dataset of real satellite facades,
which includes about 400 rectified images of facades from the aforementioned
six areas, which have been manually annotated with two different labels: one for
windows/doors and the other for the walls. Because of the low-quality of these fa-
cades, even humans can’t precisely do the segmentation. Thus, mis-segmentation
and misalignment always exist. Further, we carefully refine the annotations for
61 facade images and use those facades as a test data set for evaluating mod-
els/methods.

Pipeline Steps. We show example pipeline steps in Figure 7 which includes
chip extraction results, segmentation results, image processing results and our
final facade completion results. Additional example facades are in supplemental
figures. Our paper video also shows the pipeline and example results.

Façade synthesis

a)

b)

c)

d)

e)

Figure: a) Selected facade. b) Façade chip. c)Apply 
segmentation model b). d) Apply dilation, rotation and 
replace windows/doors with filled-in rectangular 
bounding box and feed to our Neural Networks. e) 
Façade synthesis.

Fig. 7: Pipeline Steps. a) Selected facade images. b) Facade chips. c) Results of
using our segmentation model b). d) Images after applying dilation, rotation
and replacement of windows/doors with filled-in rectangular bounding boxes
and then being fed to our neural networks. e) Synthesized facades.
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Table 1: Segmentation Quantitative Comparison. Pixel Accuracy, precision, re-
call and F-score metrics evaluated on 61 facades for models from b) to g). Those
terms are defined in Optimization Section.

Model Accuracy Precision Recall F-score

b) 0.843665 0.756 0.747 0.742

c) 0.8482 0.795 0.712 0.742

d) 0.866343 0.836 0.741 0.771

e) 0.846425 0.802 0.696 0.732

f) 0.849911 0.776 0.725 0.740

g) 0.870966 0.864 0.709 0.766

Segmentation models. We test satellite facade segmentation on three
state-of-the-art neural network architectures: Pix2Pix [9], Deep Labv3+ [2] and
EncNet [31]. We train these architectures from scratch using our data set and also
customize the hyper-parameters to fit our segmentation problem. For Pix2Pix we
also try different generator and discriminator architectures which could support
different sizes of input images. See supplemental table and supplement figure 2
for specific configurations and qualitative comparisons. Please see Table 1 for
quantitative comparisons. Based on this comparison, we perceive Pix2Pix 96 to
work best and it is the segmentation model we use in our approach.

Opt

Figure: Comparison with four state-of-the-art 
methods on a façade parsing. a) Input satellite 
facades. b) Manually created ground truth. c) The 
results of applying segmentation to a). d) The results 
of applying segmentation to image inpainting. (e) Our 
results without optimization (f) Our results with 
optimization

a)

b)

c)

d)

pAccuracy precision recall blob average
c) 0.618463 0.479696 0.472092 0.9364 0.626666
d) 0.808786 0.715268 0.82633 0.9393 0.822421

Table: Pixel Accuracy, precision, recall metrics and 
blob accuracy evaluated on 10 facades for models from 
c) to d)

Fig. 8: Optimization Qualitative Re-
sults. a) Original facades. b) Man-
ually created ground truth. c) Our
results without optimization. d) Our
results with optimization.

Table 2: Optimization Quantitative
Comparison. Pixel accuracy, precision,
recall, F-score and blob accuracy eval-
uated on 61 facades for models c) and
d) in Figure 8.

Method Accuracy Precision Recall F-score Blob

c) 0.725 0.556 0.673 0.597 0.810

d) 0.880 0.818 0.834 0.815 0.923

Optimization. We evaluate 61 facade images using both our method with-
out optimization and our method with optimization. Thus we show that we im-
prove pixel accuracy, precision, recall, F-score and blob accuracy by perturbing
grammar parameters. The blob accuracy is the window count accuracy defined
as:

Blob = 1− |Our Window Count−Ground Truth Window Count|
Ground Truth Window Count

, (2)
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Please see Figure 8 and Table 2 for qualitative and quantitative comparisons. In
summary, with optimization our metrics improve from 0.69 to 0.85, an improve-
ment of 16% on average.

a)

b)

c)

d)

Fig. 9: Facade Subdivision Compari-
son. We provide a) satellite-based fa-
cades to b) an image-based approach,
c) Nishida et al. [20], and d) Ours.

Table 3: Facade Quantitative Compar-
ison. We evaluate Mean Absolute Er-
ror (MAE) and Mean Relative Error
(MRE) of the number of floors and the
number of windows per floor on 61 fa-
cades for c) and d) in Figure 9.

MAE MRE

Method #floors #windows #floors #windows

c) 0.770 0.770 15.8% 12.1%

d) 0.246 0.164 4.2% 3.9%

Comparisons. We compare our approach to several state-of-the-art meth-
ods. First, in Figure 9 we show a visual comparison between the facade subdi-
vision of b) an image-gradient-based approach (e.g., [17]), c) Nishida et al. [20]
(retrained using the same training set as our approach), and d) our method. We
highlight that Nishida et al. [20] (and also Teboul et al. [27]) essentially make
use during their processing pipeline of an image-gradient based method similar
to [17] (thus we include the image-gradient comparison). We also include facade
quantitative comparisons in Table 3.

Image InPainting

Figure: a) Original facades. b)Random rectangular 
mask. c) Results. 

a)

c)

b)

PICNet DeepFill

Fig. 10: Image In-painting. a) Original facades. b) Rectangular areas to be filled-
in. c) Results after inpainting.

Second, we test two state-of-the-art neural network architectures for image
inpainting/completion: DeepFill [30] and PICNet [33]. With DeepFill determin-
ing which part to ”fill” is an unaddressed challenge and thus for this comparison
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we manually select occluded, shadowed and/or tree-covered areas. In PICNet, we
use the random rectangular mask generation method they provide (e.g., select
a sufficient number of rectangles within the image to most likely performed all
necessary in-filling). Please see Figure 10 for visual results. While the methods
are able to place content in the occluded areas, there are still significant artifacts
which will hinder subsequent facade process.

Façade comparisons

Figure: Comparison with four state-of-the-art 
methods on a façade parsing. a) Input satellite 
facades. b) Manually created ground truth. c) The 
results of applying segmentation to a). d) The results 
of applying segmentation to image inpainting. (e) Our 
results without optimization (f) Our results with 
optimization

a)

c)

b)

d)

e)

pAccuracy precision recall blob average
c) 0.789774 0.697368 0.72465 0.8395 0.762818
d) 0.765504 0.661836 0.751147 0.8369 0.75384
e) 0.618463 0.479696 0.472092 0.9364 0.626666
f) 0.808786 0.715268 0.82633 0.9393 0.822421

Table: Pixel Accuracy, precision, recall metrics and 
blob accuracy evaluated on 10 facades for models from 
c) to f)

https://www.cs.purdue.edu/homes/zhan2597/metrics/index.html

Fig. 11: Facade Comparisons. Compari-
son to SOTA methods on facade parsing.
a) Input satellite facades. b) Manually
created ground truth. c) The results of
applying Pix2Pix 96 to a). d) The re-
sults of applying Pix2Pix 96 to image
completed by DeepFill [30]. e) Ours.

To evaluate the facade process-
ing ability directly using the segmen-
tation model and image in-painting
model, we evaluate performance using
our 61 test images qualitatively and
quantitatively. To be specific, for the
segmentation model, we choose the
aforementioned Pix2Pix 96 and ap-
ply it to the facade images directly.
Then, we dilate each window/door to
occupy a rectangular bounding box.
For the image in-painting model, we
choose DeepFill [30] and complete the
facade images with manually selected
masks. Then we apply the segmenta-
tion model to the completed facade
images and we also use a version of the
windows/doors dilated to rectangles.
The quantitative metrics include pixel
accuracy, precision, recall, and blob
accuracy. In Figure 11 and Table 4, we
show details of comparing our method
to the segmentation model and the
image in-painting model.

Table 4: Quantitative comparison. Pixel accuracy, precision, recall, F-score and
blob accuracy evaluated for models from c) to e) in Figure 11. We evaluated c)
and e) on 61 facades in the left table. However the right table shows applying
d) to 22 facades (22 out of 61 facades are occluded and suitable for image in-
painting.) and we manually set the mask as best as possible.

Method Accuracy Precision Recall F-score Blob

c) 0.835 0.695 0.868 0.758 0.891

e) 0.880 0.818 0.834 0.815 0.923

Method Accuracy Precision Recall F-score Blob

c) 0.802 0.705 0.797 0.728 0.840

d) 0.806 0.803 0.612 0.677 0.875

e) 0.843 0.768 0.828 0.783 0.918

Examples. Finally, we show in Figure 12 many close-ups of reconstructed
buildings as well as an overall view of one area (A1). Views of our additional
areas (A2) and more buildings are in supplemental figures.
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Fig. 12: Examples. We show a view of a reconstructed area A1 within Google
Earth and close-ups of our buildings.

5 Conclusions and Future Work

We have presented a method to automatically synthesize crisp and regular build-
ing facades from satellite imagery. Facades are classified into one of several proce-
dural grammars, and the corresponding parameters are estimated using trained
neural networks. The resulting grammars are applied to building models, re-
sulting in complete, plausible facades that are free of the noise, occlusions, and
partial coverage that is inherent in satellite data. Our comparisons to other ap-
proaches shows the improvement of our method. However, our approach has
some limitations. First, for facades whose styles are outside our defined gram-
mars, we could give our best guess. Second, for facades with logos, we didn’t
show those areas.

Our approach has several avenues of future work. First, we would like to in-
corporate more general grammar sets to capture finer details. Second, we would
also like to incorporate a more sophisticated wall/window color treatment. Fi-
nally, we are also interested in estimated and procedural facade textures to give
the resulting buildings more details.
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cedural modeling. ACM Transactions on Graphics 30(2) (2011)
27. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Shape gram-

mar parsing via reinforcement learning. In: IEEE Computer Vision and Pattern
Recognition. pp. 2273–2280 (2011)
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