Supplementary Material
Cross-Domain Cascaded Deep Translation

Oren Katzir!, Dani Lischinski?, and Daniel Cohen-Or!

! Tel-Aviv University
2 Hebrew University of Jerusalem

1 Training details

1.1 Hyper parameters

In all our experiments, unless stated otherwise, we use Adam optimizer [18] with
B1 = 0.5, B2 = 0.999. The learning rate was set to 0.0001 and the batch size to
10. During training, random crop and image mirroring is applied. Our training
methodology follows WGAN-GP [10], thus for one generator update we update
the discriminator four times.

1.2 Network architecture

Feature Inversion Our implementation is similar to [5]. We train an individual
feature inversion network for VGG layer, where each layer has different channels
(512, 512, 256, 128, 64). All layers utilize Leaky ReLU nonlinearity (0.2) and em-
ploy no normalization. The last layer utilizes Tanh. All inversion networks, first
apply three non-strided convolutional layers, with NV input number of channels,
equal to the number of channels each deep layer has. Next, several transpose
convolutional layers are applied, each doubles the resolution of the image and
decreases the channel resolution (by factor of 2) until the image resolution 224
is achieved (thus, different amount of ConvTranspose layers per layer). The final
layer is a non-strided convolutional layer followed by Tanh layer. Together they
project the features back to the original image dimensions and range (number of
output channels is 3). For the discriminator we have used Patch GAN discrim-
inator, with four strided convolutional layers, each utilizes batch normalization
(except the first one) and Leaky ReLU. For the adversarial metric, only here,
we have used LS-GAN. Here we also set the batch size to 25.

Deepest layer translation The input to the deepest translation network is
conv_5_1, thus, the input size is 14 x 14 x 512 (recall the input image size is
224 x 224). The identity and cycle losses are multiplied by Ajgiy = Acye = 100.
The architecture is reported in Table.1. The networks is relatively small and
achieve good results in a few hours on a single GPU (RTX2080). We use the
WGAN-GP optimization method, updating the generator once for every four
discriminator updates.

2 0. Katzir et al.

Name Input ch. Output ch. Kernel sz. Stride GN

conv 512 512 3 1 no
conv 512 256 3 2 yes
relu - - - - -
conv 256 512 3 2 yes
relu - - - - -
convl 512 256 3 2 yes
relu - - - - -
convl 256 256 3 2 yes
relu - - - - -
conv 256 512 3 1 yes
relu - - - - -
conv 512 512 3 1 no
tanh - - - - -

Table 1. Deepest layer translation architecture.

Coarse to fine conditional translation The coarse-to-fine generator, for
generating level 4, has two inputs: the current source VGG level and the previous
translated VGG features (¢ + 1). An AdaIN component, acts on on the current
deep features and normalizes several layers in the translator itself. We report the
AdalN component structure for generating layer four in Table.2. The architecture
can be extended easily to other layers. The core components of the translator,
which takes as input the previous translated layer, are reported in Table.3.

1.3 Different networks

VGG-19 fine-tuned We fine-tuned VGG-19 by fixing all layers but the fully con-
nected layers and conv._5_i (i = 1,2, 3,4). We replaced the final fully connected
layer with new fully connected layer of size 4096 x 2 corresponding to the two do-
mains. We trained the classifier for 50 epochs, with batch size of 25 and learning
rate of 0.01.

AlexNet We extract each of the 5 convolution of AlexNet as different layers.
Each layer was normalized, in a similar manner as was described for VGG-19.

Supplementary Material Cross-Domain Cascaded Deep Translation 3

Name Input ch. Output ch. Kernel sz. Stride GN

conv 512 512 3 2 no
Irelu - - - - -
conv 512 512 3 2 no
Irelu - - - - -
conv 512 512 3 2 no
Irelu - - - -
linear 4 x 4 x 512 1000 - - no
Irelu - - - -

linear 1000 T - - no ‘

Table 2. AdaIN component for the second deepest layer. The output x is equal to the
number of parameters the AdalN normalizes. AdaIN for different VGG layer’s trans-
lation are defined similarly, where we simply add more conv layer for each shallower

VGG layer.

Name Input ch. Output ch. Kernel sz. Stride AdaIN

conv T
Irelu -
conv T
Irelu -
convT T
Irelu -
conv x/2
tanh -

T 3
> 3
x}2 A_L
x}2 3

1

[NG I TS

—_

yes

yes

yes

no

Table 3. Coarse to fine translator.
to the current VGG layer.

The input number of channels, z, varies according

4 0. Katzir et al.

2 More comparison results

In this section we show more results, not presented in the paper, for zebra<»giraffe,
zebra<+elephant and cat<>dog translations.

Supplementary Material Cross-Domain Cascaded Deep Translation 5

Original MUNIT

Cycle GAN

DRIT
NV {

GANimorph Ogrs _

Fig. 1. Qualitative comparisons. MSCOCO zebra to giraffe.

6 0. Katzir et al.

Original

Cycle GAN MUNIT DRIT GANimorph Ours

Fig. 2. Qualitative comparisons. MSCOCO zebra to giraffe.

Supplementary Material Cross-Domain Cascaded Deep Translation 7

Fig. 3. Qualitative comparisons. MSCOCO giraffe to zebra.

8 0. Katzir et al.

Original Cycle GAN MUNIT DRIT C_}ANimorph Ours

Fig. 4. Qualitative comparisons. MSCOCO giraffe to zebra.

Supplementary Material Cross-Domain Cascaded Deep Translation 9

Original Cycle GAN MUNIT DRIT GANimorph Ours

2 S

Fig. 5. Qualitative comparisons. zebra to elephant.

10 0. Katzir et al.

Origi_nal Cycle GAN

o S

MUNIT

ey

DRIT QANimorph Ours

Fig. 6. Qualitative comparisons. zebra to elephant.

Supplementary Material Cross-Domain Cascaded Deep Translation 11

Cycle GAN MUNIT GANimorph Ours

Original DRIT

Fig. 7. Qualitative comparisons. MSCOCO elephant to zebra.

12 0. Katzir et al.

Original Cycle GA MUNIT DRIT GANimorph Ours

Fig. 8. Qualitative comparisons. MSCOCO elephant to zebra.

Supplementary Material Cross-Domain Cascaded Deep Translation 13

Cycle GAN MUNIT DRIT GANimorph Ours

Original

)

Fig. 9. Qualitative comparisons. Kaggle cat to dog.

14 0. Katzir et al.

GANimorph Ours

DRIT

®

Fig. 10. Qualitative comparisons. Kaggle cat to dog.

Supplementary Material Cross-Domain Cascaded Deep Translation 15

Original Cycle GAN MUNIT DRIT GANimorph) Ours

- __ & - . % o S NS V

Fig. 11. Qualitative comparisons. Kaggle dog to cat.

16 0. Katzir et al.

Original Cycle GAN MUNIT DRIT GANimorph Ours

™y O
- 4 |

Fig. 12. Qualitative comparisons. Kaggle dog to cat.

Supplementary Material Cross-Domain Cascaded Deep Translation 17

3 Non-shape deformation translation

Our method is also suited to none-shape deformation tasks, as in the case of
dataset(1) [20].

18 0. Katzir et al.

Original

Fig. 13. Translation results from cats to dogs (faces).

Supplementary Material Cross-Domain Cascaded Deep Translation 19

Fig. 14. Translation results from dogs to cats (faces).

20 0. Katzir et al.

4 Coarse to fine translation

We here present the translation of each layer. The translation of each shallower
layer is conditioned on the translation result of the previous layer, and learns
to add fine scale and appearance, such as texture. At every layer, in order to
visualize the generated deep features, we use a network pre-trained for inverting
the deep features of VGG-19, following the method in [5].

Supplementary Material Cross-Domain Cascaded Deep Translation 21

Fig. 15. Coarse to fine translation of zebra to giraffe. Two different examples are shown
in each row. The original image (left) is translated by the deepest translator (second
left) and then in coarse to fine manner, shallower layers are translated (second right
and most right).

22 0. Katzir et al.

Fig. 16. Coarse to fine translation of giraffe to zebra. Two different examples are shown
in each row. The original image (left) is translated by the deepest translator (second
left) and then in coarse to fine manner, shallower layers are translated (second right
and most right).

Supplementary Material Cross-Domain Cascaded Deep Translation 23

5 Nearest neighbor comparison

In this section we show side by side, source images, our translation and the three
nearest neighbors in the target domain. We use the LPIPS metric, presented in
”The unreasonable effectiveness of deep features as a perceptual metric” by
Zhang et al. This metric is based on ¢ distance of deep features extracted from
pre-trained network. In our case we use the default settings proposed by Zhang
et al. (i.e. alex net). As we show, the closest image in the target dataset vary in
pose, scale and content (i.e. different parts of the objects).

24 0. Katzir et al.

Original

Fig. 17. Nearest neighbor comparison to our result for zebra to giraffe translation. The
NNs were found by exhaustive search on all the giraffe dataset using perceptual metric
(LPIPS). The closest giraffe to the source zebra vary in scale, position and content

Supplementary Material Cross-Domain Cascaded Deep Translation 25

Ours

Original

Fig. 18. Nearest neighbor comparison to our result for giraffe to zebra translation. The
NNs were found by exhaustive search on all the giraffe dataset using perceptual metric
(LPIPS). The closest zebra to the source giraffe vary in scale, position and content.

26 0. Katzir et al.

6 deepVAE

Here we explain the exact architecture and training procedure of our uncondi-
tional synthesis module, deepVAE. We feed-forward all images through a pre-
trained (on ImageNet) VGG-19, extracting conv_i_1 (i=1,...5). We start by
training the deepest synthesis module, G5, synthesizing conv_5_1. We chose a
simple variational auto encoder (VAE) architecture for this synthesis module,
as shown in Fig. 19, as it easier to train and the blurry results, VAE are noto-
riously known for, will be refined by the following synthesis modules. Thus, for
the deepest layer our loss function is

Lvae (G5, Es,z) = E [logpa,(zl2s)] — Dir (g8, (25|7)Ip(25)) . (1)
qrg (z5|x)

where, the prior distribution for z5 was chosen to be Gaussian and the reconstruc-
tion error was achieved by /s loss. Given the synthesized conv_5_1, we synthesize
the shallower layer conv_4_1 conditioned on it by using adversarial training. We
preform this operation, in a cascaded manner, synthesizing conv_(i)_1 given
conv_(i+1)_1. We achieve such synthesis by training a generator GG; with input
noise z; which is sampled from a Gaussian distribution. The discriminator D; is
tasked with discriminating between real conv_i_1 and generated ones. The loss
function is

Ladv (Gla D1|G1+1) = P . EZzNN(O 1) [DZ (G’L (l’, Z))] - yN]P’E L [Dl (y)]
A E_[(IVDs @)l - 1)°] (2)
g~Py

where Y is a set of linear combinations between fake and real data samples and
Agp Was set to 10. Conceptually, we proceed in this manner until we reach the
image space synthesis module, i.e. Gy. However, we have found G2 to add little
information to the generated images, thus we directly generate the images from
conv_3_1. The entire training procedure and inference synthesis are shown in
Fig. 19.

In Table 4 and Table 5 we elaborate the architecture used for the encoder
and decoder, respectively, synthesizing conv_5_1.

Table 4. Fs5, deepVAE, architecture. nz is the noise size, and was set to 512

Name Input ch. Output ch. Kernel sz. Stride GN Activation

conv 512 512 3 2 yes Irelu
conv 512 512 3 1 yes Irelu
conv 512 512 3 1 yes Irelu
conv 512 512 3 1 yes Irelu
conv 512 512 3 1 yes Irelu
linear 7 x 7 x 512 2% nz - - none none

Supplementary Material Cross-Domain Cascaded Deep Translation 27

conv_5_1 conv_i_1 I

T

N2 r
con\I_S_i conv._ (Ti+1) 1

VAE cGAN

(a) Train (b) Inference

Fig. 19. DeepVAE training and inference phases. The training process (a) is divided to
unconditional synthesis of the deepest layer via VAE, and conditional synthesis using
conditional WGAN-GP. The inference stage (b) is achieved by applying all generators
in a cascade manner.

Table 5. G5, deepVAE, architecture.

Name Input ch. Output ch. Kernel sz. Stride GN Activation Upsampled

linear nz 7 x7x512 - - none none -

conv 512 512 3 1 yes Irelu yes
conv 512 512 3 1 yes Irelu no
conv 512 512 3 1 yes Irelu no
conv 512 512 3 1 yes Irelu no
conv 512 512 3 1 yes Irelu no

28 0. Katzir et al.

Additional results of synthesized images are shown in Fig. 20, Fig. 21, and
Fig. 22.

Supplementary Material Cross-Domain Cascaded Deep Translation 29

Fig. 20. DeepVAE synthesis of zebras.

30 0. Katzir et al.

Fig. 21. DeepVAE synthesis of elephants.

Supplementary Material Cross-Domain Cascaded Deep Translation 31

Fig. 22. DeepVAE synthesis of giraffes.

