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Arbitrary Style Transfer

natural images (summer -> winter) real-world scenes (day -> night)

Semantic Image Synthesis

street scene (mask -> image)

Multi-Modal Image Synthesis

controllable styles by a single model (sunny -> diverse weathers/times)

Fig. 1. Our framework is simple and versatile for various image-to-image translation
tasks. For unsupervised arbitrary style transfer, diverse scenarios (e.g., natural images,
real-world scenes, artistic paintings) can be handled. For supervised semantic image
synthesis, our method is robust to different scenes (e.g., outdoor, street scene, indoor).
Multi-modal image synthesis is feasible by a single model with controllable styles.

Abstract. We introduce a simple and versatile framework for image-to-
image translation. We unearth the importance of normalization layers,
and provide a carefully designed two-stream generative model with newly
proposed feature transformations in a coarse-to-fine fashion. This allows
multi-scale semantic structure information and style representation to be
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effectively captured and fused by the network, permitting our method to
scale to various tasks in both unsupervised and supervised settings. No
additional constraints (e.g., cycle consistency) are needed, contributing
to a very clean and simple method. Multi-modal image synthesis with
arbitrary style control is made possible. A systematic study compares
the proposed method with several state-of-the-art task-specific baselines,
verifying its effectiveness in both perceptual quality and quantitative
evaluations. GitHub: https://github.com/EndlessSora/TSIT.

1 Introduction

Image-to-image translation [16] aims at translating one image representation to
another. Recent advances [10,30, 21,22, 32|, especially Generative Adversarial
Networks (GANs) [10], have made remarkable success in various image-to-image
translation tasks. Previous studies usually present specialized solutions for a
specific form of application, ranging from arbitrary style transfer [53, 44,13, 27,
14,24, 49| in the unsupervised setting, to semantic image synthesis [16, 4, 34, 41,
33,28] in the supervised setting.

In this study, we are interested in devising a general and unified framework
that is applicable to different image-to-image translation tasks without degrada-
tion in synthesis quality. This is non-trivial given the different natures of different
tasks. For instance, in certain conditional image synthesis tasks (e.g., arbitrary
style transfer), paired data are usually not available. Under this unsupervised
setting, translation task demands additional constraints on cycle consistency [53,
44,19, 27], semantic features [39], pixel gradients [1], or pixel values [36]. In se-
mantic image synthesis (i.e., translation from segmentation labels to images),
training pairs are available. This task is more data-dependent and typically needs
losses to minimize per-pixel distance between the generated sample and ground
truth. In addition, specialized structures [4, 41,33, 28] are required to maintain
spatial coherence and resolution. Due to the different needs, existing methods
exploit their own specially designed components. It is difficult to cross-use these
components or integrate them into a unified framework.

To address the aforementioned challenges, we propose a Two-Stream Image-
to-image Translation (TSIT) framework, which is versatile for various image-to-
image translation tasks (see Fig. 1). The framework is simple as it is based purely
on feature transformation. Unlike previous approaches [33, 13| that only consider
either semantic structure or style representation, we factorize both the structure
and style in multi-scale feature levels via a symmetrical two-stream network.
The two streams jointly influence the new image generation in a coarse-to-fine
manner via a consistent feature transformation scheme. Specifically, the content
spatial structure is preserved by an element-wise feature adaptive denormaliza-
tion (FADE) from the content stream, while the style information is exerted by
feature adaptive instance normalization (FAdalIN) from the style stream. Stan-
dard loss functions such as adversarial loss and perceptual loss are used, without
additional constraints like cycle consistency. The pipeline is applicable to both
unsupervised and supervised settings, easing the preparation of data.
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The contributions of our work are summarized as follows. We propose
TSIT, a simple and versatile framework, which is effective for various image-
to-image translation tasks. Despite the succinct design, our network is readily
adaptable to various tasks and achieves compelling results. The good perfor-
mance is achieved by 1) multi-scale feature normalization (FADE and FAdaIN)
scheme that captures coarse-to-fine structure and style information, and 2) a
two-stream network design that integrates both content and style effectively, re-
ducing artifacts and making multi-modal image synthesis possible (see Fig. 1). In
comparison to several state-of-the-art task-specific baselines [14, 49,4, 34, 41, 33,
28], our method achieves comparable or even better results in both perceptual
quality and quantitative evaluations.

2 Related Work

Image-to-image translation. Existing methods can be classified into two
categories: unsupervised and supervised. With only unpaired data, unsuper-
vised image-to-image translation problem is inherently ill-posed. Additional con-
straints are needed on e.g., cycle consistency [53,44, 19, 27], semantic features
[39], pixel gradients [1], or pixel values [36]. In contrast, supervised methods, such
as pix2pix [16], are more data-dependent, requiring well-annotated paired train-
ing samples. Subsequent approaches [4, 34,41, 33, 28] extend the supervised prob-
lem for generating high-resolution images or keeping effective semantic meaning.
Limited by learning only one-to-one mapping between two domains, some of
the GAN-based methods [53, 44,19, 27] suffer from generating images with low
diversity. Recent studies explore more deeply into both multi-domain translation
[6,26] and multi-modal translation [14,24,48], significantly increasing genera-
tion diversity. MUNIT [14] is a representative method that disentangles domain-
invariant content and domain-specific style representation, enriching the synthe-
sized images. Multi-mapping translation is defined in a very recent work, DMIT
[49], which is designed to capture multi-modal image nature in each domain.
Existing image-to-image translation methods lack the scalability to adapt to
different tasks under diverse difficult settings. Different demands of unsupervised
and supervised settings oblige previous methods to exploit customized modules.
Cross-using these components will be suboptimal due to either degradation in
quality or introduction of additional constraints. It is non-trivial to integrate
them into a single framework and improve robustness. In this study, we design
a two-stream network with newly proposed feature transformations inspired by
[33] and [13]. Our method is succinct yet able to link various tasks.
Arbitrary style transfer. Style transfer is closely relevant to image-to-image
translation in the unsupervised setting. Style transfer aims at retaining the con-
tent structure of an image, while manipulating its style representation adopted
from other images. Classical methods [9,17,3,8] gradually improve this task
from optimization-based to real-time, allowing multiple style transfer during in-
ference. Huang et al. introduce AdaIN [13], an effective normalization strategy
for arbitrary style transfer. Several studies [45, 51,43, 5,23, 29, 38] improve styl-
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ization via wavelet transforms [45], graph cuts [51], or iterative error-correction
[38]. Besides, most collection-guided [14] style transfer methods are GAN-based
[63,44,27,14, 24, 49], showing impressive results.

Previous works usually consider either content or style information. In con-
trast, our framework succeeds in seeking a balance between content and style,
and adaptively fuses them well. The proposed method achieves user-controllable
multi-modal style manipulation by only a single model. Compared to customized
style transfer methods, our approach achieves better synthesis quality in many
scenarios including natural images, real-world scenes, and artistic paintings.
Semantic image synthesis. We define semantic image synthesis as in [33], aim-
ing at synthesizing a photorealistic image from a semantic segmentation mask.
Semantic image synthesis is a special form of supervised image-to-image transla-
tion. The domain gap of this task is large. Therefore, keeping effective semantic
information to enhance fidelity without losing diversity is challenging.

Pix2pix [16] first adopts conditional GAN [30] in the semantic image syn-
thesis task. Pix2pixHD [41] contains a multi-scale generator and multi-scale dis-
criminators to generate high-resolution images. SPADE [33] takes a noise map
as input, and resizes the semantic label map for modulating the activations in
normalization layers by a learned affine transformation. CC-FPSE [28] employs
a weight prediction network for generator. A semantics-embedding discriminator
is used to enhance fine details and semantic alignments between the generated
samples and the input semantic layouts. In addition to these GAN-based meth-
ods, CRN [4] applies a cascaded refinement network with regression loss as the
supervision. SIMS [34] is a semi-parametric method, retrieving fragments from
a memory bank and refining the canvas by a refinement network.

Different from prior works, we design a symmetrical two-stream framework.
The network learns feature-level semantic structure information and style repre-
sentation instead of directly resizing the input mask like SPADE [33]. Coarse-to-
fine feature representations are learned by neural networks, adaptively keeping
high fidelity without diminishing diversity.

3 Methodology

We consider three key requirements in formulating a robust and scalable method
to link various tasks: 1) Both semantic structure information and style repre-
sentation should be considered and fused adaptively. 2) The content and style
information should be learned by networks in feature level instead of in image
level to fit the nature of diverse semantic tasks. 3) The network structure and
loss functions should be simple for easy training without additional constraints.

3.1 Network Structure

Based on the aforementioned considerations, we design a Two-Stream Image-
to-image Translation (TSIT) framework, as illustrated in Fig. 2. TSIT consists
of four components: content stream, style stream, generator, and discriminators
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Fig. 2. The proposed Two-Stream Image-to-image Translation (TSIT) framework. The
multi-scale patch-based discriminators are omitted. A Gaussian noise map is taken as
the latent input for the generator. The feature representations of the content and style
images are extracted by the corresponding streams for multi-scale feature transforma-
tions. The symmetrical networks fuses semantic structure and style representation in
an end-to-end training. Submodules of our network are shown in Fig. 3.

(omitted in Fig. 2). The first three main components are fully convolutional and
symmetrically designed. The details of the submodules, including content/style
residual block, FADE residual block, FADE module in the FADE residual block,
are as shown in Fig. 3. We will discuss them separately in this section.

Content /style stream. Unlike the traditional conditional GAN [30], we place
the two-stream networks, i.e., content stream and style stream, on each side of
the generator (see Fig. 2). These two streams are symmetrical with the same
network structure, aiming at extracting corresponding feature representations
in different levels. We construct content/style stream based on standard resid-
ual blocks [11]. We call them content/style residual blocks. As shown in Fig 3
(a), each block has three convolutional layers, one of which is designed for the
learned skip connection. The activation function is Leaky ReLU. The function of
content/style stream is to extract features and feed them to the corresponding
feature transformation layers in the generator. Multi-scale content/style repre-
sentation in feature levels can be learned by content/style stream, adaptively
fitting different feature transformations.

Generator. The generator has a completely inverse structure w.r.t. the con-
tent/style stream. This is intentionally designed to consistently match the level
of semantic abstraction at different feature scales. A noise map is sampled from a
Gaussian distribution as the latent input, and the feature maps from correspond-
ing layers in content/style stream are taken as multi-scale feature inputs. The
proposed feature transformations are implemented by a FADE residual block
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(a) Content/Style ResBlk (b) FADE ResBlk (c) FADE

Fig. 3. Submodules of our framework. (a) is a content/style residual block in the sym-
metrical content/style streams. (b) is a FADE residual block in the generator. (c) is a
FADE module in the FADE residual block. It performs element-wise denormalization
by modulating the normalized activation using a learned affine transformation defined
by the modulation parameters v and .

(Fig. 3 (b)) and a FAdaIN module. In the FADE residual block, we use an in-
verse architecture w.r.t. the content/style residual block and replace the batch
normalization [15] layer with the FADE module (Fig. 3 (¢)). The FADE module
performs element-wise denormalization by modulating the normalized activation
using a learned affine transformation defined by the modulation parameters ~
and B. The FAdaIN module is used to exert style information through feature
adaptive instance normalization. More discussions are given in Sec. 3.2.

The entire image generation process is performed in a coarse-to-fine man-

ner. In particular, multi-scale content/style features are injected to refine the
generated image constantly from high-level latent code to low-level image repre-
sentation. Semantic structure and style information are learnable and effectively
fused in an end-to-end training.
Discriminators. We exploit the standard multi-scale patch-based discrimina-
tors (omitted in Fig. 2) in [41, 33]. Three regular discriminators with an identical
architecture are included to discriminate images at different scales. Despite the
same structure, patch-based training allows the discriminator operating at the
coarsest scale to have the largest receptive field, capturing global information of
the image. Whereas the one operating at the finest scale has the smallest recep-
tive field, making the generator produce better details. Multi-scale patch-based
discriminators further improve the robustness of our method for image-to-image
translation tasks in different resolutions. Besides, the discriminators also serve
as feature extractors for the generator to optimize the feature matching loss.

3.2 Feature Transformation

We propose a new feature transformation scheme, considering both semantic
structure information and style representation, and fusing them adaptively. Let
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x¢ be the content image and z*® be the style image. C'S, SS, G, D denote content
stream, style stream, generator, and discriminators, respectively. Sampled from a
Gaussian distribution, zy € Z is a noise map as the latent input for the generator
(Fig. 2). Let z; € {20, 21, 22, ..., 2x } be the feature map after i-th residual block
in the generator, with k denoting the the total number of residual blocks (i.e.,
the upsampling times in the generator). Let ff € {f§, ff, f5, ..., f{} represent
the corresponding feature representations extracted by the content stream (Fig.
2), f2 {5, i, 5, ..., fi } with the similar meaning in the style stream.
Feature adaptive denormalization (FADE). Our method is inspired by
spatially adaptive denormalization (SPADE) [33]. Different from SPADE that
resizes a semantic mask as its input, we generalize the input to multi-scale feature
representation f{ of the content image 2. In this way, we fully exploit semantic
information captured by the content stream CS.

Formally, we define N as the batch size, L; as the number of feature map
channels in each layer. H; and W; are height and width, respectively. We first
apply batch normalization [15] to normalize the generator feature map z; in a
channel-wise manner. Then, we modulate the normalized feature by using the
learned parameters scale v; and bias §;. The denormalized activation (n € N,
leL;, he H,weW,)is:

b 20— ik 1w
’yi7 e 1711 +617 ’ ) (1)
g;
where ,ué and Jé are the mean and standard deviation, respectively, of the gen-
erator feature map z; before the batch normalization [15] in channel I:

1 $ b
1 n,t,h,w 2 2
”5‘\/an”(%” ) =) (3)

The denormalization operation is element-wise, and the parameters 'yf’h’w
and ﬂé’h”w are learned by one-layer convolutions from f{ in the FADE module
(see Fig. 3 (c)). Compared to previous conditional normalization methods [8,
13, 33], FADE experiences more perceptible influence from coarse-to-fine feature
representations, thus it can better preserve semantic structure information.
Feature adaptive instance normalization (FAdalIN). To better fuse style
representation, we introduce another feature transformation, named feature adap-
tive instance normalization (FAdaIN). This method is inspired by adaptive in-
stance normalization (AdaIN) [13], with a generalization to enable the style
stream 5SS to learn multi-scale feature-level style representation f; of the style
image x° more effectively.

We use the same notation z; to represent the feature map after i-th FADE
residual block in the generator. FAdaIN adaptively computes the affine param-
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eters from the corresponding style feature f7 with the same scale from SS:

FAdN (s, 17) = o (70) (220 ) ). 0
o (i)
where p (z;) and o (z;) are the mean and standard deviation, respectively, of z;.
Exploiting FAdalN, coarse-to-fine style features at different layers can be
fused adaptively with the corresponding semantic structure features learned by
FADE, allowing our framework to be trained end-to-end and versatile to different
tasks. Furthermore, owing to the effectiveness of FAdalN in capturing multi-scale
style feature representations, multi-modal image synthesis is made possible with
arbitrary style control.

3.3 Objective

We use standard losses in our objective function. Following [33, 28], we adopt a
hinge loss term [25,31,50] as our adversarial loss. For the generator, we apply
hinge-based adversarial loss, perceptual loss [17], and feature matching loss [41].
For the multi-scale discriminators, only hinge-based adversarial loss is used to
distinguish whether the image is real or fake. The generator and discriminator
are trained alternately to play a min-max game. The generator loss L5 and the
discriminator loss £p can be written as:

Lo=-E[D(g)]+ApLp(g,2°) + Arpm L (9,2°), (5)

Lp =—E[min(—1+ D (2°),0)] — E[min (-1 — D(g),0)], (6)

where g = G (29, 2¢, £°) denotes the generated image, zp, ¢, ° denote the input
noise map in latent space, the content image, and the style image, respectively.
Lp is the perceptual loss [17] that minimizes the difference between the feature
representations extracted by VGG-19 [17] network. Lgjs is the feature matching
loss [41] that matches the intermediate features at different layers of multi-scale
discriminators. Ap and Apj; are the corresponding weights.

The simple objective functions make our framework stable and easy to train.
Thanks to the two-stream network, the typical KL loss [21, 49, 33, 28] for multi-
modal image synthesis becomes optional. Despite the simplicity, TSIT is a highly
versatile tool, readily adaptable to various image-to-image translation tasks.

4 Settings

Implementation details. We use Adam [20] optimizer and set 8; = 0, 52 =
0.9. Two time-scale update rule [12] is applied, where the learning rates for
the generator (including two streams) and the discriminators are 0.0001 and
0.0004, respectively. We exploit Spectral Norm [31] for all layers in our network.
We adopt SyncBN and IN [40] for the generator and the multi-scale discrim-
inators, respectively. For the perceptual loss [17], we use the feature maps of
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relul 1, relu2.1, relu3_1, relud_1, relu5_1 layers from a pretrained VGG-19
[37] model, with the weights [1/32, 1/16, 1/8, 1/4, 1]. For the feature matching
loss [41], we select features of three layers from the discriminator at each scale.
All the experiments are conducted on NVIDIA Tesla V100 GPUs. Please refer
to our supplementary material for additional implementation details.
Applications. The proposed framework is versatile for various image-to-image
translation tasks. We consider three representative applications of conditional
image synthesis: arbitrary style transfer (unsupervised), semantic image synthe-
sis (supervised), and multi-modal image synthesis (enriching generation diver-
sity). Please refer to our supplementary material for details of our application
exploration.

Datasets. For arbitrary style transfer, we consider diverse scenarios. We use
Yosemite summer — winter dataset (natural images) provided by [53]. We clas-
sify BDD100K [47] (real-world scenes) into different times and perform day —
night translation. Besides, we use Photo — art dataset (artistic paintings) in
[63]. For semantic image synthesis, we select several challenging datasets (i.e.,
Cityscapes [7] and ADE20K [52]). For multi-modal image synthesis, we further
classify BDD100K [47] into different time and weather conditions, and perform
controllable time and weather translation. The details of the datasets can be
found in the supplementary material.

Evaluation metrics. Besides comparing perceptual quality, we employ the
standard evaluation protocol in prior works [14,2,18,33,28] for quantitative
evaluation. For arbitrary style transfer, we apply Fréchet Inception Distance
(FID, evaluating similarity of distribution between the generated images and
the real images, lower is better) [12] and Inception Score (IS, considering clar-
ity and diversity, higher is better) [35]. For semantic image synthesis, we strictly
follow [33, 28], adopting FID [12] and segmentation accuracy (mean Intersection-
over-Union (mloU) and pixel accuracy (accu)). The segmentation models are:
DRN-D-105 [46] for Cityscapes [7], and UperNet101 [42] for ADE20K [52].
Baselines. We compare our method with several state-of-the-art task-specific
baselines. For a fair comparison, we mainly employ GAN-based methods. In the
unsupervised setting, MUNIT [14] and DMIT [49] are included, with the strong
ability to capture the multi-modal nature of images while keeping quality. In
the supervised setting, we compare against CRN [4], SIMS [34], pix2pixHD [41],
SPADE [33], and CC-FPSE [28].

5 Results

Arbitrary style transfer. The results of Yosemite summer — winter season
transfer are shown in Fig. 4. Baselines [14,49] tend to impose the color of the
style image (winter) to the whole content image (summer). Besides, MUNIT
sometimes introduces unnecessary artistic effects, and DMIT generates some
grid-like artifacts. In comparison, our generated results are clearer and more
semantics-aware spatially. The results of BDDI100K day — night time transla-
tion are shown in Fig. 5. Some objects (e.g., road sign, car) generated by MUNIT
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Fig. 4. Yosemite summer — winter season transfer results compared to baselines.

MUNIT DMIT Ours

Fig. 5. BDD100K day — night time translation results compared to baselines.

are too dark, and the whole image tends to have some unnatural colors. DMIT
introduces obvious artifacts to the car or sky. In contrast, our method produces
more photorealistic samples in this task. In photo — art style transfer, we choose
some hard cases to make a clear comparison (see Fig. 6) due to the very strong
ability of all the methods in this task. Our method can transfer the styles well
while effectively keeping the content structure. MUNIT tends to impose a homo-
geneous color to the image. Although DMIT achieves slightly better stylization
than our method in certain cases (in Row 3 of Fig. 6), it also brings some grid-like
distortions.

The quantitative evaluation results are shown in Table 1. Our approach
achieves better performance than baselines [14, 49] in all the tasks. We also note
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Photo Art MUNIT DMIT Ours

Fig. 6. Photo — art style transfer results compared to baselines.

Table 1. The FID and IS scores of our method compared to state-of-the-art methods in
arbitrary style transfer tasks. A lower FID and a higher IS indicate better performance.

summer — winter day — night photo — art
Methods FID | IS 1 FID | ISt FID | ISt
MUNIT [14]|| 118.225 2.537 110.011 2.185 167.314 3.961
DMIT [49] 87.969 2.884 83.898 2.156 166.933 3.871
Ours 80.138 2.996 79.697 2.203 165.561 4.020

that the gap is relatively small in photo — art style transfer, in line with the
close qualitative performance in this task (see Fig. 6).

Semantic image synthesis. We choose two state-of-the-art baselines, SPADE
[33] and CC-FPSE [28], to show some qualitative comparison results of semantic
image synthesis (Fig. 7). Our method demonstrates better perceptual quality
than these task-specific baselines. In street scene (Column 1), our method gen-
erates better details on key objects (car, pedestrian). In road scene (Column
2), SPADE generates atypical colors on the roads, while CC-FPSE produces
unnatural edges on the cars, hardly fitting the background (road). For outdoor
natural images (Column 3), all the methods share a similar generation quality.
Our method is slightly better due to less distortions on the grass. In indoor scene
(Column 4 and 5), SPADE and CC-FPSE produce obvious artifacts in some cases
(Column 5). In contrast, our method is more robust to diverse scenarios.

The quantitative evaluation results are shown in Table 2 (the values used for
comparison are taken from [33,28]). The proposed method achieves comparable
performance with the very strong specialized methods [4, 34,41, 33, 28] for se-
mantic image synthesis. Note that SIMS [34] yields the best FID score but poor
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Cityscapes Street Scene ADE20K Outdoor ADE20K Indoor

CC-FPSE SPADE Ground Truth Mask

Ours

Fig. 7. Semantic image synthesis results compared to baselines.

Table 2. The mloU, pixel accuracy (accu) and FID scores of our method compared to
state-of-the-art methods in semantic image synthesis tasks. A higher mIoU, a higher
pixel accuracy (accu) and a lower FID indicate better performance.

Cityscapes ADE20K
Methods mloU 1 accu T FID | mloU 1 accu T FID |
CRN [4] 52.4 77.1 104.7 22.4 68.8 73.3
SIMS [34] 47.2 75.5 49.7 N/A N/A N/A
pix2pixHD [41] 58.3 81.4 95.0 20.3 69.2 81.8
SPADE [33] 62.3 81.9 71.8 38.5 79.9 33.9
CC-FPSE [28] 65.5 82.3 54.3 43.7 82.9 31.7
Ours 65.9 94.4 59.2 38.6 80.8 31.6

segmentation performance on Cityscapes, because it stitches image patches from
a memory bank of training set while not keeping the exactly consistent position
in the synthesized image. Our approach achieves state-of-the-art segmentation
performance on Cityscapes and the best FID score on ADE20K, suggesting its
robustness to fit the nature of different image-to-image translation tasks.

Multi-modal image synthesis. We perform multi-modal image synthesis for
time and weather image-to-image translation (see Fig. 8) on BDD100K [47].
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Sunny -> Rainy

Sunny -> Night Sunny -> Snowy Sunny -> Cloudy
e

Content

Style

Generated

Fig. 8. BDD100K multi-modal image synthesis for different time and weather
translation results by a single model.

Cross Validation (Semantic Image Synthesis, Supervised)

Mask Ground Truth MUNIT Ours
N - -

£

Cross Validation (Arbitrary Style Transfer, Unsupervised)
Night SPADE Ours

Fig. 9. Cross validation of ineffectiveness of task-specific methods in inverse settings.

Training only a single model, we translate the images of weather sunny to differ-
ent times and weathers (i.e., night, snowy, cloudy, rainy). Our method effectively
adapts to different style control and keeps photorealistic generation quality. Al-
though the weather snowy is not very obvious in BDD100K [47], our approach
successfully introduces some snow-like effects on trees and grounds (Column 2).
Cross validation. We also conduct experiments to evaluate the performance of
existing specialized methods in inverse settings (i.e., using unsupervised methods
to do semantic image synthesis / using supervised methods to perform arbitrary
style transfer). We selected two representative methods, MUNIT [14] and SPADE
[33]. Without modifying the architecture, we tuned the loss weights and tried
to get the best generation results. To ensure a fair comparison, we also tried to
compute perceptual loss with the content (day) image for SPADE to match the
setting of TSIT. Representative results of cross validation are shown in Fig. 9.
The proposed method shows much better results than baseline methods. MUNIT
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Content Style Full Model W/o CS W/o SS W/o FADE W/o FAdaIN

Sunny->  Sunny->  Sunny->

Fig.10. Ablation studies of key modules (i.e., content stream (CS), style
stream(SS)) and feature transformations in multi-modal image synthesis task.

fails to adapt to semantic image synthesis. SPADE loses details of key objects
and introduces very strong artifacts despite translating the color correctly.

Ablation studies. We present ablation studies of key modules (i.e., content
stream (CS), style stream(SS)) and the proposed feature transformations (see
Fig. 10. More ablation study results can be found in the supplementary ma-
terial). We perform multi-modal image synthesis to show the effectiveness of
different components. Our full model generates high-quality results (Column 3).
When we directly inject the resized content image without CS, the semantic
structure information becomes weak, leading to several artifacts in the sky (Col-
umn 4). Without SS, the model cannot perform multi-modal image synthesis at
all (Column 5). The style representation is dominated by the night style. When
we concatenate the feature maps of CS with the ones of the generator instead of
using FADE, the concatenation introduces too much content information, lead-
ing to several failure cases (e.g., sunny — night in Column 6). If we discard
FAdaIN by concatenating the feature maps of SS with the ones of the genera-
tor, the style becomes too strong, causing serious style regionalization problem
(Column 7).

6 Conclusion

We propose TSIT, a simple and versatile framework for image-to-image transla-
tion. The proposed symmetrical two-stream network allows the image generation
to be effectively conditioned on the multi-scale feature-level semantic structure
information and style representation via feature transformations. A systematic
study verifies the effectiveness of our method in diverse tasks compared to state-
of-the-art task-specific baselines. We believe that designing a unified and versa-
tile framework for more tasks is an important direction in the image generation
area. Incorporating unconditional image synthesis tasks and introducing more
variability into the two streams/latent space can be interesting future works.

Acknowledgements. This work is supported by the SenseTime-NTU Collabo-
ration Project, Singapore MOE AcRF Tier 1 (2018-T1-002-056), and NTU NAP.
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