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Abstract. In recent years we have witnessed tremendous progress in un-
paired image-to-image translation, propelled by the emergence of DNNs
and adversarial training strategies. However, most existing methods fo-
cus on transfer of style and appearance, rather than on shape translation.
The latter task is challenging, due to its intricate non-local nature, which
calls for additional supervision. We mitigate this by descending the deep
layers of a pre-trained network, where the deep features contain more se-
mantics, and applying the translation between these deep features. Our
translation is performed in a cascaded, deep-to-shallow, fashion, along
the deep feature hierarchy: we first translate between the deepest layers
that encode the higher-level semantic content of the image, proceeding
to translate the shallower layers, conditioned on the deeper ones. We
further demonstrate the effectiveness of using pre-trained deep features
in the context of unconditioned image generation. Our code and trained
models will be made publicly available.
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1 Introduction

In recent years, neural networks have significantly advanced generative image
modeling. With the emergence of Generative Adversarial Networks (GANs) [9],
image-to-image translation methods have dramatically progressed, revolution-
izing applications such as inpainting [41], super resolution [34], domain adap-
tation [11], and more. In particular, there have been intriguing advances in
the setting of unpaired image-to-image translation through the use of cycle-
consistency [39, 43], as well as other approaches [3, 15, 20, 25]. However, most
existing methods acknowledge the difficulty in translating shapes from one do-
main to another, as this might entail drastic geometric deformations. Consider,
for example, translating between elephants and giraffes, where one would expect
the neck of an elephant to be extended, while the elephant’s head should shrink.
The challenge is compounded by the fact that, even within the same domain,
images might exhibit extreme variations in object shape and pose, partial occlu-
sions, and contain multiple instances of the object of interest. One might even
argue that this translation task is ill-posed to begin with, and at the very least,
requires high-level semantics to be accounted for.
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Fig. 1: Given an image from domain A (zebras), we extract its deep features using a
network pre-trained for classification, specifically VGG-19 pre-trained on ImageNet,
and translate them into deep features of domain B (giraffes). We first translate high
level semantics (conv 5 1) of the zebra to those of a giraffe, as shown by the inner
pair of images. Then, we use a cascade of deep-to-shallow translators, one for each
deep feature layer, to translate shallower layers, i.e. conv 4 1 and then conv 3 1. The
images were obtained from the deep features by feature inversion networks.

Nonetheless, several image-to-image translation methods address shape de-
formation, aided by supervision in the form of a foreground mask [21, 28]. In con-
trast, GANimorph [8] and the recently proposed TransGaGa [35] show remark-
able translation without requiring additional supervision for several datasets.
However, these techniques excel in controlled setting only, where the images are
controlled, and the foreground separation is rather simple.

In this paper, we address the problem of unpaired image-to-image transla-
tion, without requiring foreground masks, between two different domains, where
the objects of interest share some semantic similarity (e.g., four-legged mam-
mals), whose shapes and appearances may, nevertheless, be drastically different.
Our key idea is to accomplish the translation task by learning to translate be-
tween deep feature maps. Rather than learning to extract the relevant high-level
semantic information for the specific pair of domains at hand, we leverage deep
features extracted by a network pre-trained for image classification, thereby ben-
efiting from its large-scale fully supervised training.

Our work is motivated by the well-known observation that neurons in the
deeper layers of pre-trained classification networks represent larger receptive
fields in image space, and encode high-level semantic content [42]. In other words,
local activation patterns in the deeper layers may encode very different shapes
in size and structure. Furthermore, Aberman et al. [1] show that semantically
similar regions from different domains, e.g., dog and cat, have similar activations.
That is, the encoding of a cat’s eye resembles that of a dog’s eye more than
that of its tail. These properties are attractive, since they suggest that it might
be possible to learn a semantically consistent translation between activation
patterns produced by images from different domains, and that the resulting
(reconstructed) image would be able to change drastically, hopefully bypassing
the common difficulties in image-to-image translation methods.

More specifically, we learn to translate between several layers of deep fea-
ture maps, extracted from two domains by a pre-trained classification network,
namely VGG-19 [30]. The translation is carried out one layer at a time in a
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deep-to-shallow (coarse-to-fine) cascaded manner. For each layer, we adversar-
ially train a dedicated translator that acts in the feature space of that layer.
The deepest layer translator effectively learns to translate between semantically
similar global structures, such as body shape or head position, as demonstrated
by the middle pair of images in Fig. 1. The translator of each shallower layer
is conditioned on the translation result of the previous layer, and learns to add
fine scale and appearance details, such as texture. At every layer, in order to
visualize the generated deep features, we use a network pre-trained for inverting
the deep features of VGG-19, following the method of Dosovitskiy and Brox [5].
The images shown in Fig. 1 were generated in this manner.

Our conceptual novelty may be regarded as applying transfer learning be-
tween classification and image translation, as we learn to translate high-level
semantics, encoded by the deep features extracted by a pre-trained classification
network. This is in contrast to existing methods [8, 35], which learn to translate
the images directly. We compare our method with several state-of-the-art im-
age translation methods. To demonstrate the effectiveness of our approach, we
present results for several pairs of domains that share some high-level semantics,
yet exhibit drastically different shapes and appearances. These domains are ex-
tremely challenging, as images might contain multiple instances of the subject,
with cropping and occlusion, and exhibiting a variety of poses. Nevertheless,
our translations are semantically consistent, typically preserving the number of
instances, and reproducing their poses, partial occlusion or cropping, as shown
in Fig. 5. We further demonstrate the power of our transfer learning approach
by leveraging the same deep feature spaces to train an unconditioned image
generation model.

2 Related work

Several works [17, 39, 43] have presented remarkable unpaired image-to-image
translations, using a framework commonly referred to as CycleGAN. The key
idea is that the ill-posed conditional generative process can be regularized by a
cycle-consistency constraint, which forces the translation to perform a bijective
mapping. The cycle constraint has become a popular regularization technique
for unpaired image-to-image translation. For example, the UNIT framework [24]
assumes a shared latent space between the domains and enforces the cycle con-
straint in the shared latent space. Several works were developed to extend the
one-to-one mapping to many-to-many mapping [25, 15, 20, 2]. These methods
decompose the encoding space to shared latent space, representing the domain
invariant content space, and domain specific style space. Therefore, many trans-
lations can be achieved from a single content code by changing the style code of
the input image.

Many translation methods share the inability to translate high-level seman-
tics, including different shape geometry. This type of translation is usually nec-
essary in the case of transfiguration, where one aims to transform a specific type
of objects without changing the background. Lee et al. [20] and Mejjati et al. [27]
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learn an attention map and apply translation only on the the foreground object.
However, both methods only improve translations that do not deform shapes.
Gokaslan et al. [8] succeed in preforming several shape-deforming translations by
several modifications to the CycleGAN framework, including using dilated con-
volutions in the discriminator. However, they do not demonstrate strong shape
deformations, such as zebras to elephants or giraffes, as we show in Section 4.

Some works [21, 28] assume some kind of segmentation is given, and use this
segmentation to guide shape deformation translation. However, such segmenta-
tion is hard to achieve. In a recent work, Wu et al. [35] disentangle the input
images to geometry and appearance spaces, relying on high intra-consistency, and
learn to translate each of the two domains separately. However, the variation of
geometry and appearance of in-the-wild images is too large to be disentangled
successfully3.

Contrary to the above works, our work leverages a pre-trained network and
the translation is applied directly on deep feature maps, thus being guided by
high-level semantics. Several image-to-image methods, such as [38, 4, 16], also
incorporate such pre-trained networks, though usually, only as perceptual loss,
constraining the translated image to remain semantically close to the input im-
age. Differently, Sungatullina et al. [31] incorporate pre-trained VGG features
into the discriminator architecture, to assist in the discrimination phase. Wu
et al. [36] use VGG-19 as a fixed encoder in the translation, where only the
decoder is learned. Upchurch et al. [33] present the only method, to our knowl-
edge, that actually translates deep features between two domains. However, the
translation is not learned, but defined by simply interpolating between the deep
features, which restricts the scope of method to highly aligned domains. In an-
other context, Yin et al. [40] train an autoencoder to embed point clouds, and
perform translation in the learned embedding. In contrast, we utilize semantics
to preform the translation in the much more difficult scenario of images.

Our work shares some similarities with Huang et al. [14], who suggest using
a generative adversarial model [9] in a coarse-to-fine manner with respect to
a pre-trained encoder. The generation process begins from the deepest features
and then recursively synthesizes shallower layers conditioned on the deeper layer,
until generating the final image. This method was only applied on small encoders
and low resolution images and was not explored for very deep and semantic
encoding neural networks such as VGG-19 [30].

Deep image analogies [22] transfer visual attributes between semantically
similar images, by feed-forwarding them through a pre-trained network. Their
work does not train a generative model; nonetheless, they create new deep fea-
tures by fusing content features from one image with style features of another.
Similarly, Aberman et al. [1] synthesize hybrid images from two aligned images
by selecting the dominant deep feature activations.

3 Unfortunately, at the time of this submission the authors of [35] were unable to
release their code or train their network on the datasets presented in our paper.
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Fig. 2: Translation architecture. We translate between domains A and B starting from
the deepest feature maps A5 and B5, which encode the highest level semantic content of
the images. Translation proceeds from deeper to shallower feature maps until reaching
the image itself. The feature maps are extracted by feed forwarding every image through
the pre-trained VGG-19 network and sampling five of its layers. The translation of each
layer is learned individually, conditioned on the translation result of the next deeper
layer (except the deepest layer, whose translation is unconditional).

3 Method

Our general setting is similar to that of previous unpaired image-to-image trans-
lation methods. Given images from two domains, A and B, our goal is to learn to
translate between them. However, unlike other image-to-image translation meth-
ods, we perform the translation on the deep features extracted by a pre-trained
classification network, specifically VGG-19 [30].

The translation is carried out in a deep-to-shallow (coarse-to-fine) manner,
using a cascade of pairs of translators, one pair per layer. The entire architecture
used to train the translators is shown schematically in Fig. 2, while Fig. 3 il-
lustrates the test-time translation (inference) process. Once the deepest feature
map has been translated, we translate the next (shallower and less semantic
feature map), conditioned on the translated deeper layer. In this manner, the
translation of the shallower map preserves the general structure of the translated
deeper one, but adds finer details, which are not encoded in the deeper feature
maps. We repeat this procedure until the original image level is reached. Below
we describe the training and the inference processes in more detail.

Pre-processing: We extract high-level semantic features from input images from
both domains, A and B, by feed-forwarding the images through the pre-trained
VGG-19 [30] network. Next, we sample five of the resulting deep feature maps,
specifically conv i 1 (i = 1, 2, 3, 4, 5), where each map has progressively coarser
spatial resolution, but a larger number channels. We denote the i-th sampled
feature map for image a ∈ A as ai. Since propagation through the pre-trained
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Fig. 3: Translation at test time. The input (left) is fed forward through VGG-19, yield-
ing a set of deep feature maps. Then, we translate each feature map, starting from a5.
The final result is obtained from the shallowest translated map by feature inversion.

VGG-19 network may yield features in any range, while the range of the synthe-
sized features is usually known, we first normalize each channel, of every layer
i, by calculating its mean and standard deviation across the domain and clamp
the normalized feature values to the range of [−1, 1]. While the clamping is a
potentially harmful irreversible operation, we did not observe any adverse effect
on the results. We use Ai (Bi) to denote set of all normalized deep feature maps
of level i, extracted from images in domain A (B).

Inference: We perform the translation in a coarse-to-fine fashion. Thus, the
translator from domain A to B, actually consists of a sequence of translators{
G5

B , G
4
B , . . . , G

1
B

}
, where each translator is responsible for translating the i-th

feature map layer ai, from Ai to Bi conditioned on the previously translated
deeper layer b̃i+1 (except for the deepest layer translator G5

B , which is uncondi-

tioned). Finally, G0
B uses feature inversion to convert b̃1 to obtain the translated

image. The translators Gi
A from domain Bi to Ai are defined symmetrically. The

entire inference pipeline is shown in Fig. 3.

Feature inversion: In all the results we show, e.g., Fig. 1, we visualize the output
of the various translators by pre-training a deep feature inversion network (per
domain), for each layer i = 1, . . . , 5, following [5]. The network aims to recon-
struct the original image given the feature map of a specific layer, regularized
by adversarial loss so that the reconstructed image would lie in the manifold of
natural images. For more details we refer the reader to [5]. The specific settings
used in our implementation are elaborated in the supplementary materials.

Deepest layer translation: We begin by translating the deepest feature maps,
encoding the highest-level semantic features, i.e., A5 and B5, hence, our problem
is reduced to translating high-dimensional tensors. Our solution builds upon the
commonly used CycleGAN framework [43]. Specifically, we use the three losses
proposed in [43]. First, in order to generate deep features in the appropriate
domain, we utilize an adversarial domain loss Ladv. We simultaneously train two
translators G5

A, G
5
B which try to fool domain-specific discriminators, D5

A, D
5
B (for

domains A5, B5, respectively). However, differently from [43] and other image
translation methods [15, 28], we have found LSGAN [26] not to be well-suited
for our task, leading to mode collapse or convergence failures. Instead, we found
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WGAN-GP [10] more effective, thus, the adversarial loss for translation from X
to Y is defined as

Ladv (GY , DY , X, Y ) = E
x∼PX

[DY (GY (x))]− E
y∼PY

[DY (y)]

+λgp E
ŷ∼PŶ

[
(‖∇DY (ŷ)‖ − 1)

2
]
, (1)

where GY : X → Y is the translator, DY is the target domain discriminator,
λgp = 10 in all our experiments, and PŶ is defined by uniformly sampling along
straight lines between ỹ ∼ G (PX) and y ∼ PY . For more details we refer the
reader to [10].

Second, for regularizing the translation to a one-to-one mapping, we add the
cycle consistency loss,

Lcyc(GX , GY , X, Y ) = E
x∼PX

‖GX (GY (x))− x‖+ E
y∼PY

‖GY (GX (y))− x‖, (2)

where ‖ · ‖ stands for the L1 norm.
Finally, as in [43], we have found it helpful to use an identity loss, which

guides the networks to preserve common high level features,

Lidty(GX , GY , X, Y ) = E
x∼PX

‖GX (x)− x‖+ E
y∼PY

‖GY (y)− y‖. (3)

The entire loss combines these components as follows

L5 =Ladv

(
G5

B , D
5
B , A5, B5

)
+ Ladv

(
G5

A, D
5
A, B5, A5

)
+ λcycLcyc(G

5
A, G

5
B , A5, B5) + λidtyLidty(G5

A, G
5
B , A5, B5), (4)

where λcyc and λidty were set to 100 in all our experiments.

Coarse to fine conditional translation: Consider two successive layers, ai ∈ Ai

and ai+1 ∈ Ai+1, where the latter has already been translated, yielding b̃i+1

as the translation outcome (see Fig. 3). We next perform the translation of the
layer ai to yield b̃i, using the translator Gi

B , conditioned on b̃i+1. Note that Gi
B

is effectively a function of all the previously translated layers.
The architecture of Gi

B is schematically shown in Fig. 4. Since shallower
layers encode less of the semantic content of the image, it is more difficult to
learn how they should be deformed, and thus they are used to transfer “style”,
while the “content” comes from the already translated deeper layer. Inspired
by [15], we add an adaptive instance normalization (AdaIN) [13] component,
whose parameters are learned from the current layer. Thus, several layers of
Gi

B are normalized according to the AdaIN component. Gi
A, which is designed

symmetrically, is learned simultaneously with Gi
B , as shown in Fig.4(a).

The loss for training these shallower translators is defined similarly to that
used for training the deepest translation: it consists of adversarial, cycle consis-
tency, and identity terms. While the adversarial loss is unconditional, similarly

to (1), the cyclic loss is now conditioned:
∥∥∥Gi

A

(
Gi

B

(
ai, b̃i+1

)
, ai+1

)
− ai

∥∥∥ +
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Fig. 4: Translation of layer i is conditioned on the previously translated layer i + 1.
The two translators Gi

A and Gi
B are trained simultaneously (see left figure), while the

i + 1, . . . , 5 translators are fixed. On the right we show the schematic architecture of
Gi

B which has two inputs: ai ∈ Ai and b̃i+1. ai is fed-forward through several layers
to yield AdaIN parameters which control the generation of b̃i. Since b̃i has twice the
spatial size of b̃i+1, we add an upsampling layer marked by ↑.

∥∥Gi
B

(
Gi

A (bi, ãi+1) , bi+1

)
− bi

∥∥, and the same conditioning is used for the iden-

tity loss:
∥∥Gi

A (ai, ai+1)− ai
∥∥+

∥∥Gi
B (bi, bi+1)− bi

∥∥.

We train the pairs of translators one layer at a time, starting from G5
A and

G5
B . More details regarding the implementation and the training of the transla-

tors are included in the supplementary materials.

4 Experiments

We evaluate our approach on several publicly available datasets: (1) Cat↔ Dog
faces [20], which contains 871 cat images and 1364 dog images and does not
require high shape deformation; (2) Kaggle Cat ↔ Dog [6] dataset with over
12, 500 images in each domain, where images may contain part of the subject or
several instances; (3) MSCOCO dataset [23], specifically, zebra ↔ elephant and
zebra↔ giraffe (overall there are 1917 zebras, 2547 giraffes and 2144 elephants).
These are extremely challenging datasets, and it should be noted that no previous
method has used MSCOCO, without supervision in the form of segmentation.

Our deepest translators, i.e., G5
A, G

5
B , consist of encoder-decoder structure

with several strided convolutional layers followed by symmetric transpose convo-
lutional layers. We use group normalization [37] and ReLU activation function
(except the last layer, which is tanh). The conditional generators, consist of
learned AdaIN layer, achieved by several strided convolutional layers followed
by fully connected layers. The content generator has also several convolutional
layers and one single transpose convolutional layer which doubles the spatial res-
olution (Fig. 4(right)). In practice we only train G5, G4, G3, and apply feature
inversion directly on the output of the latter, with negligible degradation. For
the exact layer specifics we refer the reader to the supplementary materials, and
to our (soon to be published) code. We train each layer for 400 epochs with a
fixed learning rate of 0.0001 using the Adam optimizer [18]. On a single RTX
2080, training the entire ensemble of networks (all translators, from the deep-
est layer to the shallowest layer, and the final feature inversion network), takes
around 2.5 days.
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Fig. 5: Examples of challenging translation results, featuring significant shape defor-
mations.

Several translation examples are presented in Fig. 5. Our translation is able
to achieve high shape deformation. Note that our translations are semantically
consistent, in the sense that they preserve the pose of the object of interest, and
the number of instances is mostly preserved. Furthermore, partial occlusions of
such objects, or their cropping by the image boundaries are correctly reproduced.
See for example, the translations of the pairs of animals in columns 5–6. More
results are provided in the supplementary materials.

4.1 Ablation study

Below, we analyze the impact of the main elements of our method.
Loss components First, we ablate each of our loss components. Fig. 6

visualizes the translation of the 5th (deepest) layer with and without cycle,
identity and adversarial losses. The best result is obtained by using all of the
losses, which balance each other.

Translation depth In Fig. 7 we compare between translation results
using different VGG-19 layers. Evidently, shallower layers introduce more rigid
spatial constraints, restricting the ability of shapes to be changed by the transla-
tion. The shallowest layer can hardly change the shape of the input image, which
may explain the failure of traditional image translation methods. In Table 1, we
use the common FID score [32] to show that the cascaded translation achieves
better translation compared to individual layer translation. Additional results
are shown in the supplementary materials.
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Fig. 6: Translation of the 5th (deepest)
layer with different loss combinations.
Using all three components yields the
best result.

Level 3Level 2Level 1Original Level 4 Level 5

adv cyc&
adv

&
adv
idty cyc&

adv
idtyOriginal & cyc

idty

Fig. 7: Translation of different VGG
layers, separately. Low level semantics
translation fails to deform the geometry
of the object.

Table 1: FID score comparison of different layer translation. Each translation was
trained independently. We compare the FID scores on three datasets, measured both
directions per dataset. The two directions appear side-by-side, →/←, at each cell

→/← Layer 5 Layer 4 Layer 3 Cascaded (ours)

Cat ↔ Dog 126.93/127.53 181.90/164.42 178.13/91.71 67.58/46.02
Zebra ↔ Giraffe 167.62/184.37 103.41/53.36 112.43 /68.62 67.41/39.38
Zebra ↔ Elephant 101.26/76 105.58/57.34 166.32/113.28 68.45/47.86

Original Alexnet Fine-tuned
VGG VGG Original Alexnet Fine-tuned

VGG VGG

Fig. 8: Translation with different pre-trained networks. All the networks were pre-
trained on ImageNet. VGG was further fine-tuned to classify between zebras and gi-
raffes. Evidently, using this fine-tuned version does not improve the translation results.
In addition, translation between AlexNet features fails to produce reasonable results.
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Table 2: FID score comparison. We compare our FID scores against five approaches on
three datasets, measured for both translation directions per dataset. The two directions
appear side-by-side, →/←, at each cell

→/← CycleGAN MUNIT DRIT GANimorph Ours

Cat ↔ Dog 125.75/94.27 159.57/108.51 153.94/139.17 139.17/134.14 67.58/46.02
Zebra ↔ Giraffe 55.65/58.93 238.06/60.78 59.75/54.06 98.25/120.05 67.41/39.38
Zebra ↔ Elephant 86.55/68.44 109.56/80.1 78.01/56.39 99.98/89.74 68.45/47.86

Type of pre-trained network While our method is conceptually agnos-
tic to the type of feature extraction network, we rely on the assumption that the
extracted features represent high-level semantics. Therefore, we chose the VGG-
19 deep features, which are commonly used for image generation tasks [1, 5, 7, 22].
Nonetheless, we experimented with a fine-tuned version of VGG-19, as well as a
different network architecture, as shown in Fig. 8. We first fine-tuned VGG-19 to
classify between zebras and giraffes and trained our translation networks using
the resulting features. As can be seen, the translation results are inferior to the
results achieved by the standard VGG-19. This may be attributed to VGG-19
fixating on the unique differences between the zebra and giraffe images, unrelated
to the translation, such as background. For more about the extracted features,
we refer the reader to the supplementary materials. In addition, in Fig. 8, we
examine a different network, AlexNet, also pretrained on ImageNet. We observe
that the deepest image translation is not able to generate valid shapes of ze-
bras or giraffes. AlexNet uses a stride of 4 in its first convolutional layer. Thus,
the resulting features have less spatial encoding, especially at the deeper layers,
which may explain the difficulty to invert and translate these features.

4.2 Comparison to other methods

We compare our result with several leading image-to-image translation methods,
i.e., CycleGAN [43], MUNIT [15], DRIT [20] and GANimorph [8].

Quantitative comparison: In order to perform a quantitative comparison, we use
the FID score [32], as reported in Table 2. Our method achieves the best FID
score on five out of the six cross-domain translations for which this score was
measured.

Qualitative comparison: In Fig. 9 we show several challenging translation exam-
ples. While traditional image translation methods struggle to preform transla-
tions with such drastic shape deformation, our method is able to do so thanks
to its use of the pre-trained VGG-19 network.

The success of our method can also be explained and visualized by exam-
ining the translated deep features. We feed forward every image, original and
translated, through the entire VGG network, extracting the last fully-connected
layer (before the classification layer). We project this vector (of size 4096) to
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Fig. 9: Comparison to other image-to-image translation methods. The unpaired trans-
lations, from left to right, are zebra ↔ giraffe, elephant ↔ zebra, and Kaggle dog ↔
cat, where every translation has four examples, two in each direction. While previous
translation methods struggle to deform the geometry of the source images, our method
is able to preform drastic geometric deformation, while preserving the poses of the
subjects and the overall composition of the image.

2D, using t-SNE, as shown in Fig. 10 It may be seen that the distribution of the
translated vectors (in cyan) is closest to that of the target domain (in red) when
using our method.

Limitations Our method achieves translations with significant shape deforma-
tion in many previously unattainable scenarios; yet, a few limitations remain.
First, the background of the object is not preserved, as the background is en-
coded in the deep features along with the semantic parts. Also, in some cases the
translated deep features may be missing small instances or parts of the object.
This may be attributed to the fact that VGG-19 is generally not invertible and
was trained to classify a finite set of classes. In addition, since we translate deep
features, small errors in the deep translation may be amplified to large errors in
the image, while for image-to-image translation method that operate on the im-
age directly, small translation errors would typically be more local. Please note
that, similarly to CycleGAN and GANimorph, our translation is deterministic.

4.3 Unconditional generation via deep feature synthesis

The expressive power of deep features can also be leveraged by unconditional
generative models that synthesize the deep features, rather then generating the
images directly. Specifically, we demonstrate that such generative models are
able to compete with state-of-the-art synthesis networks, especially with respect
to higher-lever semantics. We train a variational auto encoder (VAE) [19] to
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Fig. 10: Comparison of the deepest latent spaces (5th layer), projected using t-SNE.
The latent space of the source domain is in blue, and the target domain is in red. The
distribution of the translation results (in cyan) is most similar to that of the target
domain when using our method.

generate the conv 5 1 feature maps of zebras (using feature maps extracted
by VGG-19 pretrained on ImageNet, as our training data). We then synthesize
shallower layers in a cascaded fashion, using a process similar to the one described
in Section 3 (for more details please refer to the supplementary materials). We
refer to the resulting generative model as DEEP-VAE. As shown in Fig. 11, the
images generated by DEEP-VAE are not blurry, a phenomenon ordinary VAEs
are notoriously known for. We compare our DEEP-VAE to DFC-VAE [12], which
uses a perceptual loss for reconstruction, and to VQ-VAE-2 [29], a state-of-the-
art VAE synthesis module, which learns a multi-categorical distribution over a
learned dictionary elements. As shown in Fig. 11, DFC-VAE fails to produce clear
and sharp images, while many of the VQ-VAE-2 results do not contain the main
semantic attribute (zebras, giraffes or elephants) at all. This is also evident in
the FID scores, shown in Table 3. In order to further demonstrate the generative
power of deep features, we also show several examples of latent interpolation in
Fig. 12. More results are reported in the supplementary materials.

DEEP-VAEDFC-VAE VQ-VAE-2

Zebra

Gira↵e

Elephant

Fig. 11: Synthesis quality comparison. While DCF-VAE is trained using a perceptual
loss, it is unable to produce realistic results. VQ-VAE-2 is able to generate higher
quality images, however these images rarely contain the main semantic content of the
training dataset, i.e. zebras, giraffes and elephants. Our method produces good quality
images with the structure of the animal evident in almost all of the generated images.
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Table 3: FID score comparison for VAE synthesis

Dataset DFC-VAE VQ-VAE-2 DEEP-VAE

Zebra 324 154.41 57.66
Elephant 347.93 267.32 80.2
Giraffe 346.47 254 108.02

Input VQ-VAE-2 DEEP-VAE

Fig. 12: Latent interpolation between deep features. Two input images are encoded by
a trained VAE. Uniform interpolation is preformed between the two encodings, and
the decoded result is shown for both VQ-VAE-2 and DEEP-VAE. While DEEP-VAE
has a very simple architecture it competes with the state of the art VQ-VAE-2 w.r.t
reconstruction and yield interpolation results without ghosting artifacts.

5 Conclusions

Translating between image domains that differ not only in their appearance, but
also exhibit significant geometric deformations, is a highly challenging task. We
have presented a novel unpaired image-to-image translation scheme that operates
directly on pre-trained deep features, where local activation patterns provide a
rich semantic encoding of large image regions. Thus, translating between such
patterns is capable of generating significant, yet semantically consistent, shape
deformations. In a sense, this solution may be thought of as transfer learning,
since we make use of features that were trained for a classification task for
an unpaired translation task. We have also demonstrated the potential of such
transfer learning in the context of unconditional image generation. In the future,
we would like to continue exploring the applications of powerful pre-trained deep
features for other challenging tasks, possibly in different domains, such as videos,
sketches or 3D shapes.
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