
∗SUPPLEMENTARY∗
LIMP: Learning Latent Shape Representations

with Metric Preservation Priors

Luca Cosmo1,2, Antonio Norelli1, Oshri Halimi3, Ron Kimmel3,
Emanuele Rodolà1

1 Sapienza University of Rome, Italy
2 University of Lugano, Switzerland

3 Technion - Israel Institute of Technology, Israel

Abstract. This supplementary material includes technical details and
additional results that were excluded from the main submission due
to lack of space. All the results are obtained with exactly the same
methodology as described in the main manuscript. This document is also
accompanied by a video, showing animated examples of disentanglement
and interpolation in the latent space. We strongly encourage visualization
of the accompanying video4.

1 Implementation details

1.1 Architecture & optimization

Our architecture takes the form of a variational autoencoder (VAE) [5] operating
on point clouds. The dimension of the bottleneck changes depending on the
dataset, as described below, the rationale being that different shape classes have
different kinds of variability; for example, human facial expressions tend to be
less articulated than animals changing their pose.

The Encoder is based on the PointNet [8] architecture. The initial x, y, z
coordinates are given as input to a Spatial Transform (ST) module, followed
by few layers of PointNet Convolution. Max-pooling throughout point features
is then applied to obtain a global shape feature which is projected onto the
latent space via a MLP. The output of the Encoder is actually twice the size
of the latent space since it predicts both mean and variance of the multivariate
Gaussian distribution from which the latent code is sampled.

The Decoder is a simple MLP, transforming the input latent space vector to
the corresponding triangular mesh embedding in R3. We report in Table 1 the
layer dimensions for each dataset.

Optimization. Our loss is composed additively by three terms:

`(S) = `recon(S) + `interp(S) + `disent(S) . (1)

4 https://youtu.be/jSszaaMTg9Q

https://youtu.be/jSszaaMTg9Q

2 L. Cosmo et al.

Table 1. Detailed description of layers size used for each dataset.

FAUST, DFAUST COMA TOSCA, HANDS

Encoder
ST (Conv) 64,128,512 - -
ST (MLP) 512,256 - -
PointNet (Conv) 32,128,256,512 64, 128 64,64,128
PointNet (MLP) 512,258,128,256 128, 64, 64 128,64,64,64

Latent Space (zint|zext) 128 (96|32) 32 (24|8) 32

Decoder 128,1024,2048,N × 3 32,256,N × 3 32,64,128,N × 3

The interpolation and disentanglement terms involve the computation of geodesic
distances, which might get unstable if the underlying surface is self-intersecting or
degenerate. For this reason, we disable `interp and `disent for the first 104 training
epochs. The action of the reconstruction loss alone provides an initial guess for
the decoded shape; once this is in place, we re-activate the two missing losses
and complete the training process.

Training times. One crucial point of our method is the backpropagation through
all pairwise geodesic distances during training. Standard fast-marching algorithms
are usually not differentiable. To overcome this limitation we use a loss based
on intrinsic distances, leveraging a very efficient (and differentiable) way of
calculating the geodesics, i.e. the heat method [4]. Its computational complexity
is guaranteed to be sub-quadratic in the total number of vertices , and an
efficient implementation using sparse matrices has near-linear cost. In practice,
our distances are computed one order of magnitude faster than a state-of-the-art
fast marching implementation. Once computed, we have to keep distance values in
memory. In our system, with an Intel Xeon E5-2620v4 and one Nvidia Titan Xp,
it takes around 4 hours to train on FAUST dataset and around 2.67e-3 seconds
for inference (2.44e-3 for encoding and 2.19e-4 for decoding). The runtime cost for
the computation of the loss is dominated by the calculation of geodesic distances
(80%), which are involved in the interpolation and disentanglement terms of the
loss.

1.2 Geodesic distance calculation

Our loss involves the calculation of geodesic distances between all points of a given
decoded shape X. In particular, the distance calculation must be differentiable
with respect to the vertex positions encoded in X. To this end, we employ the
geodesics in heat algorithm introduced in [4]. The calculation involves three steps:

1. Solve the linear system (I− tL(X))u = ui

2. Compute the normalized gradient field U = − G(X)u
‖G(X)u‖

3. Solve the linear system L(X)di = D(X)U

In step (1) the time parameter is given and fixed to t = 10−1, while ui is an
indicator vector at point i. The solution vector di in step (3) contains the geodesic
distance from point i to all other points in X.

LIMP Supplementary Material 3

The matrices D(X), G(X), and L(X) involved in these steps represent,
respectively, the Laplacian, gradient, and divergence operators over a mesh with
vertices X; the coordinates in X change at each forward step during training.

Remark. This is the only point in our pipeline where a mesh structure is needed,
although we remark that any mesh can be used (and in particular, different
meshes for different shapes are allowed); these operators can also be defined
directly on point clouds [4, Sec. 3.2.3], although under some regularity condition
on the point density.

The standard formulas that define D(X), G(X), and L(X) in terms of X
can be found, for instance, in [4, Sec. 3.2.1]. Apart from some degenerate cases
(which we rule out by the incremental optimization of Sec. 1), all the operations
involved in their definition are differentiable with respect to X.

2 Additional results

We present here some additional results and comparisons that could not fit in
the main manuscript due to space limitations.

2.1 Effect of the geodesic prior

target
metric

init. optimized

We first illustrate how the metric
preservation prior under the geodesic
metric induces realistic deforma-
tions, and therefore helps in learning
a well behaved generative model for
deformable objects. To this end, we
designed the following simple experiment. We modify the loss of Eq. (1) by just
keeping the geometric reconstruction term; then, in this reconstruction loss, we
use the geodesic distance between all points instead of the Euclidean distance.
We then run the following optimization for the example shown in the inset figure:

1. Compute the geodesic distances Dtar for the leftmost shape;

2. Initialize the optimization with the middle shape;

3. Optimize for a shape having geodesic distances Dopt ≈ Dtar.

The result is a shape having approximately the same metric as the target ball,
but with a different embedding in R3; hence the deflated effect. Therefore, by
prescribing the geodesic metric one gets a type of regularization that avoids
excessive surface stretching and compression, while promoting limited distortion in
the reconstruction (decoding). In the accompanying video, we show a comparison
between the adoption of metric priors vs. no priors, demonstrating that the former
lead to better synthesis of novel shapes.

4 L. Cosmo et al.

Ours [6] Ours [6]

Ours [6] Ours [6]

Fig. 1. Examples of deformable shape completion obtained with our method and with
the method of Litany et al. [6]. Top row: Completion of real Kinect scans from the MHAD
dataset [7]; we show the original 2.5D frames on the right. Bottom row: Completion of
scans from the DFAUST dataset [3].

2.2 Shape completion of real scans

One straightforward application of our generative model is deformable shape
completion. Given a partial view of a deformable shape, the task is to complete
this partial view in a semantically plausible manner. For this task, we follow
verbatim the pipeline of Litany et al. [6], but we replace their VAE with ours.
The completion procedure consists in searching over the learned latent space for
a latent vector which, once decoded, produces a shape that has a close overlap
with the input part. We implemented this idea, where we measured the quality of
the overlap by the asymmetric Chamfer distance between part and completion.

The results are shown in Figure 1, where we compare directly with the
method of [6] over real scans from the MHAD dataset [7] (Kinect) and from
the DFAUST dataset [3]. The training data for this experiment consists of just
4 representative frames for each subject/sequence pair, resulting in < 500
training shapes in total; this is opposed to Litany et al. [6], which is trained on a
dataset of ∼ 7000 shapes.

2.3 Sampling of the latent space

In Figure 2 we show random samples from our learned latent space, trained on
80 shapes of the FAUST dataset [2]. The sampling is done according to a normal
distribution with standard deviation equal to 3 times the one of the training set,

LIMP Supplementary Material 5

Fig. 2. Random samples from a latent space trained on FAUST. We sample a normal
distribution with large standard deviation, thus going outside of the “known region”
seen at training time. This generates individuals with new and sometimes extreme body
features, although always within a bounded metric distortion as imposed by our priors.

thus going well beyond the span of the known shapes, allowing us to qualitatively
evaluate how much our metric priors help to regularize the generative process.

2.4 Comparison with the state of the art

We show additional comparisons with the recent state-of-the-art method of
Aumentado-Armstrong et al. [1], in terms of shape interpolation and disentan-
glement. For this experiment, we trained both methods on the same 80 FAUST
shapes. The two training shapes used as end-points for the interpolation are
shown on the top-left and bottom-right of Figure 3.

6 L. Cosmo et al.

Fig. 3. Comparison with the disentanglement method of [1] on FAUST data. The yellow
meshes are generated with our model, while the gray point clouds are obtained with [1].
Style changes horizontally, while pose changes vertically.

References

1. Aumentado-Armstrong, T., Tsogkas, S., Jepson, A., Dickinson, S.: Geometric dis-
entanglement for generative latent shape models. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 8181–8190 (2019)

2. Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: Dataset and evaluation for
3D mesh registration. In: Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). IEEE, Piscataway, NJ, USA (Jun 2014)

3. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: Registering
human bodies in motion. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (Jul 2017)

4. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: A new approach to
computing distance based on heat flow. ACM Trans. Graph. 32(5) (Oct 2013)

5. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

LIMP Supplementary Material 7

6. Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion
with graph convolutional autoencoders. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 1886–1895 (2018)

7. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Berkeley mhad: A compre-
hensive multimodal human action database. In: 2013 IEEE Workshop on Applications
of Computer Vision (WACV). pp. 53–60. IEEE (2013)

8. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 652–660 (2017)

	SUPPLEMENTARYLIMP: Learning Latent Shape Representations with Metric Preservation Priors

