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Abstract. Image descriptions can help visually impaired people to
quickly understand the image content. While we made significant progress
in automatically describing images and optical character recognition, cur-
rent approaches are unable to include written text in their descriptions,
although text is omnipresent in human environments and frequently criti-
cal to understand our surroundings. To study how to comprehend text in
the context of an image we collect a novel dataset, TextCaps, with 145k
captions for 28k images. Our dataset challenges a model to recognize
text, relate it to its visual context, and decide what part of the text
to copy or paraphrase, requiring spatial, semantic, and visual reasoning
between multiple text tokens and visual entities, such as objects. We
study baselines and adapt existing approaches to this new task, which
we refer to as image captioning with reading comprehension. Our analysis
with automatic and human studies shows that our new TextCaps dataset
provides many new technical challenges over previous datasets.

1 Introduction

When trying to understand man-made environments, it is not only important
to recognize objects but also frequently critical to read associated text and
comprehend it in the context to the visual scene. Knowing there is “a red sign”
is not sufficient to understand that one is at “Mornington Crescent” Station (see
Fig. 1(a)), or knowing that an old artifact is next to a ruler is not enough to
know that it is “around 40 mm wide” (Fig. 1(c)). Reading comprehension in
images is crucial for blind people. As the VizWiz datasets [5] suggest, 21% of
questions visually-impaired people asked about an image were related to the text
in it. Image captioning plays an important role in starting a visual dialog with a
blind user allowing them to ask for further information as required. In addition,
text out of context (e.g. ‘5:43p’ ) may be of little help, whereas scene description
(e.g. ‘shown on a departure tableau’) makes it substantially more meaningful.

In recent years, with the availability of large labelled corpora, progress in image
captioning has seen steady increase in performance and quality [4,10,12,13,34]
and reading scene text (OCR) has matured [8,16,19,21,31]. However, while OCR
only focuses on written text, state-of-the-art image captioning methods focus only
on the visual objects when generating captions and fail to recognize and reason
about the text in the scene. For example, Fig. 1 shows predictions of a state-
of-the-art model [4] on a few images that require reading comprehension. The
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Fig. 1: Existing captioning models cannot read!
The image captioning with reading comprehension task using data from our
TextCaps dataset and BUTD model [4] trained on it.

predictions clearly show an inability of current state-of-the-art image captioning
methods to read and comprehend text present in images. Incorporating OCR
tokens into a sentence is a challenging task, as unlike conventional vocabulary
tokens which depend on the text before them and therefore can be inferred,
OCR tokens often can not be predicted from the context and therefore represent
independent entities. Predicting a token from vocabulary and selecting an OCR
token from the scene are two rather different tasks which have to be seamlessly
combined to tackle this task.

Considering the images and reference captions in Fig. 1, we can breakdown
what is needed to successfully describe these images: First, detect and extract
text/OCR tokens1 (‘Mornington Crescent’, ‘moved track’ ) as well the visual
context such as objects in the image (‘red circle’, ‘kiosk’ ). Second, generate a
grammatically correct sentence which combines words from the vocabulary and
OCR tokens. In addition to the challenges in normal captioning, image captioning
with reading comprehension can include the following technical challenges:

1. Determine the relationships between different OCR tokens and between
OCR tokens and the visual context, to decide if an OCR token should be
mentioned in the sentence and which OCR tokens should be joined together
(e.g . in Fig. 1b: “5:35” denotes the current time and should not be joined with
“ON TIME”), based on their (a) semantics (Fig. 2b), (b) spatial relationship
(Fig. 1c), and (c) visual appearance and context (Fig. 2d).

2. Switching multiple times during caption generation between the words
from the model’s vocabulary and OCR tokens (Fig. 1b).

3. Paraphrasing and inference about the OCR tokens (Fig. 2 bold).
4. Handling of OCR tokens, including ones never seen before (zero-shot).

While this list should not suggest a temporal processing order, it explains why
today’s models lack capabilities to comprehend text in images to generate mean-

1 The remainder of the manuscript we refer to the text in an image as “OCR tokens”,
where one token is typically a word, i.e. a group of characters.
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ingful descriptions. It is unlikely that the above skills will naturally emerge
through supervised deep learning on existing image captioning datasets as they
are not focusing on this problem. In contrast, captions in these datasets are
collected in a way that implicitly or explicitly avoids mentioning specific in-
stances appearing in the OCR text. To study the novel task of image captioning
with reading comprehension, we thus believe it is important to build a dataset
containing captions which require reading and reasoning about text in images.

We find the COCO Captioning dataset [9] not suitable as only an estimated
2.7% of its captions mention OCR tokens present in the image, and in total
there are less than 350 different OCRs (i.e. the OCR vocabulary size), moreover
most OCR tokens are common words, such as “stop”, “man”, which are already
present in a standard captioning vocabulary. Meanwhile, in Visual Question
Answering, multiple datasets [6,23,30] were recently introduced which focus on
text-based visual question answering. This task is harder than OCR recognition
and extraction as it requires understanding the OCR extracted text in the context
of the question and the image to deduce the correct answer. However, although
these datasets focus on text reading, the answers are typically shorter than 5
words (mainly 1 or 2), and, typically, all the words which have to be generated are
either entirely from the training vocabulary or OCR text, rather than requiring
switching between them to build a complete sentence. These differences in task
and dataset do not allow training models to generate long sentences. Furthermore
and importantly, we require a dataset with human collected reference sentences
to validate and test captioning models for reading comprehension.

Consequently, in this work, we contribute the following:
– For our novel task image captioning with reading comprehension, we collect

a new dataset, TextCaps, which contains 142,040 captions on 28,408
images and requires models to read and reason about text in the image to
generate coherent descriptions.

– We analyse our dataset, and find it has several new technical challenges
for captioning, including the ability to switch multiple times between OCR
tokens and vocabulary, zero-shot OCR tokens, as well as paraphrasing and
inference about OCR tokens.

– Our evaluation shows that standard captioning models fail on this new
task, while the state-of-the-art TextVQA [30] model, M4C [17], when trained
with our dataset TextCaps, gets encouraging results. Our ablation study
shows that it is important to take into account all semantic, visual, and
spatial information of OCR tokens to generate high-quality captions.

– We conduct human evaluations on model predictions which show that there
is a significant gap between the best model and humans, indicating
an exciting avenue of future image captioning research.

2 Related work

Image Captioning. The Flickr30k [35] and COCO Captions [9] dataset have
both been collected similarly via crowd-sourcing. The COCO Captions dataset is
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significantly larger than Flickr30k and acts as a base for training the majority of
current state-of-the-art image captioning algorithms. It includes 995,684 captions
for 164,062 images. The annotators of COCO were asked “Describe all the
important parts of the scene” and “Do not describe unimportant details”, which
resulted in COCO being focused on objects which are more prominent rather
than text. SBU Captions [24] is an image captioning dataset which was collected
automatically by retrieving one million images and associated user descriptions
from Flickr, filtering them based on key words and sentence length. Similarly,
Conceptual Captions (CC) dataset [27] is also automatically constructed by
crawling images from web pages together with their ALT-text. The collected
annotations were extensively filtered and processed, e.g. replacing proper names
and titles with object classes (e.g . man, city), resulting in 3.3 million image-
caption pairs. This simplifies caption generation but at the same time removes
fine details such as unique OCR tokens. Apart from conventional paired datasets
there are also datasets like NoCaps [1], oriented to a more advanced task of
captioning with zero-shot generalization to novel object classes.

While our TextCaps dataset also consists of image-sentence pairs, it focuses
on the text in the image, posing additional challenges. Specifically, text can be
seen as an additional modality, which models have to read (typically using OCR),
comprehend, and include when generating a sentence. Additionally, many OCR
tokens do not appear in the training set , but only in the test (zero-shot). In
concurrent work, [15] collect captions on VizWiz [5] images but unlike TextCaps
there isn’t a specific focus on reading comprehension.

Optical Character Recognition (OCR). OCR involves in general two steps,
namely (i) detection: finding the location of text, and (ii) extraction: based on
the detected text boundaries, extracting the text as characters. OCR can be seen
as a subtask for our image captioning with reading comprehension task as one
needs to know the text present in the image to generate a meaningful description
of an image containing text. This makes OCR research an important and relevant
topic to our task, which additionally requires to understand the importance of
OCR token, their semantic meaning, as well as relationship to visual context and
other OCR tokens. Recent OCR models have shown reliability and performance
improvements [8,31,19,21,16]. However, in our experiments we observe that OCR
is far from a solved problem in real-world scenarios present in our dataset.

Visual Question Answering with Text Reading Ability. Recently, three
different text-oriented datasets were presented for the task of Visual Question
Answering. TextVQA [30] consists of 28,408 images from selected categories of
Open Images v3 dataset, corresponding 45,336 questions, and 10 answers for
each question. Scene Text VQA (ST-VQA) dataset [6] has a similar size of 23,038
images and 31,791 questions but only one answer for each question. Both these
datasets were annotated via crowd-sourcing. OCR-VQA [23] is a larger dataset
(207,572 images) collected semi-automatically using photos of book covers and
corresponding metadata. The rule generated questions were paraphrased by
human annotators. These three datasets require reading and reasoning about
the text in the image while considering the context for answering a question,



TextCaps: a Dataset for Image Captioning with Reading Comprehension 5

which is similar in spirit to TextCaps. However, the image, question and answer
triplet is not directly suitable for generation of descriptive sentences. We provide
additional quantitative comparisons and discussion between our and existing
captioning and VQA datasets in Section 3.2.

3 TextCaps Dataset

We collect TextCaps with the goal of studying the novel task of image captioning
with reading comprehension. Our dataset allows us to test captioning models’
reading comprehension ability and we hope it will also enable us to teach image
captioning models how “to read”, i.e., allow us to design and train image
captioning algorithms which are able to process and include information from the
text in the image. In this section, we describe the dataset collection and analyze
its statistics. The dataset is publicly available at textvqa.org/textcaps.

3.1 Dataset collection

With the goal of having a diverse set of images, we rely on images from Open
Images v3 dataset (CC 2.0 license). Specifically, we use the same subset of images
as in the TextVQA dataset [30]; these images have been verified to contain text
through an OCR system [8] and human annotators [30]. Using the same images as
TextVQA additionally allows multi-task and transfer learning scenarios between
OCR-based VQA and image captioning tasks. The images were annotated by
human annotators in two stages.2

Annotators were asked to describe an image in one sentence which would
require reading the text in the image.3

Evaluators were asked to vote yes/no on whether the caption written in the
first step satisfies the following requirements: requires reading the text in the
image; is true for the given image; consists of one sentence; is grammatically
correct; and does not contain subjective language. The majority of 5 votes
was used to filter captions of low quality. The quality of the work of evaluators
was controlled using gold captions of known good/bad quality.

Five independent captions were collected for each image. An additional 6th
caption was collected for the test set only to estimate human performance on the
dataset. The annotators did not see previously collected captions for a particular
image and did not see the same image twice. In total, we collected 145,329 captions
for 28,408 images. We follow the same image splits as TextVQA for training
(21,953), validation (3,166), and test (3,289) sets. An estimation performed using
ground-truth OCR shows that on average, 39.5% out of all OCR tokens present
in the image are covered by the collected human annotations.

2 The full text of the instructions as well as screenshots of the user interface are
presented in the Supplemental (Sec. F).

3 Apart from direct copying, we also allowed indirect use of text, e.g. inferring, para-
phrasing, summarizing, or reasoning about it (see Fig. 2). This approach creates a
fundamental difference from OCR datasets where alteration of text is not acceptable.
For captioning, however, the ability to reason about text can be beneficial.

https://textvqa.org/textcaps
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Fig. 2: Illustration of TextCaps captions. The bold font highlights instances
which do not copy the text directly but require paraphrasing or some inference
beyond copying. Underlined font highlights copied text tokens.

3.2 Dataset analysis

We first discuss several properties of the TextCaps qualitatively and then analyse
and compare its statistics to other captioning and OCR-based VQA datasets.

Qualitative observations. Examples of our collected dataset in Fig. 2 demon-
strate that our image captions combine the textual information present in the
image with its natural language scene description. We asked the annotators to
read and use text in the images but we did not restrict them to directly copy the
text. Thus, our dataset also contains captions where OCR tokens are not present
directly but were used to infer a description, e.g. in Fig. 2a “Rice is winning”
instead of “Rice has 18 and Ecu has 17”. In a human evaluation of 640 captions
we found that about 20% of images have at least one caption (8% of captions)
which require more challenging reasoning or paraphrasing rather than just direct
copying of visible text. Nevertheless, even the captions which require copying
text directly can be complex and may require advanced reasoning as illustrated
in multiple examples in Fig. 2. The collected captions are not limited to trivial
template “Object X which says Y ”. We have observed various types of relations
between text and other objects in a scene which are impossible to formulate
without reading comprehension. For example, in Fig. 2: “A score board shows
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Fig. 3: Distribution of caption/answer lengths in Image Captioning (left)
and VQA (right) datasets. VQA answers are significantly shorter than image
captions and mostly concentrated within 5 words limit.

Rice with 18 points vs. ECU with 17 points” (a), “Box of Hydroxycut on sale
for only 17.88 at a store” (b), “Two light switches are both in off position” (e).

Dataset statistics. To situate TextCaps properly w.r.t. other image captioning
datasets, we compare TextCaps with other prominent image captioning datasets,
namely COCO [9], SBU [24], and Conceptual Captions [27], as well as reading-
oriented VQA datasets TextVQA [30], ST-VQA [6], and OCR-VQA [23].

The average caption length is 12.0 words for SBU, 9.7 words for Concep-
tual Captions, and 10.5 words for COCO, respectively. The average length for
TextCaps is 12.4, slightly larger than the others (see Fig. 3). This can be explained
by the fact that captions in TextCaps typically include both scene description as
well as the text from it in one sentence, while conventional captioning datasets
only cover the scene description. Meanwhile, the average answer length is 1.53 for
TextVQA, 1.51 for ST-VQA and 3.31 for OCR-VQA – much smaller than the cap-
tions in our dataset. Typical answers like ‘yes’, ‘two’, ‘coca cola’ may be sufficient
to answer a question but insufficient to describe the image comprehensively.

Fig. 4 compares the percentage of captions with a particular number of OCR
tokens between COCO and TextCaps datasets.4 TextCaps has a much larger
number of OCR tokens in the captions as well as in the images compared to COCO
(note the high percentage at 0). A small part (2.7%) of COCO captions which
contain OCR tokens is mostly limited to one token per caption; only 0.38% of
captions contain two or more tokens. Whereas in TextCaps, multi-word reading is
much more common (56.8%) which is crucial for capturing real-world information
(e.g . authors, titles, monuments, etc.). Moreover, while COCO Captions contain
less than 350 unique OCR tokens, TextCaps contains 39.7k of them.

We also measured the frequency of OCR tokens in the captions. Fig. 5a
illustrates the number of times a particular OCR token appears in the captions.

4 Note that OCR tokens are extracted using Rosetta OCR system [8] which cannot
guarantee exhaustive coverage of all text in an image and presents just an estimation.
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Fig. 4: Distribution of OCR tokens in COCO and TextCaps captions (left)
and images (right). In total, COCO contains 2.7% of captions and 12.7% of
images with at least one OCR token, whereas TextCaps – 81.3% and 96.9%.
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Fig. 5: Analysis of OCR in our dataset vs. others

More than 9000 tokens appear only once in the whole dataset. The curve drops
rapidly after 5 occurrences and only a small part of tokens occur more than
10 times. Quantitatively, 75.7% of tokens are presented less then 5 times, and
only 12.9% are presented more than 10 times. The distribution specifically
demonstrates the large variance in text occurring in natural images which is
challenging to model using a fixed word vocabulary.
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In addition to this long-tailed distribution, we find that an impressive number
of 2901 of 6329 unique OCR tokens appearing in the test set captions, have
neither appeared in the training nor validation set (i.e. they are “zero-shot”)
which makes it necessary for models to be able to read new text in images.

TextCaps dataset also creates new technical challenges for the models. Fig-
ure 5b illustrates that due to the common use of OCR tokens in the captions,
models required to switch between OCR and vocabulary words often. The ma-
jority of the TextCaps captions require to switch twice or more, whereas most
COCO and TextVQA outputs can be generated even without any switches.

4 Benchmark Evaluation

4.1 Baselines

Our baselines aim to illustrate the gap between performance of conventional
state-of-the-art image captioning models (BUTD [4], AoANet[18]) in comparison
to recent architectures which incorporate reading (M4C [17]).
Bottom-Up Top-Down Attention model (BUTD) [4] is a widely used
image captioning model based on Faster R-CNN [26] object detection features
(Bottom-Up) in conjunction with attention-weighted LSTM layers (Top-Down).
Attention on Attention model (AoANet) [18] is a current SoTA captioning
algorithm which uses the attention-on-attention module (AoA) to create a relation
between attended vectors in both encoder and decoder.
M4C-Captioner. M4C [17] is a recent model with state-of-the-art performance
on the TextVQA task. The model fuses different modalities by embedding them
into a common semantic space and processing them with a multimodal trans-
former. Apart from that, unlike conventional VQA models where a prediction
is made via classification, it enables iterative answer decoding with a dynamic
pointer network [22,33], allowing the model to generate a multi-word answer,
which is not limited to a fixed vocabulary. This feature makes it also suitable
for reading-based caption generation. We adapt M4C to our task by removing
the question input and directly use its multi-word answer decoder to generate a
caption conditioned on the detected objects and OCR tokens in the image (we
refer to this model as M4C-Captioner and illustrate it in Figure 6).
M4C-Captioner ablations. In comparison to its full version, we also evaluate
a restricted version of this model without access to OCR results (referred to as
M4C-Captioner w/o OCRs), where we use an empty OCR token list as input
to the model. Additionally, we experiment with removing the pointer network
(described in details in [17]) from M4C-Captioner, so that the model still has
access to OCR features but cannot directly copy OCR tokens, and must use
its fixed vocabulary for caption generation (referred to as M4C-Captioner
w/o copying). As multiple types of features are used for OCR tokens in M4C-
Captioner by default (same as in [17]), we further study the impact of each OCR
feature type and use only spatial information (4-dimensional relative bounding
box coordinates [xmin, ymin, xmax, ymax] of OCR tokens), semantic information
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Fig. 6: M4C-Captioner architecture for the image captioning with reading
comprehension task.

(FastText [7] and PHOC [2]), and visual (Faster R-CNN [26]) features in different
experiments. Additionally, we use ground truth OCR tokens annotated by humans
(referred to as M4C-Captioner w/ GT OCRs) for training and prediction5

to study the influence of mistakes of automatic OCR methods.

Human performance. In addition to our baselines, we provide an estimate
of human performance by using the same metrics on the TextCaps test set to
benchmark the progress that models still need to make. As discussed in Section
4.3, we collected one more caption for each image in the test set. The metrics
are then calculated by averaging the results over 6 runs, each time leaving out
one caption as a prediction, similar to [14]. On the test set, we use the same
approach to evaluate machine-generated captions, so numbers are comparable.

4.2 Experimental setup

6 We follow the default configurations and hyper-parameters for training and
evaluation of each baseline. For AoANet we use original implementation and
feature extraction technique. For BUTD [4], we use the implementation and
hyper-parameters from MMF [29,28]. For M4C-Captioner [17], we follow the same
implementation details as used for TextVQA task [17]. We train both models
for the same number of iterations on the TextCaps training set. During caption
generation, we remove the <unk> token (for unknown words).

Datasets. We first evaluate the models trained using COCO dataset on TextCaps
to demonstrate how existing datasets and models lack reading comprehension.
Then we train and evaluate each baseline using TextCaps.

Metrics. Apart from automatic captioning metrics including BLEU [25], ME-
TEOR [11], ROUGE L [20], SPICE [3], and CIDEr [32], we also perform hu-
man evaluation. We collect 5000 human scores on a Likert scale from 1 to 5

5 This includes a small number of images without GT-OCRs (Supplemental Sec. A).
6 Code for experiments is available at https://git.io/JJGuG

https://git.io/JJGuG
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Table 1: Performance of our baselines on our TextCaps dataset. M4C-
Captioner significantly benefits from OCR inputs and achieves the highest CIDEr
score, suggesting that it is important to copy text from image on this task.
However, there is still a large gap between the current machine performance and
human performance, which we hope can be closed by future work.

TextCaps validation set metrics

# Method Trained on B-4 M R S C

1 BUTD [4] COCO 12.4 13.3 33.7 8.7 24.2
2 BUTD [4] TextCaps 20.1 17.8 42.9 11.7 41.9
3 AoANet [18] COCO 18.1 17.7 41.4 11.2 32.3
4 AoANet [18] TextCaps 20.4 18.9 42.9 13.2 42.7
5 M4C-Captioner COCO 12.3 14.2 34.8 9.2 30.3
6 M4C-Captioner TextVQA 0.1 4.4 11.3 2.8 16.9
7 M4C-Captioner w/o OCRs TextCaps 15.9 18.0 39.6 12.1 35.1
8 M4C-Captioner w/o copying TextCaps 18.2 19.2 41.5 13.1 49.2
9 M4C-Captioner (OCR semantic) TextCaps 21.4 20.4 44.0 14.1 69.0
10 M4C-Captioner (OCR spatial) TextCaps 21.7 20.6 44.6 13.7 72.0
11 M4C-Captioner (OCR visual) TextCaps 22.5 21.3 45.3 14.4 84.0
12 M4C-Captioner (OCR semantic & visual) TextCaps 23.4 21.5 45.8 14.9 86.0
13 M4C-Captioner TextCaps 23.3 22.0 46.2 15.6 89.6

14 M4C-Captioner (w/ GT OCRs) TextCaps 26.0 23.2 47.8 16.2 104.3

TextCaps test set metrics

# Method Trained on B-4 M R S C H

15 BUTD [4] TextCaps 14.9 15.2 39.9 8.8 33.8 1.4
16 AoANet [18] TextCaps 15.9 16.6 40.4 10.5 34.6 1.4
17 M4C-Captioner TextCaps 18.9 19.8 43.2 12.8 81.0 3.0

18 M4C-Captioner (w/ GT OCRs) TextCaps 21.3 21.1 45.0 13.5 97.2 3.4
19 Human – 24.4 26.1 47.0 18.8 125.5 4.7

B-4: BLEU-4; M: METEOR; R: ROUGE L; S: SPICE; C: CIDEr; H: human evaluation

BUTD AoANet M4C M4C+GT_OCR Human
Method
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Fig. 7: Human evaluation in
comparison to automatic
metrics.

for a random sample of 200 images and com-
pute median score for each caption. Fig. 7
shows that ranking of the sentence quality is
the same as for automatic metrics. Moreover,
all the metrics show very high correlation with
human scores but CIDEr and METEOR have
the highest. For comparison between different
methods, we focus on the CIDEr, which puts
more weight on informative n-grams in the
captions (such as OCR tokens) and less weight
on commonly occurring words with TF-IDF
weighting.

4.3 Results

TextCaps Dataset. It can be observed in
results (Table 1) that the BUTD model trained
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Fig. 8: Illustration of positive and negative predictions from different
models on TextCaps validation set. For M4C-Captioner, square brackets indicate
tokens copied from OCR. While most of the time OCR tokens are very important
for correct copying of the text from the images, for common terms such as “pepsi”
or “pence”, the model sometimes prefer to select them from the vocabulary.

on the COCO captioning dataset (line 1) achieves the lowest CIDEr score,
indicating that it fails to describe text in the image. When trained on the
TextCaps dataset (line 2), the BUTD model has higher scores as expected, since
there is no longer a domain shift between training and evaluation. AoANet (line
3, 4), which is a stronger captioning model, outperforms BUTD but still cannot
handle reading comprehension and largely underperforms M4C-Captioner. For the
M4C-Captioner model, there is a large gap (especially in CIDEr scores) between
training with and without OCR inputs (line 13 vs. 7). Moreover, “M4C-Captioner
w/o copying” (line 8) is worse than the full model (line 13) but better than the
more restricted “M4C-Captioner w/o OCRs” (line 7). The results indicate that
it is important to both encode OCR features and be able to directly copy OCR
tokens. We also observe (in line 13 vs. 9-12) that it is important for a model to use
spatial, visual, and semantic features of OCR tokens together, especially in the
complex combinations of OCR tokens where both spatial relation and semantics
play an important role in finding a connection between words. However, on the
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Fig. 9: Examples of M4C-Captioner’s predictions on COCO data when
trained on COCO and TextCaps. It can be observed that despite of availability
of OCR module in both cases, using TextCaps pushes model to read the text.
Square brackets indicate tokens copied from OCR.

test set, we still notice a large gap between the best machine performance (line
17) and the human performance (line 19) on this task. Also, using ground-truth
OCRs (line 18) reduces this gap but still does not close it, suggesting that there is
room for future improvement in both better reasoning and better text recognition.

Figure 8 shows qualitative examples from different methods. It can be seen
that BUTD and M4C-Captioner without OCR inputs rarely mention text in the
image except for common brand logos such as “pepsi” that are easy to recognize
visually. On the other hand, the full M4C-Captioner approach learns to read text
in the image and mention it in its generated captions.7 Moreover, M4C-Captioner
learns and recognizes relations between objects and is able to combine multiple
OCR tokens into one complex description. For e.g., in Fig. 8(d) the model uses a
OCR token to correctly name a player who is blocking another player; in Fig. 8(e)
the model attempts to include and combine multiple tokens into a single message
(“the track is moved in Kenosha” instead of “the word moved, the word track,
and the word Kenosha are on the sign”). In Fig. 8(b) prediction is constructed
fully from vocabulary, and even then the model counts similar objects and returns
“two pepsi bottles” instead of “pepsi bottle and pepsi bottle”. We also observe a
large amount of mistakes in model predictions. Many mistakes are due to wrong
scene understanding and object identification, which is a common problem in
captioning algorithms. We also observe placing OCR tokens in the wrong object
or semantic context in the caption (Fig. 8(c, e)), incorrect repetition of an OCR
token in a caption (Fig. 8(a, e)), or insufficient use of them (Fig. 8(f)) by the
model. Some mistakes (as “number 3” in Fig. 8(d) are due to the errors of
OCR detection algorithm and not the captioning model. This points to many
potential directions for future development on this challenging generative task,
which requires visual and textual understanding, requiring new model designs,
conceptually different from previously existing captioning models.
Transferring to COCO. We further qualitatively show that when integrated
with other datasets such as COCO [9], our dataset also enables text-based

7 More predictions from M4C-Captioner are presented in Supplemental (Fig. F.1).
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captioning on other datasets. In this setting, we experiment training M4C-
Captioner (Table 1’s best) on both TextCaps dataset and COCO dataset together.
We balance the number of samples seen by the model from both COCO and
TextCaps during training, and apply the trained model on the COCO validation
set. COCO Captions mostly focus on visual objects but we show several examples
where reading is necessary to describe the scene in Fig 9. When trained on the
union of our dataset and COCO, the M4C-Captioner learns to generate captions
containing text present in the images. On the other hand, the same model only
describes visual objects without mentioning any text when trained on COCO
alone. Quantitative results can be found in Supplemental (Sec. C).

5 Conclusion

Image captioning with reading comprehension is a novel challenging task requiring
models to read text in the image, recognize the image content, and comprehend
both modalities jointly to generate a succinct image caption. To enable models to
learn this ability and study this task in isolation, we collected TextCaps with 142k
captions. The captions include a mix of objects and/or visual scene descriptions
in relation to OCR tokens copied or rephrased from the images. In most cases,
OCR tokens have to be copied and related to the visual scene, but sometimes the
OCR tokens have to be understood, and sometimes spatial or visual reasoning
between text and objects in the image is required, as shown in our ablation
study. Our analysis also points out several challenges of this dataset: Different
from other captioning datasets, nearly all our captions require integration of
OCR tokens, many are unseen (“zero-shot”). In contrast to TextVQA datasets,
TextCaps requires generating long sentences and involves new technical challenges,
including many switches between OCR and vocabulary tokens.

We find that current state-of-the-art image captioning models cannot read
when trained on existing captioning dataset. However, when adapting the recent
M4C VQA model to our task and training it on our TextCaps dataset, we are
able to generate impressive captions on both TextCaps and COCO, which involve
copying multiple OCR tokens and correctly integrating them in the captions.
Our human evaluation confirms the result of the automatic metrics with very
high correlation, and also shows that human captions are still significantly better
than automatically generated ones, leaving room for many advances in future
work, including better semantic understanding between image and text content,
missing reasoning capabilities, and reading long text or single characters.

We hope our dataset with challenge server, available at textvqa.org/textcaps,
will encourage the community to design better image captioning models for
this novel task and address its technical challenges, especially increasing their
usefulness for assisting visually disabled people.
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