Appendix for
Training Interpretable Convolutional Neural
Networks by Differentiating Class-specific Filters

Haoyu Liang*!, Zhihao Ouyang*?®*, Yuyuan Zeng??, Hang Suf!, Zihao He®,
Shu-Tao Xia?3, Jun Zhu'!, and Bo Zhang'

!Dept. of Comp. Sci. and Tech., BNRist Center, Inst. for AI, THBI Lab,
Tsinghua University, Beijing 100084, China ?Tsinghua SIGS, Shenzhen 518055, China
3Peng Cheng Lab “ByteDance AI Lab ®Dept. of CS, University of Southern California

{lianghy18@mails, oyzh18@mails, zengyyl9@mails, suhangss@mail, xiast@sz,
dcszj@mail, dcszb@mail}.tsinghua.edu.cn zihaohQusc.edu

A The Theoretical Convergence Interval for L1-density

This section derives the theoretical convergence interval for the L1l-density of
the CSG matrix G € [0,1]*X. L1-density is defined as % Now let’s find the
bound for the L1-density when a CSG CNN converges.

Lower bound In CSG training, we use projected gradient descent (PGD)
to restrain G in the solution space {G € [0,1]9*K| HG’“HOO = 1}. Therefore, for
any G in the space, it is ensured that

IGI, _ i IGH o S Gl _ iyt _ 1

CK CK - CK CK C’

Therefore, % is lower bound for the L1-density of GG, which also holds when the

CSG CNN converges.

Upper bound In CSG training, we use A2d(||G||; , g) as the sparsity reg-
ularization to punish ||G||; when it is larger than g which is a hyperparameter
as the upper bound for ||G||;. If we set A\, as a relatively large number, the spar-
sity regularization is strong enough to reduce |G||; under g before convergence.
Therefore, we get the upper bound for the L1l-density of G on convergence as

Gl . g
CK — CK

Combining the lower bound and the upper bound above, the convergence
interval for the L1-density of G is [&, %]

*Haoyu Liang and Zhihao Ouyang contributed equally.
"Hang Su and Jun Zhu are corresponding authors.

2 H. Liang et al.

B Training setting and dataset preprocess

The ResNet20s are trained on CIFAR-10 [7]. The default settings include: batch
size=256; SGD optimizer with momentum=0.9 [11]; initial learning rate=0.1;
total training epochs=200; and every 1 in 3 epochs are in CSG path.

The ResNet18s are trained on ImageNet [3]. The default setting are the same
as ResNet20s except trained on 4 gpus for 120 epochs .

The ResNet152s are finetuned on PASCAL VOC 2010 [4] from model pre-
trained on ImageNet [3]. Parameters are frozen except the last 2 bottleneck
blocks, gate matrix and linear layers. The first 10 epochs are trained in STD
path, and after that every 2 in 3 epochs are in CSG path. The setting is: batch
size=32; Adam optimizer [6]; initial learning rate=1e-5 for STD path, 1le-3 for
CSG path; total training epochs=150.

We preprocess PASCAL VOC to be a classification dataset for training
ResNet152s: we crop out images for the objects in 6 classes (bird, cat, dog,
cow, horse and sheep) and resize the image to 128x128; then randomly reassign
3644 objects for training and 1700 objects for testing. No segmentation label is
used in training. In testing phase, we only run the STD path which reuses the
weights in the LSG path as shown in Fig 3.2.

The choice of backbone network are meticulously considered: 1) We finetune
ImageNet models on a subset of PASCAL with quite few samples. We chose
resnet152 to ensure the performance of baselines; 2) training large models on
ImageNet from scratch is costly, while resnetl8 is also a common choice on
ImageNet; 3) We trained resnet20/50/101 on CIFAR10 and they consistently
support our CSG conclusion. Since the penultimate layer in resnet20 has only
64 filters which ease visualization in Fig 4 and 7(al,a2)

C Similarity Between Feature Vectors and Gates

To measure the directional similarity between the feature vector for class y and
the gate vector for a class ¢, we design a similarity based on cosine.

For a pair of image and label (x,y) in the dataset D, input x into the CSG
CNN, we get the average-pooled activation from the class-specific filters. Let’s
call it the feature vector for z and denote it as a(z) € R¥. Therefore the mean
feature vector for class y on dataset D is

ay(D) = (ir’lye)aerba(a:).
Meanwhile, the gate vector for class ¢ is G, the c-th row in the CSG matrix G.

Thus we can define the directional similarity between the feature vector for
class y and the gate vector for a class ¢ as

Sye(D) = cos(ay(D), Ge).

In this way, we get a similarity matrix S(D) € [0,1]¢*€ for the dataset D. If we
take D as the set of all true positive samples and all false negative samples, we

Appendix for CSG CNN 3

can calculate the similarity matrices Stp, Spy respectively. Intuitively, a larger
directional similarity Sy.(D) means the feature vector is more closely related to
the classes.

D Explanation for Filter Orthogonality

In this part, we give an intuitive explanation about why CSG training encourages
filters for different classes become orthogonal (Paper Sec 4.3). Given a class ¢
and a gate matrix that assigns the filter k for class ¢ and filter &’ for other class.
During training, filter &’ is blocked (i.e., its activation is masked) in the CSG
path when class ¢’s images input. In order to ensure the STD and CSG path
generate similar outputs, the filter k' tends to be activated by class c as less as
possible, which implies the weight of filter £’ is approximately perpendicular to
V. (the linear space spanned by class ¢’s features in a layer before). The filter
k for class ¢, however, tends to be activated by class ¢ as saliently as possible
so as to enable the CNN to recognize this class. So the weight of filter & is
approximately within V.. Overall, the weights of filter k£ and filter k¥’ tends to be
orthogonal.

E Manually Fixed Gate Matrix

In Paper Sec 4.3 we manually initialize the gate matrix and fix it when training
ResNet20 on CIFAR-10 from scratch. The gate matrix is visualized in Fig. E.1.

Class ID

®© o & N O

0 10 20 30 40 50 60
Filter ID

Fig. E.1. Manually fixed gate matrix for the ResNet on CIFAR10 trained in Paper
Sec 4.3. Each class monopolizes 6 filters and 4 extra filters are shared by all classes.

We apply this setting based on a statistic analysis on 20 different CSG
ResNet20s on CIFAR-10, which aims to figure out how many filters are mo-
nopolized by a class. The converged CSG matrices indicate that each class tends
to monopolize about m, = 6 filters and the rest about mo = 4 filters are shared
by classes. Following the statistic analysis, we tighten the constraint by manu-
ally setting a fixed CSG matrix for ResNet20s, where each class monopolizes 6
filters and 4 extra filters are shared by all classes. Similarly, we set m; = 25 and
mo = 6 for AlexNets. They are the CSG matrices we use in Paper Sec 4.3.

4 H. Liang et al.

F Cluster center experiments

Using the model with fixed gate matirx mentioned in Paper Sec 4.3, we train
ResNet20s on CIFAR-10 with joint CSG and STD training. Then we run k-
means clustering on the feature vectors after the global average pooling in the
CSG/STD CNN. The clustering centers are visualized in Fig. F.2. We find that
compared to the STD CNN, the CSG CNN yields better clustering centers, which
form groups by channel that is almost the same as the gate matrix visualized in
Fig. E.1.

CSG CNN (Ours) STD CNN
0 == 0 w o | -
2 — o R e i
a 54 __ 54] . a |] e
__g I— : . ; ' I I ., .' .-Tr-. .r\'nl s I, - e I' '. - O
0 10 20 30 40 60 0 10 20 30 40 50 60
Filter id Filter id

I

10.0 25

2.0 4.0 6.0 8.0 1.0 1.5 2.0
the element value of cluster centers the element value of cluster centers

Fig. F.2. K-means cluster center of the feature vectors from ResNet20 train in Paper
Sec 4.3. The x-axis is the channel id, and the y-axis is class id. Each row is a the
mean of a cluster in the feature vectors’ space and the color represents the value of an
element in the mean.

G Localization Techniques

In Paper Sec 5.1, we study CSG CNNs’ performs on localizing object classes
with three localization the techniques based on filters, including gradient-based
saliency map (GradMap) and activation map (ActivMap) for a single filter and
classification activation map (CAM) for all filters.

To get a GradMap, we calculate the gradient of a filter’s average-polled ac-
tivation with respect to the input image. Then we normalized the gradient map
with its second moment, apply gaussian blur (sigma=5 pixels) and segment out
the region with values above 1.0.

To get an ActMap, we bilinear interpolate the activation map of a filter to
input size and segment the region with values above the top 30% activation of
the filter on the entire test dataset.

To get a CAM, we sums up all filters’ activation maps with the weights of
the linear connections between each channels and an output class !. By bilinear
interpolating the sum activation map to input size and segment the region with
the top 30% values in it, we get a classification activation map (CAM) [1], which
is segmentation map for a class.

LCAM only works for CNNs ended with a global average pooling and one linear
layer.

Appendix for CSG CNN 5

H Metrics for Localization

This section gives detailed definition of the metrics we use to evaluate our local-
ization performance in Paper Sec 5.1.

H.1 Localization with One Filter

For an image « in class ¢ (denoted as € D, C D, where D is the dataset, D, is
the set of images with label ¢), we denote the ground-truth segmentation map
for z as S, € {0,1}#*W and denote the segmentation map given by filter k
as S¥ € {0,1}7*W . The S* is calculated as S¥ = I{resize(Ay) > threshold},
which means resizing Ay (the activation map from filter k) to input size and
then thresholding it.

The metrics for a filter on localization is defined below.

The ToU (intersection over union) for filter k& on image x is defined as 2 3

S, A Sk

IoUY := 7‘ 0
] Sa v 8|

The Avg-ToU (average intersection over union) for filter k on localizing class
¢ is defined as

ToU¥ := mean ToU”.

zeD,

The APn (average precision n%) for filter k on localizing class c is defined as

APnf = mean {IoU* > n%]}.
zeD,

When ¢* = argmax, APn’Cc , we call filter k is focused on localizing class
c*, denoted as k € F,., where F.. is the set of filters focused on localizing
class c¢. Therefore the localization performance for filter k can be evaluated with
ToU" := ToU%. and APn* := APn"..

The metrics averaged for all filters on localization is defined below based
on the aforementioned metrics.

(1) The Avg-IoU and APn for localizing class ¢ as

IoU, := meankeFCIon,
and
APn, := meankchAPnk.
(2) The Avg-IoU and APn for localizing all classes is defined as

IoU := meanke{l,gwyK}Ion,

and
APn = meanke{l’Q’.”’K}APnk.
2For A, B € {0,1}1xW,
define AV B¥*W as (AV B)i; = max(Ayj, Bij);
define A A BT*W as (A A B);; = min(Aij, Bij).
%]/l is the number of non-zero elements.

6 H. Liang et al.

H.2 Localization with All Filters

For an image z in class ¢ (denoted as € D.), we denote the ground-truth
segmentation map for x as S, € {0, 1}7*W and denote the segmentation map
given by the classification activation map (CAM) [1] as S, € {0,1}7*W . The
S, is calculated as S, = I{resize(>", W¥Ay) > threshold}, where Ay is the
activation map of filter k, and WP is the weight of the linear connection between
filter k£ and the logit for class c.

The IoU (intersection over union) for CAM on image x is defined as

S, A S,

TIoU, := 7’ 0
|5 v 8.
0
(1) The metrics for localizing a class is defined below.
The Avg-ToU (average intersection over union) for localizing class ¢ is defined
as

IoU, := meanzep IoU,.

The APn (average precision n%) for localizing class c is defined as
APn,. := mean,ecp I{IoU, > n%}.

(2) The metrics for localizing all classes is defined below. The Avg-ToU for
localizing all classes is defined as

IoU := mean,cploU,,
The APn for localizing all classes is defined as

APn := mean, e pl{IoU, > n%}.

I Detailed Settings in Adversarial Sample Detection

In Paper Sec 5.2 we generate the non-targeted adversarial samples with com-
monly used white-box attack. The setting for them is: FGDM [5] (e = 0.031),
PGD [8] (e = 0.031, iter = 7) and CW [2] (maz_iterations = 100). The adver-
sarial target classes are from a random permutation of original classes besides
each image’s true class. We randomly select 500, 1000, 2000 images per class in
CIFAR-10 to form different sizes of training datasets and 100 images per class
for the testing.

J Defending Adversarial Samples

In this experiments, inspired by using class-specific filters to detect adversarial
samples, we further explore CSG CNNs’ potential in defending adversarial at-
tacks. We use the models (CSG/STD ResNet20) and the dataset (CIFAR10) the

Appendix for CSG CNN 7

Table J.1. Black Box Attack on STD CNN and CSG CNN

Attack \ Metric |[STD CNN|CSG CNN
No Attack \ Accuracy | 88.03% | 88.85%

Single Pixel Attack 14.00% 2.00%
Local Search Attack 15.00% 2.00%

Attack Success Rates

same as Paper Sec 5.2. Two black box attacks are conducted, including one pixel
attack [10] and local search attack [9]. They try to fool models according to
the model’s predicted probability without access to the models’ parameters and
architectures. From the results shown in Table J.1, we find both the attacks gain
attack success rates on the CSG CNN much lower than on the STD CNN. This
demonstrates that CSG training also improves robustness of CNNs in defending
adversarial attacks. We guess the robustness is caused by the increase of within-
class distance and the decrease of between-class distance, which requires further
verification yet. Robustness on defending adversarial attacks is another valuable
characteristic of the highly class-related representation from our class-specific
filters.

References

1. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quan-
tifying interpretability of deep visual representations. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6541-6549 (2017)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
S&P (2017)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2009)

4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.
http://www.pascal-network.org/challenges/VOC /voc2010/workshop/index.html

5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (2014)

6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014),
http://arxiv.org/abs/1412.6980

7. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical Report TR-2009 (2009)

8. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

9. Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial perturbations
for deep networks. arXiv preprint arXiv:1612.06299 (2016)

10. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation (2019)

11. Sutskever, 1., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: International Conference on Machine
Learning. pp. 1139-1147 (2013)

