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1 Comparison of SoftPoolNet to PointNet and PCN

Our architecture is composed by two parts: encoder and decoder. The encoder
takes the partial scan as input. We process the partial scans with our novel soft
pooling to produce the ordered feature F ∗. Then, the decoder takes the feature
F ∗ as input and apply our regional convolution twice to produce the point clouds
with resolutions of 256 and 16,384 successively.

Notably, there are some similar components between our encoder and Point-
Net [1], as well as our decoder and PCN [3]. The following sections discuss the
distinction in more detail.

1.1 Distinction of our encoder from PointNet

Each point on the cloud goes through the multi-layer perceptron (MLP) to
accumulate the feature vectors into the matrix F. Then, we sort the feature
vectors in a descending order based on the k-th element of each vector. The
sorted matrix is denoted as F′i. After independently sorting all Nf elements,
we collect the matrices to form the tensor F′ as shown in Fig. 1(a). We then
build our softpool feature by taking the first Nr elements of each matrix and
concatenate them to F∗.

concatenate concatenate

Fig. 1: Comparison between (a) our soft-pool operation and (b) max-pooling
from PointNet, where the feature from PointNet is only a subset of our feature.
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When comparing our softpool feature F∗ with the feature from PointNet [1]
denoted as FPN, PointNet executes a max-pooling operation on F′ as illustrated
in Fig. 1(b). Assuming that both features are derived from the same F′ produced
by an MLP, we can conclude that FPN is a subset of our feature where

FPN =
[
F′1[1], F′2[2], F′3[3], . . . F′Nf

[Nf ]
]

(1)

only takes the one value of each matrix while our method takes the first Nr rows.
Due to this, the dimensionality of the feature are then distinct. PointNet takes
a vector with 1,024 values while we take Nr ×Nf ×Nf .

Notably, both our softpool feature and the PointNet feature are permutation
invariant, which means that F∗ and FPN are the same irrelevant of the order of
the input points. This is one of the most important aspect when handling point
clouds since this data is unordered.

1.2 Distinction of our decoder from PCN

Based on our decoder architecture in the paper, the resulting feature from the
encoder undergoes two successive regional convolution operations. The first con-
verts the features to a course point cloud P′out with 256 points. From there, the
second regional convolution interpolates from the coarse to a fully-packed point
cloud with 16,384 points which is denoted as Pout.

Compared to PCN [3], both approaches execute a coarse-to-fine approach
which is performed by our second regional convolution. However, the architecture
and the method are different.

Given P′out, PCN [3] duplicates P′out 64 times and appends a 2D coordinates
of an 8× 8 grid. Then, they use MLP to produce Pout that locally deforms the
2D grids around each point similar FoldingNet [2]. In contrast, we interpolate 63
samples between every 2 points of P′out and use the proposed regional convolution
to produce Pout. Compared to MLP in PCN, our regional convolution takes more
local samples into account to produce a point in the higher resolution.

2 Ablation study on the softpool feature F∗

Using our architecture trained with Nr = 32, we present the qualitative results
when only a subset of the rows is selected. The objective is to investigate which
parts of the object each region reconstructs first. In Fig. 2, we start by limiting
with the first two rows of the feature matrix then increasing Nr to reach 32. By
selecting the first 2 features, we observe that the softpool feature focuses on a
skeleton of the object without large surfaces. Although the regions reconstruct
different parts of the object, they tend to cover the important components like
the wings of plane and the wheels of car. As we increase Nr from 2 to 32, the
object is slowly completed without huge overlaps between different regions.

In addition to the first 32 rows when setting Nr, we also looked into the
rows beyond 32. The lamp in Fig. 3 focuses on the following ranges: [33 : 64],
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Fig. 2: Results when choosing the first subsets of Nr with the following ranges:
[1 : 2], [1 : 4], [1 : 8], [1 : 16] and [1 : 32] when the architecture is trained with
Nr = 32.

Fig. 3: Results when choosing different ranges of rows from F′ to form F∗ instead
of selecting the first Nr = 32 rows.

[65 : 96], [97 : 128] and [129 : 169]. Although the shape of the lamp starts to
deform as we go beyond 32, our reconstruction results still captures its overall
shape even when we select the range [129 : 169]. Therefore, this proves that our
feature is not constrained to the first 32 rows when sorting and demonstrates
the robustness of our softpool feature.
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3 Ablation study on τ

When computing for Lboundary, we introduced the threshold τ to compute the
sets. In Table 1, we then evaluate different values of τ and investigate its behavior
with respect to the Chamfer distance. The table demonstrates that the results
are not sensitive to the τ , where the thresholds between 0.2-0.9 generate a small
difference in the Chamfer distance (with less than 1) from the chosen threshold
of 0.3. Notably, compared to the related work, any threshold between 0.1 to 0.9
outperforms the other methods.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Chamfer Distance 7.08 5.99 5.94 6.12 6.19 6.18 6.21 6.25 6.71

Table 1: Sensitivity of the average Chamfer distance (multiplied by 103) to the
threshold τ .

4 Ablation study on Nr, Nr and Lboundary

We investigate the influence of increasing the weight of Lboundary on the recon-
struction as we change the number of regions Nf and the number selected rows
Nr. While we chose the best option with Nr set to 8 and Nr set to 32, Table 2
also shows that a larger weight on Lboundary improves the performance when the
number of regions is larger, e.g. when Nf is 32.

(Nf , Nr) (2, 128) (4, 64) (8, 32) (16, 16) (32, 8)

1 ×Lboundary 7.80 6.31 5.94 6.27 6.75
2 ×Lboundary 7.80 6.31 5.91 6.25 6.72
10 ×Lboundary 7.82 6.29 5.95 6.01 6.19

Table 2: Influence of Nf , Nr and the weight of Lboundary for object completion
on the average Chamfer distance (multiplied by 103).
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