
ForkGAN: Seeing into the Rainy Night

Ziqiang Zheng1, Yang Wu2 ?, Xinran Han3, and Jianbo Shi3

1 UISEE Technology (Beijing) Co., Ltd. zhengziqiang1@gmail.com
2 Kyoto University wu.yang.8c@kyoto-u.ac.jp

3 University of Pennsylvania {hxinran,jshi}@seas.upenn.edu

Abstract. We present a ForkGAN for task-agnostic image translation
that can boost multiple vision tasks in adverse weather conditions. Three
tasks of image localization/retrieval, semantic image segmentation, and
object detection are evaluated. The key challenge is achieving high-
quality image translation without any explicit supervision, or task aware-
ness. Our innovation is a fork-shape generator with one encoder and two
decoders that disentangles the domain-specific and domain-invariant in-
formation. We force the cyclic translation between the weather conditions
to go through a common encoding space, and make sure the encoding
features reveal no information about the domains. Experimental results
show our algorithm produces state-of-the-art image synthesis results and
boost three vision tasks’ performances in adverse weathers.

Keywords: Light illumination · Image-to-image translation · Image syn-
thesis · Generative adversarial networks

1 Introduction

Data bias is a well-known challenge for deep learning methods. An AI algorithm
trained on one dataset often has to pay a performance deficit in a different
dataset. Take an example of image recognition on a rainy night. An object de-
tector trained on a day time dataset could suffer 30-50 percent accuracy drop
on rainy night images. One solution is simply collecting more labeled data in
those adverse weather conditions [8, 7, 24, 10, 19]. This is expensive and more
fundamentally does not address the data bias issue.

Domain adaptation [28, 13, 23] is a general solution to this data bias problem.
Our work is related to a sub-branch of this approach focusing on image-to-image
translation techniques to explicitly synthesize images in uncommon domains. In
the context of day and night domain change, two strategies have been explored
recently: one is day-to-night approach [22], which transfers annotated daytime
data to nighttime so that the annotations can be reused through data augmenta-
tion; the other [1] uses a night-to-day translator to generate images suitable for
existing models trained on daytime data. The two strategies both demonstrated
that the precise domain translation methods can boost the other vision tasks. In
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Fig. 1. Our ForkGAN can boost performance for multiple vision tasks with night to
day image translation: localization (by SIFT point matching between daytime and
nighttime images), semantic segmentation and object detection (by data augmentation)
in autonomous driving (results are all shown on the nighttime images).

this paper, we look into a far more challenging case of a rainy night. Our exper-
iments show that existing approaches perform poorly in this case, particularly
when we have no supervised data annotation on the rainy night images.

The fundamental challenge is that what makes an image looks good to a
human might not improve computer vision algorithms. A computer vision algo-
rithm can handle certain types of lighting change surprisingly well, while minor
artifacts invisible to human could be harmful to vision algorithms.

A straightforward method is to introduce task-specific supervision on the new
domain to ensure the image translation is task aware. We believe task-aware
approaches only shift the data bias problem to a task bias problem. Instead, we
ask if we can create a task agnostic image-to-image translation algorithm that
improves computer vision algorithms without any supervision or task informa-
tion. Fig. 1 shows our solution can achieve this goal on three untrained tasks:
image localization, semantic segmentation, and object detection.

Problem Analysis. Domain translation between adverse conditions (e.g.
nighttime) and standard conditions (e.g. daytime) is inherently a challenging
unsupervised or weakly-supervised learning problem, as it is impossible to get
precisely aligned ground-truth image pairs captured at a different time for dy-
namic driving scenes where a lot of moving objects exist. Many objects (e.g.
the vehicles and street lamps) look totally differently across different weather
conditions. There are global scene level texture differences such as raindrops,
as well as regional changes such as cars’ reflection on the wet road. There is a
common semantic and geometrical level similarity between the adverse and nor-
mal domain, as well as vast differences. Precisely disentangling the invariant and
variant features, without any supervision or task knowledge, is our key objective.
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Proposed Solution. An ideal task-agnostic image translation preserves the
image contents at all scale levels: scene level layout to object details such as
letters on a traffic sign, while automatically adjusting to the illumination and
weather conditions. For CycleGAN-based models that mainly rely on cycle-
consistency losses, altering the global conditions can be done effectively, but
faithfully maintaining the informative content details is not guaranteed. We first
‘tie’ the two encoding space of the CycleGAN together, to make sure we have kept
only the necessary invariant information in both domains. We further explicitly
check this encoding is domain agnostic: by looking at the encoded features, we
cannot tell the domain they come from. This step can potentially remove much
invariant information. We add a ‘Fork’ branch to check if we have encoded suf-
ficient information to reconstruct the original image data in both domains. The
model is called ForkGAN. It has the following main contributions.

– We propose a Fork-shaped Cyclic generative module that can decouple domain-
invariant content and domain-specific style during domain translation. We
force both encoders to go through a common encoding space and explic-
itly use an anti-contrastic loss to ensure necessary invariant information is
produced in the disentanglement.

– We introduce a Fork-branch on each generator stage, to ensure sufficient
information is kept for image recognition tasks in both domains.

– We boost the performance of localization, semantic segmentation and object
detection in adverse conditions using our ForkGAN.

2 Related Work

2.1 Unpaired Image-to-image Translation

Many models have been proposed for unpaired image-to-image translation task,
which aims to translate images from source domain to the corresponding de-
sired images in target domain without corresponding image pairs for training.
Introduced by Zhu et al. [28], CycleGAN is a classical and elegant solution
for unpaired image-to-image translation. The cycle-consistency loss provides a
natural and nice way to regularize the image translation, and it has become a
widely used base. However, it does not enforce the translated image to share
the same semantic space as the source image, and therefore its disentanglement
ability is rather weak. UNIT [17] added a shared latent space assumption and
enforced weight sharing between the two generators. However, weight sharing
does not always guarantee that the network will learn to disentangle the images
from different domains. To improve the diversity of generated results, models
such as MUNIT [12], DRIT [16] were proposed to better decompose visual infor-
mation into domain-invariant content and domain-specific style. To handle the
translation among multiple domains, StarGAN [5] was developed by combining
an additional classification loss. One drawback of those models is that the user
will need to specify a Etyle codeEor label to sample from. For application in au-
tonomous driving, we want the model to translate the image in adverse weathers
to an appropriate condition without any human guidance during inference time.
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2.2 Low-light Image Enhancement

Besides translating images from adverse conditions (e.g. night domain) to stan-
dard conditions, another possible approach to tackle the lack of visibility at night
is to use low-light image enhancement models. Those models aim to improve the
visual quality of underexposed photos by manipulating the color, brightness and
contrast of the image. Recently, more deep learning based models have been pro-
posed to solve underexposure problem. EnlightenGAN [14] can perform low-light
enhancement without paired training data. The model increases the luminosity
of an image while preserving the texture and structure of objects. However, with-
out emphasis on foreground objects, EnlightenGAN provides limited details that
are helpful for driving purposes. Different from these low-light image enhance-
ment methods, we target to translate the whole image to day time and enhance
the weak object signals in the dark.

2.3 Bad Weather Vision Tasks

Adverse weathers and undesirable illumination conditions pose challenges to
common vision tasks such as localization, semantic segmentation and object
detection. Visual localization and navigation allow the vehicle or robot to esti-
mate its location and orientation in the real world. One efficient approach for
this task is to use image retrieval techniques [1] and feature matching meth-
ods [18, 2]. However, these methods suffer from performance degradation when
the query image is sampled from different illumination and weather conditions as
compared with the labelled database. ToDayGAN [1] modified the image trans-
lation model to improve image retrieval performance for localisation task. Porav
et al. [21] proposed a system that translates input images to a desired domain
to optimize feature-matching results.

For semantic segmentation, Porav et al.[20] proposed a system that uses light-
weight adapters to transform images of different weather and lighting conditions
to an ideal condition for training off-the-shelf computer vision models. To train
the adapters, they chose a sequence of reference images under ideal condition,
and use CycleGAN [28] to synthesize images in different weathers while pre-
serving the geometry and structure of the reference images. They then trained
adapters to transform images from specific domains so using the new images can
achieve better performance on related vision tasks.

Object detection, despite its importance, has received less attention in recent
works on driving in adverse weathers. A related work in this direction is from He
et al. [8], where the authors developed a multi-adversarial Faster R-CNN frame-
work for domain-adaptive object detection in driving scenario. Their source and
target domain pairs involve regular and foggy Cityscapes, synthetic and real
data from two different driving datasets with similar weather conditions. Aug-
GAN [11] aims to combine an image parsing network to enhance object detection
performance in nighttime images through day-to-night translation on synthetic
datasets. However, it requires paired auxiliary annotations (e.g. semantic seg-
mentation maps), which are sometimes expensive or hard to acquire, to regularize
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Fig. 2. The framework of ForkGAN. (a) shows the training stage while (b) represents
the testing inference. Ix and Iy denote random image from night domain X and day
domain Y, separately. Ex and Ey are the encoders to encode the night and day images,
separately. Gt

x and Gt
y are responsible to achieve domain translation based on the

domain-invariant representations z and z̃. Gr
x and Gr

y aim to reconstruct the input
images based on the representations. Dx and Dy are the discriminators of X and Y,
while Dd is the domain adversarial classifier.

the image parsing network. Our ForkGAN addresses object detection under more
challenging weather conditions - driving scenes at nighttime with reflections and
noise from rain and even storms, without any auxiliary annotations.

3 Proposed Method

3.1 ForkGAN Overall Framework

Our ForkGAN performs image translation with unpaired data using a novel
fork-shape architecture. The fork-shape module contains one encoder and two
decoders. Take night-to-day translation in Fig. 2 as an example, first we feed a
nighttime image Ix to the encoder Ex and obtain the domain-invariant represen-
tation zx. Then the two decoders Gr

x (reconstruction decoder) and Gt
x (transla-

tion decoder) have the same input zx. Gr
x aims to synthesize the original night-

time image Irx from the invariant representation and we perform a pixel-level
l1-norm based reconstruction loss Lrec between Irx and Ix. Gt

x is responsible
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to generate plausible image Ĩy that looks like night images but under daytime
illumination. We leverage adversarial training through one domain-specific dis-
criminator Dy and compute the adversarial loss Ladv (same as the one in Cycle-
GAN [28]), which aims to distinguish the random real night image Iy and the

synthesized night image Ĩy. Then Ey extracts the domain-invariant feature z̃x
from Ĩy. Here, we perform a perceptual loss Lper (to be detailed in 3.2) between

z̃x and zx to force Ix and Ĩy to have similar content representation. Finally

we obtain the reconstructed night image Îx using the translation decoder Gt
x.

The cycle-consistency loss Lcyc is computed between Îx and Ix. Note, here we
omit the reconstruction decoder Gr

y, which is used to reconstruct the day image
based on the domain-invariant feature zy. Moreover, we adopt one additional
adversarial domain classifier Dd, which has two branch outputs: one for adver-
sarial training and another for domain classification to obtain the cross-entropy
classification loss Lcls based on the content representations. The total loss of
ForkGAN is a weighted sum of all the losses mentioned above:

L(E,Gr, Gt) = Ladv + Lcls + Lper + γLcyc + εLrec, (1)

and we set γ = ε = 10 in our experiments. With the total loss, the three com-
ponents E, Gr, and Gt are optimized together so that the learned model is
unbiased and can disentangle the domain-invariant content and domain-specific
style. During inference time, our ForkGAN provides a two-stage translation pro-
cedure as shown in Fig. 2. Take night-to-day translation as an example, the input
night image is translated to a daytime image using Ex and Gt

y, and the output
is regarded as input of the refinement stage. Ey and Gr

y synthesize more precise
translation output, which gives the final output of our ForkGAN.

3.2 ForkGAN - Disentanglement Stage

Previous Cycle-GAN based methods target to preserve the appearance of input
images through an indirect pixel-level cycle-consistency loss and generate plau-
sible translated image by leveraging adversarial loss to the translated images.
However, some weak but informative domain-invariant characteristics are usu-
ally ignored during translation stage. Sometimes, the generator F : X −→ Y
can fool the discriminator and minimize the adversarial loss by changing the
global conditions that dominate more pixels, while ignoring local features such
as cars and pedestrians. This leads to a trivial translation solution that throws
away some informative signals. In the opposite direction, G : Y −→ X has a
strong ability to remap the translated image to the original domain under a
strong pixel-level cycle-consistency loss. In the two stages, there is no guarantee
that the domain-invariant and domain-specific feature can be disentangled. Our
fork-shape generator can achieve better disentanglement because:

1) E aims to extract the domain-invariant content and discard the domain-
specific style. Gr and Gt target to reload the style representation of the source
and target domain separately. The three components have same parameter quan-
tity, which ensures comparable network capacity so that there is no explicit bias
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or dependency among the three components. If E is too weak and fails to extract
the informative content, the reconstruction loss Lrec is large. If the domain-
invariant representation zx is still mixed with the domain-specific information,
the translation decoder will fail to generate reasonable translated output.

2) We impose a perceptual loss as

Lper = τ(

N∑
n=1

λn||Φn(z̃x))− Φn(zx)||1), (2)

which makes z̃x perceptually similar to zx (designed according to the perceptual
loss in [4]). Here, Φn denotes the feature extractor at the nth level of the pre-
trained VGG-19 network on ImageNet. The hyper-parameter λn controls the
influence of perceptual loss at different levels and here we set λn all 1. Different
from the way perceptual loss is typically used (feeding image data to the VGG
network), we rearrange the feature maps of zx and z̃x through bilinear interpo-
lation to fit into only the last three layers of VGG. Such a modification enables
an effective perceptual consistency check between zx and z̃x at the feature level.
If Ex and Ey fail to eliminate the domain-specific information completely, the
perceptual loss between zx and z̃x will be large. The perceptual loss can also
help preserve the content information during translation stage.

3) The adversarial domain classifier targets to distinguish the real/fake distri-
bution and classify the content representation. We aim to match the distribution
of z and z̃ through adversarial training. Specifically, we assign an opposite label
to z and z̃ to implement an classification training to obtain Lcls. We perform
the classification loss using both z and z̃. If the classifier could not distinguish
which domain the content representation is from, it indicates that the extracted
representation does not carry any domain-specific style information.

Based on above reasons, the design of our model and training objectives can
provide strong constraints to achieve disentanglement.

3.3 ForkGAN - Refinement Stage

In the fork-shape module, the generator has two branches: the translation branch
and the reconstruction branch. We apply an additional refinement stage to the
translated output using autoencoder Ey and reconstructions decoder Gr

y. This
pair is trained during disentanglement stage and therefore the refinement does
not introduce new parameters. During this stage, the reconstruction branch Gr

y

can refine the fake outputs (Ĩx and Ĩy) by knowledge learned from reconstruct-
ing the real images, thus generating more realistic images and strengthening
weak signals. We adopt additional pixel-wise Gaussian noise disturbance to the
domain-invariant content representation z to improve the robustness of the re-
construction branch and make it less input-sensitive. We also hope that the
reconstructed decoder can generate complementary information from additional
noise even if some domain-invariant content feature is missed. In this way, the
two-stage translation shown in Fig. 2 can obtain better translation performance
even in adverse environment.
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3.4 Dilated Convolution & Multi-scale Discriminator Architecture

Considering the occlusion and reflection of images captured in adverse weathers,
it is difficult to recognize the objects essential to the task of navigation (e.g.
traffic signs, lanes and other vehicles). A possible solution is to adopt a large
receptive field to alleviate the occlusion issue. To do that, we use dilated residual
networks [26] for the generator with fewer parameters. The dilated convolution
can help the three components of our generator understand the relationship of
different parts. To achieve high-resolution image-to-image translation, we adopt
the multi-scale discriminator architecture [25, 12, 16] to improve the ability to
distinguish the fake images and real images. The proposed architecture could
fuse the information from multiple scales and generate more realistic outputs.

4 Experiments

4.1 Datasets and evaluation metrics

Datasets: Alderley is originally proposed for the SeqSLAM algorithm [19],
which collected the images for the same route twice: once on a sunny day and
another time on a stormy rainy night. Every frame in the dataset is GPS-tagged,
and thus each nighttime frame has a corresponding daytime frame. The images
collected at nighttime are blurry with a lot of reflections, which render the front
vehicles, lanes and traffic signs difficult to be recognized. For this dataset, we use
the first consecutive four fifths for training and others for evaluation. Since this
dataset has day-night correspondences, we use it for quantitative evaluation on
image localization task. Unfortunately, it doesn’t provide ground-truth annota-
tions for semantic segmentation and object detection, so we use another dataset
instead for those two tasks. BDD100K [27] is a large scale high-resolution au-
tonomous driving dataset, which collected 100,000 video clips in multiple cities
and under various conditions. For each video, it selects a key frame to provide de-
tailed annotations (such as the bounding box of various objects, the dense pixel
annotation, the daytime annotation and so on). We reorganized this dataset ac-
cording to the annotation, and obtained 27,971 night images for training and
3,929 night images for evaluation. We obtained 36728/5258 train/val split for
day images. We inherit the data split from the BDD100K dataset. We perform
semantic segmentation and object detection on this dataset.

Image Quality Metric: FID [9] evaluates the distance between the real
sample distribution and the generated sample distribution. Lower FID score
indicates higher image generation quality.

Vision Task Metrics: For Localization: SIFT [18] is good measure to
find the feature matching points between two images. We measure the localiza-
tion performance by the SIFT interesting points matching. Semantic Segmen-
tation: Intersection-over-Union(IoU) is a commonly used metric for semantic
segmentation. For each object class, the IoU is the overlap between predicted
segmentation map and the ground truth, divided by their union. In the case of
multiple classes, we take the average IoU of all classes (i.e., mIoU) to indicate
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the overall performance of the model. Object Detection: We use mean aver-
age precision (mAP) to evaluate the performance and also report the average
precision scores for individual classes to have a more thorough evaluation.

4.2 Experiment settings and implementation details

We compare our proposed method with other state-of-the-art image transla-
tion methods such as UNIT [17], CycleGAN [28], MUNIT [12], DRIT [16],
UGATIT [15] and StarGAN [1]. Additionally, we also compare with low-light
enhancement methods such as EnlightenGAN [14] and ToDayGAN [1]. We fol-
low the instructions of those methods and make a fair setting for comparison.

The encoder E contains 3 Conv-Ins-ReLU modules and 4 dilated residual
blocks, while both reconstructed decoder Gr and the translated decoder Gt have
4 dilated residual blocks and 3 Deconv-Ins-ReLU modules followed by a Tanh
activity function. All the domain-specific discriminators adopt the multi-scale
discriminator architecture and we set the number of scales as 2. For the adver-
sarial domain classifier, the backbone has 4 Conv-Ins-ReLU blocks, the adversar-
ial branch has one additional convolution layer to get adversarial output, while
the classification branch has one more fully-connected layer to obtain a domain
classification output. We adopt Adam optimizer and set learning rate to 0.0002.

4.3 Localization by SIFT point matching

We aim to perform translation at an extremely difficult setting on Alderley
dataset. Fig. 3 shows the qualitative translation result comparisons. UNIT and
MUNIT fail to perform reasonable translation and generate plausible objects.
DRIT has lost the detailed information and missed some objects after domain
translation. The result of EnlightenGAN fails to provide meaningful visual infor-
mation and it only changed the illumination slightly. ToDayGAN and UGATIT
obtain better translation results and have captured the visual objects in the
darkness. But they cannot preserve the visual objects (e.g., traffic signs and
cars) well. In contrast, our method has stronger ability to capture these weak
signals and preserve them better. For this dataset, we perform experiments using
512*256 resolution. We compute the number of SIFT matching points between
the translated daytime images and the corresponding natural daytime images.
Table 1 reports the quantitative comparison. Our ForkGAN obtains the best
SIFT result through precise night-to-day image translation. It has also achieved
the best image generation quality with lowest FID score. By improving the abil-
ity to maintain and enhance the SIFT matching, it can benefit place recognition
and visual localization.

Ablation studies Several experiments are designed for ablation studies. Firstly,
we remove the Fork-shape architecture (denoted as w/o Fork-shape) of the gen-
erator, and follow the setting of Cycle-GAN methods to optimize the model. The
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Fig. 3. The visual/qualitative translation result comparison of different methods.
Please zoom in to check more details on the content and quality. The parts covered by
red and green boxes show the enlarged cropped region in the corresponding image.

Table 1. Evaluation metric results of different methods for night → day translation
task on Alderley dataset [19]. The original denotes the scores of the original real night
images. FID reports the visual image quality (lower is better) while SIFT reports the
localization performance (higher is better).

Method EnlightenGAN [14] UNIT [17] MUNIT [12] CycleGAN [28] DRIT [16]

FID / SIFT 249 / 2.00 155 / 2.68 138 / 2.75 167 / 3.36 145 / 3.71

Method StarGAN [5] UGATIT [15] ToDayGAN [1] ForkGAN Original

FID / SIFT 117 / 3.28 170 / 2.51 104 / 4.14 61.2 / 12.1 210 / 3.12

result generated by the vanilla generator has artifacts on cars as there is no guar-
antee on the disentanglement between the domain-invariant and domain-specific
information. Then we investigate the effectiveness of the Fork-shape generator
itself only (with a name of “Fork-shape”). Note, we do not compute Lper and
the adversarial domain classification loss Lcls in this setting. Due to the recon-
struction loss, the synthesized images have fewer artifacts having all but the
Fork-shape. Based on this, we aim to explore the improvement from the dilated
residual blocks (DRB for abbreviation) by evaluating “Fork-shape+DRB”. A
larger receptive field can help the generator to better capture the objects in the
dark. Then we adopt a multi-scale discriminator architecture (MSD for abbrevi-
ation), here we set n = 2. As reported in Table 2, the MSD architecture can also
lead to the improvement on FID and SIFT matching (as shown by the results
of “Fork-shape+DRB+MSD”). In the next experiment, we use everything we
have covered for training ForkGAN, and just exclude the refinement stage when
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Table 2. Quantitative comparisons for ablation studies on Alderley dataset. [19]

Method w/o Fork-shape Fork-shape Fork-shape+DRB

FID / SIFT 146 / 4.26 131 / 7.12 113 / 8.12

Fork-shape+DRB+MSD w/o refinement w/ shared decoders ForkGAN

95.3 / 9.14 70.7 / 11.5 73.8/ 9.29 61.2 / 12.1

Fig. 4. Visual results for ablation studies on Alderley. Red boxes highlight some details.

we use it for testing, which is denoted by “w/o refinement”. As shown in Fig. 4
and Table 2, adding Lper and Lcls to “Fork-shape+DRB+MSD” can achieve
better disentanglement, which leads to significantly better translation outputs.
Finally, we apply the “ForkGAN” with the refinement stage at the testing stage
and observe that the refinement can greatly improve the detailed part genera-
tion. Last but not the least, we also evaluate a twisted version of ForkGAN by
letting the translation decoder and reconstruction decoder of the same domain
(e.g., Gt

y and Gr
y) share the same parameters (basically using the same decoder

instead of two different ones), and have it denoted by “w/ shared decoders”.
As showed, it results in a significant performance drop when compared with
“ForkGAN” which doesn’t have shared decoders. The two decoders for the same
domain look similar, but they are constrained by different losses and thus have
different duties, which complement each other. Putting the loads on one single
decoder makes it much harder to achieve the goal and leads to inferior model.
All the quantitative comparisons of above different settings are listed in Table 2
and qualitative ones are given in Fig. 4.

4.4 Semantic segmentation

Moreover, we perform high-resolution (1024 × 512) night-to-day image transla-
tion to boost the semantic segmentation performance. Fig. 5 presents the trans-
lated results and corresponding segmentation outputs of various methods. For
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Fig. 5. The visual translation (the first row) and segmentation performance (the second
row) comparison of different methods, with models pre-trained on Cityscapes [6].

semantic segmentation, we use a pre-trained Deeplab-v3 model 4 on Cityscapes
dataset [6]. The BDD100K dataset provides segmentation ground truth of 137
night images. So we compute the IOU metric between the segmentation outputs
of the 137 translated daytime images and corresponding segmentation ground
truth. The quantitative comparison is listed in Table 3. Since there is no night
image on Cityscapes dataset, the segmentation performance of night image has
a drastic performance drop shown in Table 3. The mIoU is only 7.03 percent if
we directly perform the semantic segmentation on the real night images. Night-
to-day translation model provides a powerful tool to improve segmentation per-
formance, where stronger translation model should lead to larger performance
boost. As shown, our ForkGAN achieves the highest mIoU among all the meth-
ods, almost doubling the original night image segmentation result. We also ob-
serve that the synthesized daytime images produced by some comparative trans-
lation methods obtain worse segmentation performance than the original night
images. MUNIT and DRIT methods both fail to synthesize plausible outputs
from challenging night images and thus obtain poor mIoU scores. ToDayGAN,
while achieving reasonable night-to-day translation, obtains higher mIoU score
than original night images. Our ForkGAN preserves detailed information during
night-to-day image translation, especially the small traffic signs and pedestri-
ans. So our method can boost the segmentation performance by preserving and
enhancing the crucial detailed information. To quantitatively compare the trans-
lation quality, we also compute the FID score to measure the distance between
the generated sample distribution and the real image distribution in Table 3.

4 https://github.com/srihari-humbarwadi/DeepLabV3 Plus-Tensorflow2.0
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Table 3. Quantitative comparison of different methods for night→ day translation task
on BDD100K dataset [27]. The original denotes the outputs of the original real night
images. FID reports the visual image quality (lower is better) while mIoU (percentage)
reports the segmentation performance (higher is better).

Method EnlightenGAN [14] UNIT [17] MUNIT [12] CycleGAN [28] DRIT [16]

FID / mIoU 90.3 / 6.03 62.1 / 2.47 61.1 / 2.44 51.7 / 1.88 53.1 / 2.45

Method StarGAN [5] UGATIT [15] ToDayGAN [1] ForkGAN Original

FID / mIoU 68.3 / 6.63 72.2 / 3.83 43.8 / 8.19 37.6 / 14.4 101 / 7.03

4.5 Object detection with data augmentation

In autonomous driving, it is laborious and sometimes difficult to collect abundant
data with annotations in a wide variety of weather and illumination conditions
for object detection. Most of available datasets contain images mostly from day-
time driving. Models trained on those datasets are subject to performance degra-
dation once they are tested on a different domain such as nighttime. One possible
solution is to augment nighttime data with annotated daytime images through
domain translation such that we can make the most use of available annotations.
Our ForkGAN can also perform day-to-night translation to aid off-the-shelf de-
tection model to adapt to different domains. We compare our ForkGAN with the
most related ToDayGAN on BDD100K dataset in two settings. In both settings,
we have unlabelled images from both day and night domains for training image
translation network, as well as bounding box annotations for daytime images for
training detection network, either with real or translated images:

1) Day Labels Only - No nighttime labeled image is available at training
time: We use ForkGAN to translate daytime images to night images and preserve
the corresponding bounding boxes. Then we train an object detection network
on those translated nighttime images. For comparison, we also train two separate
detection networks using raw daytime images(Day Real) and translated night-
time images by ToDayGAN. The quantitative results are shown in Table 4. We
observe that ForkGAN can improve the detection performance on night images.
Visualization of detection results are shown in Fig. 6. The ability to detect small
traffic signs in dark has been improved through domain adaptation.

2) Day + Night Labels - Both nighttime and daytime labeled images
are available for training: We again apply ForkGAN to translate the daytime
images to night images for data augmentation. The detection network is trained
on both real and translated night images. We also report the performance of
the detection network trained only on real night images(Night Real) and night
image augmentation with ToDayGAN(Night+ToDayGAN ). Fig. 6 and Table 4
show the visual and quantitative comparison. By combining with translated
night images, the detection performance has been improved, which indicates the
detection task can benefit from domain translation.
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Table 4. Comparisons for object detection on 3,929 validation nighttime images. The
first three rows show the results from setting 1), while the rest are from setting 2). We
apply faster-rcnn-r50-fpn-1x detector based on MMDetection [3] in all the experiments.

Method mAP person rider car bus truck bike motor traffic light traffic sign

Day(Real) 22.1 26.1 14.3 37.5 29.8 30.7 18.5 16.3 14.6 33.1

+ToDayGAN 19.5 23.5 10.4 35.9 32.5 29.4 16.0 11.0 9.0 26.7

+ForkGAN 22.9 26.3 13.0 41.2 33.3 32.1 16.4 15.9 16.2 34.5

Night(Real) 23.9 26.6 13.0 42.0 33.8 35.0 16.7 16.9 18.2 36.0

Night+ToDayGAN 24.2 26.9 14.1 42.3 36.5 36.8 20.2 19.1 17.6 35.7

Night+ForkGAN 26.2 28.1 16.1 42.5 37.8 38.7 22.1 21.9 18.3 36.2

Fig. 6. Visual comparison of detection results on BDD100K, where “Day”/“Night”
denotes training with daytime/nighttime images. Areas pointed by yellow arrows are
worth attention. ForkGAN can improve the detection of small objects. We show all the
results of person, rider, car, bus, truck, bike, motor, traffic light and traffic signs.

5 Conclusion and Future Work

We propose a novel framework ForkGAN to achieve unbiased image transla-
tion, which is beneficial to multiple vision tasks: localization/retrieval, semantic
segmentation and object detection in adverse conditions. It disentangles domain-
invariant and domain-specific information through a fork-shape module, en-
hanced by an adversarial domain classifier and an across-translation perceptual
loss. Extensive experiments have demonstrated its superiority and effectiveness.
Possible future works include designing a multi-task learning network to share
the backbone of different vision tasks and performing object detection in the
domain-invariant content space, which can be more compact and more efficient.
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