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Abstract. In this paper, we advocate the adoption of metric preservation
as a powerful prior for learning latent representations of deformable
3D shapes. Key to our construction is the introduction of a geometric
distortion criterion, defined directly on the decoded shapes, translating
the preservation of the metric on the decoding to the formation of linear
paths in the underlying latent space. Our rationale lies in the observation
that training samples alone are often insufficient to endow generative
models with high fidelity, motivating the need for large training datasets.
In contrast, metric preservation provides a rigorous way to control the
amount of geometric distortion incurring in the construction of the latent
space, leading in turn to synthetic samples of higher quality. We further
demonstrate, for the first time, the adoption of differentiable intrinsic
distances in the backpropagation of a geodesic loss. Our geometric priors
are particularly relevant in the presence of scarce training data, where
learning any meaningful latent structure can be especially challenging.
The effectiveness and potential of our generative model is showcased in
applications of style transfer, content generation, and shape completion.

Keywords: learning shapes,generative model,metric distortion

1 Introduction

Constructing high-fidelity generative models for 3D shapes is a challenging
problem that has met with increasing interest in recent years. Generative models
are applicable in many practical domains, ranging from content creation to shape
exploration, as well as in 3D reconstruction. As a new generation of methods,
they come to face a number of difficulties.

Most existing approaches address the case of static or rigid geometry, for
example, man-made objects like chairs and airplanes, with potentially high
intra-class variability; see the ShapeNet [7] repository for such examples. In this
setting, the main focus has been on the abstraction capabilities of the encoder
and the generator, describing complex 3D models in terms of their core geometric
features via parsimonious part-based representations. Shapes generated with
these techniques are usually designed to have valid part semantics that are easy
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Fig. 1. Disentangled interpolation of FAUST shapes, obtained with our generative
model trained under metric preservation priors. The yellow shapes at the two corners
are given as input; the remaining shapes are generated by bilinearly interpolating
the latent codes of the input, and decoding the resulting codes. Our model allows to
disentangle pose from identity, illustrated here as different dimensions.

to parse. Concurrently, several recent efforts have concentrated on the definition
of convenient representations for the 3D output; these methods find broader
application in multiple tasks, where they enable more efficient and high-quality
synthesis, and can be often plugged into existing generative models.

To date, relatively fewer approaches have targeted the deformable setting,
where the generated shapes are related by continuous, non-rigid deformations.
These model a range of natural phenomena, such as changes in pose and facial
expressions of human subjects, articulations, garment folding, and molecular
flexibility to name but a few. The extra difficulties brought by such non-rigid
deformations can be tackled, in some cases, by designing mathematical or para-
metric models for the deformation at hand; however, these models are often
violated in practice, and can be very hard to devise for general deformations –
hence the need for learning from examples.

The framework we propose is motivated by the observation that existing data-
driven approaches for learning deformable 3D shapes, and autoencoders (AE)
in particular, do not make use of any geometric prior to drive the construction
of the latent space, whereas they rely almost completely on the expressivity of
the training dataset. This imposes a heavy burden on the learning process, and
further requires large annotated datasets that can be costly or even impossible
to acquire. In the absence of additional regularization, limited training data
leads to limited generalization capability, which is manifested in the generated
3D shapes exhibiting unnatural distortions. Variational autoencoders (VAE)
provide a partial remedy by modeling a distributional prior on the data via a
parametrized density on the latent space. This induces additional regularization,
but is still insufficient to guarantee the preservation of geometric properties in
the output 3D models.

In this paper, we introduce Latent Interpolation with Metric Priors (LIMP).
We propose to explicitly model the local metric properties of the latent space
by enforcing metric constraints on the decoded output. We do this by phrasing
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a metric distortion penalty that has the effect to promote naturally looking
deformations, and in turn to significantly reduce the need for large datasets at
training time. In particular, we show that by coupling the Euclidean distances
among latent codes (hence, along linear paths in the latent space) to the metric
distortion among decoded shapes, we obtain a strong regularizing effect in
the construction of the latent space. Another novel ingredient of the proposed
approach is the backpropagation of intrinsic (namely, geodesic) distances during
training, which is made possible by a recent geodesic computation technique.
Using geodesics makes our approach more flexible, and enables the successful
application of our generative model to style and pose transfer applications. See
Figure 1 for an example of novel samples synthesized with our generative model.

2 Related Work

Our method falls within the class of AE-based generative models for 3D shapes.
In this Section we cover methods from this family that are more closely related
to ours, and refer to the recent survey [8] for a broader coverage.

In the 3D computer vision and graphics realms, generative models for part-
compositional 3D objects play the lion’s share. Such approaches directly exploit
the hierarchical, structural nature of 3D man-made objects to drive the con-
struction of encoder and generator [32,22,29,31]. These methods leverage on the
insight that objects can be understood through their components [26], making
an interpretable representation close to human parsing possible. In this setting,
a continuous exploration of the generated latent spaces is not always meaningful;
the mechanism underlying typical operations like sampling and interpolation
happen instead in discrete steps in order to generate plausible intermediate shape
configurations (e.g., for transitioning from a 4-legged chair to a 3-legged stool).
For this reason, with rigid geometry one usually deals with “structural blending”
rather than continuous deformations. Structural blending has been realized, for in-
stance, by learning abstractions of symmetry hierarchies via spatial arrangements
of oriented bounding boxes [22], or by explicitly modeling part-to-part relation-
ships [29]; generative-adversarial modeling has been applied on volumetric object
representations [46]; structural hierarchies have been applied for the generation
of composite 3D scenes [23] and building typologies [28] as well. Contributing to
their success, is the fact that all these methods train on ShapeNet-scale annotated
datasets with > 50K unique 3D models, and the recent publication of dedicated
benchmarks like PartNet [30] testify to the increasing interest of data-driven
models for structure-aware geometry processing. In this paper, we address a
different setting; we do not assume part-compositionality of the 3D models since
we deal with deformable shapes, where continuous deformations are well-defined,
and where annotated datasets are not as prominent.

A second thread of research revolves around the definition of a meaningful
representation for the generated 3D output. While many approaches mostly use
polygonal meshes with predefined topology or directly synthesize point clouds
[1,42], the focus has been recently shifting towards more effective representations
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in terms of overall quality, fidelity, and flexibility. These include approaches
that predict implicit shape representations at the output, requiring an ex-post
isosurface extraction step to generate a mesh at the desired resolution [27,33,16];
isosurfacing has been replaced by binary space partitioning in [9]; while in [18],
shapes are represented by a set of parametric surface elements. In this work, we
focus on learning a better latent representation for deformable shapes, rather
than on constructing a better representation for the output.

More closely related to ours are some recent methods from the area of
geometric deep learning. A graph-convolutional VAE with dynamic filtering
convolutional layers [45] was introduced in [24] for the task of deformable shape
completion of human shapes. The method is trained on ∼7000 shapes from the
DFAUST dataset of real human scans [4]; due to the lack of any geometric prior,
the learned generator introduces large distortions around points in the latent
space that are not well represented in the training set. Geometric regularization
was injected in [17] in the form of a template that parametrizes the surface. The
method shows excellent performance in shape matching, however, it crucially
relies on a large and representative dataset of 230, 000 shapes, and performance
drops significantly with smaller training sets or bad initialization. More recently,
a geometric disentanglement model for deformable point clouds was introduced
in [2]. The proposed method uses Laplacian eigenvalues as a weak geometric
prior to promote the separation of intrinsic and extrinsic shape information,
together with several other de-correlation penalties, and a training set of > 40K
shapes. In the absence of enough training examples, the approach tends to
produce a “morphing” effect between point clouds that does not correspond to
a natural motion; a similar phenomenon was observed in [1]. Finally, in [44], a
time-dependent physical prior was used to regularize interpolations in the latent
space with the goal of obtaining a convincing simulation of moving tissues.

In particular, our approach bears some analogies with the theory of shape
spaces [20], in that we seek to synthesize geometry that minimizes a deformation
energy. For example, in [14] it was shown how to axiomatically modify a noisy
shape such that its intrinsic measures would fit a given prior in a different pose.
Differentiating the geodesic distances was done by fixing the update order in the
fast marching scheme [21]. Our energy is not minimized over a fixed shape space,
but rather, it drives the construction of a novel shape space in a data-driven
fashion.

In this paper, we leverage classical ideas from shape analysis and metric
geometry to ensure that shapes on the learned latent space correspond to plausible
(i.e., low-distortion) deformations of the shapes seen at training time, even when
only few training samples are available. We do this by modeling a geometric prior
that promotes deformations with bounded distortion, and show that this model
provides a powerful regularization for shapes within as well as across different
classes, e.g., when transitioning between different human subjects.
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3 Learning with metric priors

Our goal is to learn a latent representation for deformable 3D shapes. We do
this by training a VAE on a training set S = {Xi} of |S| shapes, under a purely
geometric loss:

`(S) = `recon(S) + `interp(S) + `disent(S) . (1)

The loss is composed of three terms. The first is a geometric reconstruction
loss on the individual training shapes, as in classical AE’s; the second one is
a pairwise interpolation term for points in the latent space; the third one is a
disentanglement term to separate intrinsic from extrinsic information.

The main novelty lies in (1) the interpolation loss, and (2) the disentanglement
loss not relying upon corresponding poses in the training set. The interpolation
term provides control over the encoding of each shape in relation to the others.
This induces a notion of proximity between latent codes that is explicitly linked,
in the definition of the loss, to a notion of metric distortion between the decoded
shapes. As we show in the following, this induces a strong regularization on the
latent space and rules out highly distorted reconstructions.

The disentanglement loss promotes the factorization of the latent space into
two orthogonal components: One that spans the space of isometries (e.g., change
in pose), and another that spans the space of non-isometric deformations (e.g.,
change in identity). As in the interpolation loss, for the disentanglement we also
exploit the metric properties of the decoded shapes.

3.1 Losses

We define z := enc(X) to be the latent code for shape X, and X′ := dec(z) to
be the corresponding decoding. During training, the decoder (dec) and encoder
(enc) are updated so as to minimize the overall loss of Eq. (1); see Section 3.3 for
the implementation details.

Geometric reconstruction. The reconstruction loss is defined as follows:

`recon(S) =

|S|∑
i=1

‖DR3(X′i)−DR3(Xi)‖2F , (2)

where DR3(X) is the matrix of pairwise Euclidean distances between all points
in X, and ‖ · ‖F denotes the Frobenius norm. Eq. (2) measures the cumulative
reconstruction error (up to a global rotation) over the training shapes.

Metric interpolation. This loss is defined over all possible pairs of shapes (Xi,Xj):

`interp(S) =

|S|∑
i 6=j

‖D(dec((1− α)zi + αzj︸ ︷︷ ︸
interpolation of
latent codes

))− ((1− α)D(X′i) + αD(X′j)︸ ︷︷ ︸
interpolation of

geodesic or local distances

)‖2F ,

(3)
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where α ∼ U(0, 1) is a uniformly sampled scalar in (0, 1), different for each
pair of shapes. In the equation above, the matrix D(X) encodes the pairwise
distances between points in X. We use two different definitions of distance, giving
rise to two different losses which we sum up together. In one loss, D contains
geodesic distances between all pairs of points. In the second loss, we consider
local Euclidean distances from each point to points within a small neighborhood
(set to 10% of the shape diameter); the rationale is that local Euclidean distances
capture local detail and tend to be resilient to non-rigid deformations, as observed
for instance in [40]. All distances are computed on the fly, on the decoded shapes,
at each forward step.

Since the error criterion in Eq. (3) encodes the discrepancy between pairwise
distance matrices, we refer to it as a metric preservation prior. We refer to
Section 3.2 for a more in-depth discussion from a continuous perspective.

Disentanglement. We split the latent codes into an intrinsic and an extrinsic
part, z := (zint|zext). The former is used to encode “style”, i.e., the space of
non-isometric deformations; the latter is responsible for changes in pose, and is
therefore constrained to model the space of possible isometries.

The loss is composed of two terms:

`disent(S) = `int(S) + `ext(S) , with (4)

`int(S) =

|S|∑
i 6=j
iso

‖DR3(dec((1− α)zinti + αzintj︸ ︷︷ ︸
interpolation of

style

|zexti ))−DR3(Xi)‖2F (5)

`ext(S) =

|S|∑
i 6=j

non-iso

‖Dg(dec(zinti | (1− α)zexti + αzextj︸ ︷︷ ︸
interpolation of

pose

))−Dg(Xi)‖2F (6)

The `int term is evaluated only on isometric pairs (i.e., just a change in pose),
for which we expect zinti = zintj . For a pair (Xi,Xj), it requires that Xi can be

reconstructed exactly even when its intrinsic part zinti is interpolated with that
of Xj . This enforces zinti = zintj , thus all the pose-related information is forced to
move to zext.

The `ext term is instead evaluated on non-isometric pairs. Here we require
that the geodesic distances of Xi are left untouched when we interpolate its pose
with that of Xj . This way, we force all the style-related information to be moved
to zint. We see that by having direct access to the metric on the decoded shapes,
we can phrase the disentanglement easily in terms of distances.

The assumption that the metric is nearly preserved under pose changes is
widely used in many shape analysis applications such as shape retrieval [38],
matching [39,12,11,19] and reconstruction [5,10]

Relative error. In practice, we always measure the error on the Euclidean distances
(appearing in Eqs. (2),(3),(5)) in a relative sense. Let A be the “ground truth”
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Fig. 2. Our architecture is a standard VAE, with PointNet as the encoder and a fully
connected decoder. Our loss asks that the geodesic distances on the decoded convex
combination of latent codes (middle row) are equal to the the convex combination of
the input distances.

Euclidean distance matrix computed on the input shape, and let B be its predicted
reconstruction. Instead of taking ‖A − B‖2F =

∑
ij(Aij − Bij)

2, we compute

the relative error
∑
ij

(Aij−Bij)
2

A2
ij

. In our experiments, this resulted in better

reconstruction of local details than by using the simple Frobenius norm.

3.2 Continuous interpretation

In the continuous setting, we regard shapes as metric spaces (X , dX ), each
equipped with a distance function dX : X × X → R+. Given two shapes (X , dX )
and (Y, dY), a map φ : X → Y is an isometry if it is surjective and preserves
distances, dX (x, x′) = dY(φ(x), φ(x′)) for all x, x′ ∈ X . Isometries play a funda-
mental role in 3D shape analysis, since they provide a mathematical model for
natural deformations like changes in pose. In practice, however, isometry is rarely
satisfied exactly.

Why interpolation? Our approach is based on the insight that non-isometric
shapes are related by sequences of near-isometric deformations, which, in turn,
have a well defined mathematical model. In our setting, we do not require the
training shapes to be near-isometric. Instead, we allow for maps φ with bounded
metric distortion, i.e., for which there exists a constant K > 0 such that:

|dX (x, x′)− dY(φ(x), φ(x′))| ≤ K (7)

for all x, x′ ∈ X . For K → 0 the map φ is a near-isometry, while for general
K > 0 we get a much wider class of deformations, going well beyond simple
changes in pose. We therefore assume that there exists a map with bounded
distortion between all shape pairs in the training set.
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At training time, we are given a map φ : X → Y between two training shapes
(X , dX ) and (Y, dY). We then assume there exists an abstract metric space (L, dL)
where each point is a shape; this “shape space” is the latent space that we seek to
represent when training our generative model. Over the latent space we construct
a parametric sequence of shapes Zα = (X , dα), parametrized by α ∈ (0, 1),
connecting (X , dX ) to (Y, dY). By modeling the intermediate shapes as (X , dα),
we regard each Zα as a continuously deformed version of X , with a different
metric defined by the interpolation:

dα(x, x′) = (1− α)dX (x, x′) + αdY(φ(x), φ(x′)) , (8)

for all x, x′ ∈ X . Each Zα in the sequence has the same points as X , but the
shape is different since distances are measured differently.

It is easy to see that if the training shapes X and Y are isometric, then
dα(x, x′) = dX (x, x′) for all x, x′ ∈ X and the entire sequence is isometric, i.e.,
we are modeling a change in pose. However, if φ : X → Y has bounded distortion
without being an isometry, each intermediate shape (X , dα) also has bounded
distortion with respect to (X , dX ), with Kα < K in Eq. (7); in particular, for
α→ 0 one gets Kα → 0 and therefore a near-isometry. In other words, by using
the metric interpolation loss of Eq. (3), as α grows from 0 to 1 we are modeling
a general non-isometric deformation as a sequence of approximate isometries.

− + =

Flattening of the latent space. Taking a
linear convex combination of latent vec-
tors as in Eq. (3) implies that distances
between codes should be measured us-
ing the Euclidean metric ‖ · ‖2. This
enables algebraic manipulation of the codes and the formation of “shape analo-
gies”, as shown in the inset (real example based on our trained model). By the
connection of Euclidean distances in the latent space with intrinsic distances on
the decoder’s output, our learning model performs a “flattening” operation, in
the sense that it requires the latent space to be as Euclidean as possible, while
absorbing any embedding error in the decoder. A similar line of thought was
followed, in a different context, in the purely axiomatic model of [41].

3.3 Implementation

We design our deep generative model as a VAE (Figure 2). The input data is
a set of triangle meshes; each mesh is encoded as a matrix of vertex positions
X ∈ Rn×3, together with connectivity encoded as a n× n adjacency matrix. We
anticipate here that mesh connectivity is never accessed directly by the network.

Architecture. The encoder takes vertex positions X as input, and outputs a d-
dimensional code z = enc(X). Similarly, the decoder outputs vertex positions Y =
dec(z) ∈ Rn×3. In order to clarify the role of our priors versus the sophisticacy
of the architecture, we keep the latter as simple as possible. In particular, we
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α = 1

α = 0.7

α = 0.3

α = 0

VAE Ours Euc Ours Geo

Fig. 3. Interpolation example on a small training set of just 5 shapes, where the
deformation evolves from top (α = 0) to bottom (α = 1). Color encodes the per-point
metric distortion, growing from white to red; changes in pose as in this example should
have distortion close to zero. We show the results obtained by three different networks:
baseline VAE; ours with Euclidean metric regularization only; ours with Euclidean and
geodesic regularization (i.e., the complete loss).

adopt a similar architecture as in [2]; we use PointNet [34] with spatial transform
as the encoder, and a simple MLP as the decoder. We reserve 25% of the latent
code for the extrinsic part and the remaining 75% for the intrinsic representation,
while the latent space and layer dimensions vary depending on the dataset size.
A detailed description of the network is deferred to the Supplementary Material.
We implemented our model in PyTorch using Adam as optimizer with learning
rate of 1e-4. To avoid local minima and numerical errors in gradient computation,
we start the training by optimizing just the reconstruction loss for 104 iterations,
and add the remaining terms for the remaining epochs.

Geodesic distance computation. A crucial ingredient to our model is the compu-
tation of geodesic distances Dg(dec(z)) during training, see Eq. (3). We use the
heat method of [13] to compute these distances, based on the realization that
its pipeline is fully differentiable. It consists, in particular, of two linear solves
and one normalization step, and all the quantities involved in the three steps
depend smoothly on the vertex positions given by the decoder (we refer to the
Supplementary Material for additional details).

To our knowledge, this is the first time that on-the-fly computation of geodesic
distances appears in a deep learning pipeline. Previous approaches using geodesic
distances, such as [19], do so by taking them as pre-computed input data, and
leave them untouched for the entire training procedure.

Supervision. We train on a collection of shapes with known pointwise correspon-
dences; these are needed in Eq. (3), where we assume that the distance matrices
have compatible rows and columns. From a continuous perspective, we need maps
for the interpolated metric of Eq. (8) to be well defined. Known correspondences
are also needed by other approaches dealing with deformable data [25,24,17]. In
practice, we only need few such examples (we use < 100 training shapes), since
we rely for the most part on the regularization power of our geometric priors.
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Fig. 4. Top row: A 4D sequence from the real-world dataset DFAUST. We train our
generative model on the left- and right-most keyframes (indicated by the orange and
blue bar respectively), together with keyframes extracted from other sequences and
different individuals. Bottom row: The 3D shapes generated by our trained model.
Visually, both the generated and the real-world sequences look plausible, indicating
that geometric priors are well-suited for regularizing toward realistic deformations.

Differently from [24,17] we do not assume the training shapes to have the
same mesh, since the latter is only used as an auxiliary structure for computing
geodesics in the loss; the network only ever accesses vertex positions. Further,
we do not require training shapes with similar poses across different subjects.

4 Results

4.1 Data

To validate our method, we performed experiments using 5 different datasets (3
are obtained from real-world scans, 2 are fully synthetic). FAUST [3] is composed

Table 1. Ablation study in terms of interpolation and disentanglement error on 4
datasets. Our full pipeline (denoted by ‘Ours Geo’) achieves the minimum error in all
cases, and is more than one order of magnitude better than the baseline VAE on
the interpolation. We do not report the disentanglement error for HANDS, since the
dataset only contains one hand style.

Interpolation Error Disentanglement Error
VAE Ours Euc Ours Geo VAE Ours Euc Ours Geo

FAUST 3.89e−2 5.08e−3 3.82e−3 7.16 4.04 3.48
DFAUST 9.82e-2 3.43e-3 2.89e−4 6.15 4.90 4.11
COMA 1.32e−3 1.03e−3 7.51e−4 1.55 1.30 1.22
HANDS 6.01e−3 8.12e−4 4.62e−4 - - -
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Most similar training shapes

Fig. 5. Interpolation example on the cat shapes of TOSCA dataset [6]. On the left, we
show an interpolation sequence between two shapes of the training set (yellow shapes
on the right). On the right, we manually selected the most similar shapes present in
the training set, composed in total by just 11 shapes. You can appreciate how shapes
in the middle of the interpolated sequence significantly differ from the training shapes.

of 10 different human subjects, each captured in 10 different poses. We train
our network on 8 subjects (thus, 80 meshes in total) and leave out the other 2
subjects for testing. DFAUST [4] is a 4D dataset capturing the motion of 10
human subjects performing 14 different activities, spanning hundreds of frames
each. As training data we only use 4 representative frames from each
subject/sequence pair. COMA [36] is another 4D dataset of human faces;
it is composed of 13 subjects, each performing 13 different facial expressions
represented as a sequence of 3D meshes. As opposed to the test split proposed
in [37], where 90% of the data is used for training, we only select 14 frames for
each subject (one representative for each of the 13 expressions, plus one in a
neutral pose), thus training with less than 1% of the dataset. TOSCA
[6] is a synthetic dataset containing both animals and human bodies. In our
experiments we use only the cat class, containing 11 shapes in different poses.
The last dataset, which we refer to as HANDS, is also completely synthetic and
consists of 5 meshes depicting one hand in 5 different poses. For all the datasets,
we subsample the meshes to 2500 vertices by iterative edge collapse [15].

4.2 Interpolation

We first perform a classical interpolation experiment. Given two shapes X and
Y, we visualize the decoded interpolation of their latent codes, given by dec((1−
α)enc(X)+αenc(Y)) for a few choices of α ∈ (0, 1). We measure the interpolation
quality via the interpolation error, defined as the average (over all surface points)
geodesic distortion of the interpolated shapes.

Two examples of interpolation are shown in Figures 3 and 5. In these examples,
the training sets consist of just 5 and 11 shapes respectively, meaning that
the intermediate poses have never been seen before. In this few-shot setting,
proper regularization is crucial to get meaningful results. In the experiment in
Figure 3, we also conduct an ablation study. We disable all the interpolation
terms from our complete loss, resulting in a baseline VAE; then we disable the
geodesic regularization only; finally we keep the entire loss intact, showing best
results. Quantitative results on 4 different datasets are reported in Table 1 (first
3 columns), showing that best results are obtained when our full loss is used.
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Intrinsic latent space Extrinsic latent space

Fig. 6. Plots on the left: Planar embedding of the intrinsic and extrinsic parts of the
latent codes from FAUST. Colors identify gender (left) and pose (ten different poses;
right). We observe cohesive clusters in either case, suggesting that the encoder has
generalized the projection onto each factor. The four small crosses are random samples.
Right: Decoded shapes from the four combinations of the random samples; the specific
combinations are illustrated by compatible colors between the crosses and the bars
below each shape.

As an additional qualitative experiment, in Figure 4 we show the decoded
shapes in-between two keyframes of a 4D sequence from DFAUST. We remark that
none of the intermediate shapes were seen at training time, nor was any similar-
looking shape present in the training set. We then compare our reconstructed
sequence with the original sequence of real-world scans. The purpose of this
experiment is to show that our geometric priors are essential for the generation of
realistic motion; apart from a perceptual evaluation, any quantitative comparison
here would not be meaningful – there is not a unique “true” way to transition
between two given poses.

4.3 Disentanglement

Our second set of experiments is aimed at demonstrating the effectiveness of our
geometric priors for the disentanglement of intrinsic from extrinsic information.
We illustrate this in different ways.

In Figure 6, we show disentanglement for a generator trained on the FAUST
dataset. For visualization purposes, for each vector z := (zint|zext) in the latent
space (here comprising both training and test shapes), we embed the zint and
zext parts separately onto the plane (via multidimensional scaling), and attribute
different colors to different gender and poses. We then randomly sample two new
zint and two new zext, and compose them into four latent codes by taking all the
combinations. The figure illustrates the four decoded shapes.

In Figure 7 we show the simultaneous action of disentanglement and inter-
polation. Given a source and a target shape, we show the interpolation of pose
while fixing the style, and the interpolation of style while fixing the pose. We do
so with different combinations of source and target. In all cases, our generative
model is able to synthesize realistic shapes with the correct semantics, suggesting
high potential in style and pose transfer applications.

As we did with the case of interpolation, we also provide a notion of dis-
entanglement error, defined as follows. Given shapes Xi and Xj with latent
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Fig. 7. Disentanglement + interpolation examples on the COMA dataset; the source
shape is always the same. Each row presents a different scenario, with interpolation
happening left-to-right. Please refer to the color code below each shape as a visual aid;
for example, for the first column we have (style|pose).

codes (zinti |zexti ) and (zintj |zextj ), we swap zexti with zextj and then measure the

average point-to-point distance between dec(zinti |zextj ) and the corresponding
ground-truth shape from the dataset. In Table 1 (last 3 columns) we report the
disentanglement error on all 4 datasets, together with the ablation study.

Finally, in Figure 8 we show a qualitative comparison with the recent state-
of-the-art method [2] (using public code provided by the authors), which uses
Laplacian eigenvalues as a prior to drive the disentanglement, together with
multiple other de-correlation terms. Similarly to other approaches like [24,43], the
quality of the interpolation of [2] mostly depends on the smoothness properties
of the VAE, on the complexity of the deep net, or on the availability of vast
training data. For this comparison, both generative models were trained on the
same 80 FAUST shapes.

5 Conclusions

We introduced a new deep generative model for deformable 3D shapes. Our model
is based on the intuition that by directly connecting the Euclidean distortion of
latent codes to the metric distortion of the decoded shapes, one gets a powerful
regularizer that induces a well-behaved structure on the latent space. Our idea
finds a theoretical interpretation in modeling deformations with bounded metric
distortion as sequences of approximate isometries. Under the manifold hypothesis,
our metric preservation priors explicitly promote a flattening of the true data
manifold onto a lower-dimensional Euclidean representation. We demonstrated
how having access to the metric of the decoded shapes during training enables
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Fig. 8. Comparison of our method (top row) with the state-of-the-art method of [2]
(bottom row). Both generative models are trained on the same data. The leftmost and
rightmost shapes are from the training set, while the intermediate shapes are decodings
of a linear sequence in the latent space. Observe that source and target are not isometric;
according to our continuous interpretation of Sec. 3.2, our trained model decomposes
the non-isometric deformation into a sequence of approximate isometries.

high-quality synthesis of novel samples, with practical implications in tasks of
content creation and style transfer.

Perhaps the main limitation of our method, which we share with other
geometric deep learning approaches, lies in the requirement of labeled pointwise
correspondences between the training shapes. These can be hard to obtain in
certain settings, for example, when dealing with shapes from the same semantic
class but with high intra-class variability. Few interesting directions of future work
may consist in a self-supervised variant of our model, where dense correspondences
are not needed for the training, but are estimated during the learning process or
in the exploitation of spectral properties of the reconstructed shape, that has
been shown [10,35] to contain important information of the embedding geometry.

Finally, while in this paper we showed that even a simple prior such as metric
distortion can have a significant effect, we foresee that bringing techniques from
the areas of shape optimization and analysis closer to deep generative models
will enable a fruitful line of stimulating research.
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