
ProxyBNN: Learning Binarized Neural
Networks via Proxy Matrices

Xiangyu He1,2, Zitao Mo1, Ke Cheng1,2, Weixiang Xu1,2, Qinghao Hu1,
Peisong Wang1, Qingshan Liu4, and Jian Cheng1,2,3�[0000−0003−1289−2758]

1 NLPR, Institute of Automation, Chinese Academy of Sciences
2 School of Artificial Intelligence, University of Chinese Academy of Sciences

3 Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
{xiangyu.he, qinghao.hu, peisong.wang, jcheng}@nlpr.ia.ac.cn

4 Nanjing University of Information Science and Technology, Nanjing, China

Abstract. Training Binarized Neural Networks (BNNs) is challenging
due to the discreteness. In order to efficiently optimize BNNs through
backward propagations, real-valued auxiliary variables are commonly
used to accumulate gradient updates. Those auxiliary variables are then
directly quantized to binary weights in the forward pass, which brings
about large quantization errors. In this paper, by introducing an ap-
propriate proxy matrix, we reduce the weights quantization error while
circumventing explicit binary regularizations on the full-precision auxil-
iary variables. Specifically, we regard pre-binarization weights as a linear
combination of the basis vectors. The matrix composed of basis vectors is
referred to as the proxy matrix, and auxiliary variables serve as the coef-
ficients of this linear combination. We are the first to empirically identify
and study the effectiveness of learning both basis and coefficients to con-
struct the pre-binarization weights. This new proxy learning contributes
to new leading performances on benchmark datasets.
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1 Introduction

Binary embedding is a fundamental technique in machine learning applications,
such as retrival [12, 16], clustering [3, 19], matching [8, 38] and classification [9,
20]. The popular signum function quantizes data points to ±1, which enables
compact storage (i.e., 32× compression than floating point) and efficient bitwise
operations (i.e., replacing time-consuming inner-product with xnor-popcnt) [32].
However, sgn(·) is non-smooth with derivative 0 everywhere except at 0, which
makes gradient-driven optimizations incapable, especially for training BNNs.

Pioneer works present constructive training algorithms according to the sense
of growth of networks [30] and verify the information capacity of binary weight-
s [21]. Variational Bayes methods [43, 44] propose to train discrete multilayer
neural networks using Expectation Propagation (EP). Recent gradient-based
methods with Straight-Through-Estimator (STE) show that a linear backprop
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function for the non-linear activation surprisingly leads to promising results on
CIFAR-10 [9,20,49]. XNOR-Net [37] further introduces a scaling factor to relax
the binary constraint and show notable improvements on ImageNet dataset.
Regardless of their differences, a real-valued auxiliary variable is commonly
used to accumulate gradient updates and then binarized to ±1 at inference
time [6,20,28,37]. To minimize the weights binarization error, recent BNNs im-
pose explicit binary regularizations on the auxiliary variables that lead to the
bimodal distribution [10,13,14,45]. Though bimodality that encourages auxiliary
variables to be around binary values may facilitate binarization intuitively, it can
be hard to change positive auxiliary variables to negative by small gradient steps
and vice versa (Note that large gradient steps can be risky for BNNs training
since there are no accurate gradients for binary weights but approximations).

In this paper, we try to reduce weights quantization errors while avoiding the
explicit constraint that forces the full-precision auxiliary variables to be around
±1. To this end, we investigate the following question: is there a latent parameter
space which can serve our goal, to bridge full-precision auxiliary variables and
binary weights? We introduce proxy matrix R as a basis of the latent parameter
space. Every filter before binarization can be written as a linear combination of
basis vectors. The coefficients of this linear combination are referred to as the
auxiliary variables. Since the basis can be the key component in proxy learn-
ing, we conduct empirical studies on the construction of R, based on the view
of minimizing both weights quantization errors and the global cost function. It
is shown that a well-designed proxy matrix leads to smooth optimization land-
scapes with superior performances. Exhaustive experiments show that our proxy
learning strategy notably outperforms the state-of-the-art on ImageNet dataset.

2 Related works

Binarized neural network has been a long-standing topic in machine learning
community [32,33]. Due to its high memory and computing efficiency, it becomes
an ideal solution to the deployment of computation-intensive deep convolutional
neural networks on low-power devices [4,51]. Previous literatures prove that the
manual-designed backpropagation of binarization/ternarization still performs
well on small datasets, not only for weights compression but activations quan-
tization [9, 20, 26, 49]. DoReFa [52] further presents low-bit weights, activations
and gradients to accelerate both training and inference on customized devices.

To narrow the gap between BNNs and full-precision networks on the chal-
lenging ImageNet, XNOR-Net [37] proposes scaling factors for both weights and
activation functions to minimize the quantization error. The following works
further develop various regularization functions that encourage training weight-
s around binary values [10, 13, 14] and controls the range of activations [11]. In
light of the success of scaling factors, XNOR++ [6] improves the performances by
learned both spatial and channel-wise scaling factors. To compensate for the in-
formation loss of binarization, Bi-Real [28] proposes double residual connections
with full-precision downsampling layers and [6] replaces ReLU by PReLU. Due to
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Fig. 1: Overview of the proxy learning for 3× 3 binary weights

the gradient mismatch, [10, 28, 48] formulate quantization forward/backward as
differentiable non-linear mapping functions. More recently, probabilistic training
methods [35, 41] circumvent the need to approximate the gradient of sign() by
sampling from the weight distribution. Since BNN training is not well-founded,
there are still tremendous efforts on the study of BNNs’ optimizations [1,5,17,29]
and how to explain the effectiveness of BNNs [2]. All those methods pave the
way for a better understanding of binarized neural networks.

3 Methodology

3.1 Formulation

We quickly revisit the popular gradient-based method proposed in BinaryCon-
nect [9], which maintains real-valued latent variables W for gradient updates. In
the forward pass, W are binarized to ±1 by

Wb = sgn(W ) (1)

to perform binary convolutions Wb⊗sgn(X), where X is the input feature map.
Given a basis R of the latent parameter space, we decompose the previous

W into R and coordinates (or components) W ′. Thus, we present a new pattern
of learning binary weights

sgn(Z) = sgn(W ′R), W ′ = φ(W ) (2)

where W ∈ R[h×w×n]×c, R ∈ Rc×c 1 and φ(·) is a nonlinear mapping. As illus-
trated in Figure 1, during gradient descent ProxyBNN learns coordinate repre-
sentations W ′ and updates the manual-designed basis R simultaneously. For bi-
nary activations, we assume that semantic information mainly distributed along
channel dimension (i.e., different channels may respond to different categories).
Hence, we split each filter in spatial dimension (i.e., “reshape” in Fig.1). In this

1 h,w, n and c are kernel height, width, kernel number and input channel number,
respectively. For 1×1 convolutions and FC layers, [h×w×n]×c degrades into n×c.
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way, every column of Z corresponding to the same input channel is construct-
ed by the same basis vector Ri ∈ Rc. Inspired by the common [−1, 1]-clip in
BNNs [9, 20], we introduce the hyperbolic tangent as the activation function φ
to cancel the gradients when W are too large. Note that W and R work as
high-precision temporal variables. The extra computing and storage cost of the
basis and coordinates only exist during training. At inference time, we utilize
the well-trained B which is the same as previous BNNs.

3.2 Proxy learning procedure

To optimize the global objective of deep neural networks with binary constraints,
we formulate the n layers BNN training to a constrained optimization problem

min
Z

`(Z), s.t. Zi = αiBi, Bi ∈ {+1,−1}[h×w]×c, i = 1, · · · , n (3)

where αi ∈ R is a real-valued scaling factor to relax the binary constraint on
Zi [37] and `(·) is cross-entropy loss. Note that we introduce αi and Bi as in-
dependent variables, which will be used in binary convolutions after training.
If the first equation constraint is brought to the objective via a regularization
parameter γ, we show that the resulting form can be solved by updating Bi, αi
and Zi iteratively,

Lγ = min
α,Z,B

`(ψ(Z)) + γ

n∑
i=1

||Zi − αiBi||2F , s.t. Bi ∈ {+1,−1}[h×w]×c, (4)

where ψ(·) is a binary mapping that relaxes Z to R[h×w×n]×c and guarantees
binary weights in the forward pass.

Fix Zi, αi, update Bi. In this step, we treat Zi and αi as constants and update
Bi to minimize Lγ . Since Bi only exists in the second term, we have

Bt+1
i = arg min ||Zti − αtiBi||2F = arg max tr(αtiB

T
i Z

t
i ) (5)

where tr(αBTZ) =
∑c
m=1

∑h·w
n=1 = αBn,mZn,m. Given the binary constraint on

Bi, the solution is simply Bt+1
i = sgn(αtiZ

t
i ).

Fix Zi, Bi, update αi. Here we use the updated Bt+1
i and minimize Lγ in terms

of αi. Since Zti and Bt+1
i are fixed in this step, problem (4) becomes independent

subtasks

min
αi

||Zti − αiBt+1
i ||2F = min

αi

(hwc)α2
i − 2tr(Bt+1

i

T
Zti )αi + const. (6)

Note that αi is a full-precision scalar and (6) is quadratic, the optimum can be

easily obtained as αt+1
i =

tr(Bt+1
i

T
Zt

i )

hwc .

Fix αi, Bi, update Zi. To update the latent variable Zi, we perform a gradient
descent step since the objective function `(·) for BNN is differentiable and the
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second term in (4) is a quadratic regularization term, which is differentiable and
convex. Following the rule of SGD, the derivative of Zti is calculated as follow

∂Lγ
∂Zti

=
∂`

∂ψ(Zti )

∂ψ(Zti )

∂Zti
+ 2γ(Zti − αt+1

i Bt+1
i ). (7)

Given the optimal solution of αi and Bi at each step, we obtain the binary

mapping ψ(Zi) = ||Zi||1
c×h×wsgn(Zi) in vector form (i.e., Zi ∈ R[h×w×c]×1). Then,

the gradient with respect to the k-th element in Zi is defined as 2

∂`

∂Zi,k
:=

sgn(Zi,k)

h · w · c

hwc∑
j=1

∂`

∂ψ(Zi)j
sgn(Zi,j) +

∂`

∂ψ(Zi)k
. (8)

Combining Eq.(7) and Eq.(8), we obtain the derivative to W ′, R as

∂Lγ
∂R

=
∂Lγ
∂Z

T

W ′,
∂Lγ
∂W ′

=
∂Lγ
∂Z

RT . (9)

Following the standard gradient update step in [22], W t+1 ← W t − β1∇WLγ
and Rt+1 ← Rt − β2∇RLγ where β1 and β2 are the learning rates, we have the
updated Zt+1 = φ(W t+1)Rt+1.

3.3 The construction of basis

Although the basis R can be trained end-to-end as shown in the previous sec-
tion, we empirically prove that the construction of the initial basis matters in
ProxyBNN training.

Random matrix. The most intuitive choice is a random initialization where
every element Ri,j ∼ N (0, 1). We include it as a baseline scheme to conduct fair
comparisons.

Minimizing Square Error (MSE) matrix. In light of the empirical success of
minimizing weights quantization error [10,13,14,24,37], we consider the following
square object

min
R
||W ′R− sgn(W ′R)||2F . (10)

Beginning with the identity matrix initialization of R, we adopt an iterative op-
timization procedure to find a local minimum of (10). In each iteration, W ′Rt

is first assigned to the binary codewords, and then Rt+1 is updated to mini-
mize the square error, i.e., calculating the Moore-Penrose inverse of W ′ then
multiplied by sgn(W ′Rt). Since the pseudo-inverse relies on Singular Value De-
composition (SVD), which is time-consuming for large matrix, we conduct MSE
construction only once and notice no accuracy improvement (even result in worse
performance) with more re-construction during training.

2 Further details in appendix 1.
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Fig. 2: Toy examples of the effects of different proxy matrices. (a) shows the
original distribution of W ′. (b-d) illustrate the distributions of W ′R, i.e., Z

Orthogonal matrix. The main idea of introducing orthogonal matrix is simply
that: similar coordinates w′i, w

′
j ∈ R1×c may correspond to similar representa-

tions zi, zj ∈ R1×c in Euclidean space, given zi = w′iR. That is, we try to pre-
serve the similarity relationship (locality structure) between coordinates while
minimizing the quantization error. In this case, an orthogonal matrix R with
||w′i − w′j ||2 = ||w′iR − w′jR||2 becomes an ideal solution. Then, we reformulate
problem (10) as

min
R
||W ′R− sgn(W ′R)||2F , s.t. RTR = I. (11)

The rows of coordinate matrix W ′ ∈ R[h×w×n]×c can be seen as a set of h×w×n
data points {w′1, w′2, · · · , w′h·w·n}, w′i ∈ R1×c, and (11) forms the classical hashing
problem. Here we use ITQ proposed in [12] for solving hashing codes to obtain
the optimal R. The alternating update is similar to MSE. We first binarize W ′R
in each step, then the objective function corresponds to the classic Orthogonal
Procrustes problem [40],

UΣV T = svd(sgn(W ′R)TW ′R), R = V UT . (12)

Before alternating optimization, we use a random orthogonal matrix to initialize
R and train 10 epochs to warm up W ′. We only conduct the construction once
and then update R with small gradient steps.

3.4 The effect of proxy learning

Toy example To better understand the proposed proxy learning, we first show
a 2D toy example then analyze the experimental phenomenon in real networks.
As shown in Figure (2b,2c), both random matrix and MSE matrix change the
original data structure, especially MSE minimizes quantization errors at the cost
of ruining the 2-dimensional Gaussian distribution, which approximates unifor-
m distributions. Figure 2d shows the orthogonal matrix serves as a similarity-
preserving rotation, which not only quantizes weights with small errors but main-
tains the structure of W ′.
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Fig. 3: Histograms of W ′ of WRN22 on CIFAR-100 (best viewed in color)
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Fig. 4: Histograms of the variance of
Z ∈ Rh·w·n·c in the channel dimen-
sion3

Besides, the variance of W ′ in each
direction is different. Directly quantizing
both low-variance directions and high-
variance directions (with more informa-
tion) to 1-bit can be suboptimal. An or-
thogonal matrix balances the variance of
different directions (e.g., different chan-
nels in real networks), which facilitates
the binary encoding.

Similar phenomena exist in practical
WRN22 network. As shown in Figure 4,
MSE matrix leads to the largest variance in the channel dimension among three
candidates, which is consistent with Fig.2. For the random matrix, it has a
wider distribution interval of variances than the orthogonal matrix, which reflects
imbalanced variances across different channels, as shown in Fig.2b (e.g., high
variance in x-dimension and low variance in y-dimension).

Weights distribution To clearly verify the effectiveness of the proxy matrix
R, we visualize the distributions of W ′ and W ′R. Figure 3 illustrates that all
schemes’ W ′ are approximate Gaussian distributions similar to weights in full-
precision counterparts. We further demonstrate Z in Figure 5. The baseline
random matrix (i.e., the first row) illustrates a bimodal distribution, which is a
sensible result for pre-binarization weights to minimize quantization error. Since
MSE matrix is based on min ||W ′R− sgn(W ′R)||F , the initial MSE basis natu-
rally makes two peaks move towards ±1, as shown in the second row of Figure
5. However, it seems counterintuitive, the orthogonal scheme still generates a u-
nimodal distribution. Here is the question: Does either the unimodal distribution
or the bimodal distribution contribute to “accurate” binary networks?

Quantization error v.s. classification error Table 1 details the trade-off
between layer-wise quantization error and the final accuracy. Here we define the

3 To be specific, we compute the variance of Zi ∈ Rh·w·n, i = 1, · · · , c then visualize
the distribution of c samples. The more concentrated distribution indicates the more
balanced variance.
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Fig. 5: Histograms of Z of WRN22 on CIFAR-100, i.e., the distributions of W ′R

Table 1: WRN-22 layer-wise weights quantization error and final accuracy. “Av-
erage” refers to the mean quantization error, averaged across all elements

Layer
ProxyBNN ProxyBNN ProxyBNN

Bi-Real [28]
Orthogonal Random MSE

Conv2 0.0473 0.0834 0.0695 0.1797
Conv3 0.0108 0.0248 0.0072 0.1022
Conv5 0.0081 0.0139 0.0021 0.0664
Conv6 0.0071 0.0114 0.0014 0.0086
Conv7 0.0043 0.0031 0.0011 0.0003
Conv8 0.0043 0.0006 0.0009 0.0001
Conv9 0.0043 0.0070 0.0073 0.0670
Conv10 0.0065 0.0036 0.0029 0.0390
Conv12 0.0039 0.0007 0.0018 0.0029
Conv13 0.0023 0.0005 0.0010 0.0002
Conv14 0.0014 0.0004 0.0007 0.0001
Conv15 0.0017 0.0003 0.0017 0.0001
Conv16 0.0031 0.0089 0.0079 0.0397
Conv17 0.0068 0.0076 0.0037 0.0374
Conv19 0.0060 0.0069 0.0035 0.0373
Conv20 0.0057 0.0068 0.0029 0.0331
Conv21 0.0055 0.0058 0.0035 0.0277
Conv22 0.0056 0.0055 0.0026 0.0235
Average 0.0054 0.0061 0.0035 0.0294

Acc. (%) 71.61 69.10 59.32 69.73

quantization error as: Q(Z,α,B) = 1
h·w·n·c

∑n
i=1 ||Zi−αiBi||2F . All proxy learn-

ing schemes obtain smaller average quantization errors compared with baseline
Bi-Real-Net [28]. To be specific, ProxyBNN minimizes the binarization loss in
the first and last few layers, which may facilitate feature extraction and semantic
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Fig. 6: Analysis of the “effective” β-smoothness [39] of WRN22 network. For a
layer we measure the maximum `2-norm difference in gradient. The lower the
values indicate the smoother loss landscape (best viewed in color)

analysis. Note that MSE focuses on how to quantize weights locally, which gener-
ates over 8× smaller average loss than Bi-Real, yet results in poor performance.
The orthogonal scheme presents a better trade-off between weights binarization
loss and the global cost function, and achieves the highest performance. It is
shown that unimodal weights distributions (i.e., the third row in Fig.5) can be
another group of solutions to minimizing quantization error, when jointly opti-
mized with cross-entropy loss `(·).

Optimization landscape If pre-binarization variables are close to zero, a s-
mall gradient step can change binary weights from positive to negative and vice
versa, which may make the training easier. Motivated by this hypothesis, we an-
alyze the optimization landscape of different bases and observe the superiority
of the orthogonal scheme. Following [39], we measure the stability and smooth-
ness of the landscape by Lipschitzness and “effective” β-smoothness of the loss
function. As shown in Figure 6, we observe consistent differences between these
schemes. The improved Lipschitzness encourages us to take a step in the direc-
tion of a computed gradient, which provides a fairly accurate estimate of the real
gradient [39]. Figure 7 also demonstrates the effect of different bases on the sta-
bility/Lipschitzness of the gradients. No matter how weights quantization loss
changes (Conv8/16/21 correspond to three cases in Table 1), the orthogonal
scheme still outperforms other candidates.

4 Experiments

To verify the effectiveness of the proposed approach, in this section, we intro-
duce three benchmark datasets: CIFAR-10, CIFAR-100, and ImageNet. We com-



10 X. He et al.

0 5000 10000 15000 20000 25000
Steps

0.02

0.04

0.06

0.08

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN Rand

(a) Layer8

0 5000 10000 15000 20000 25000
Steps

0.025

0.050

0.075

0.100

0.125

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN Rand

(b) Layer16

0 5000 10000 15000 20000 25000
Steps

0.025

0.050

0.075

0.100

0.125

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

0.05

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN Rand

(c) Layer21

Fig. 7: Analysis of the gradient predictiveness [39] of WRN22 network. The shad-
ed region corresponds to the variation in `2-norm changes in gradient over the
distance. The thinner shade in plots show the smoother loss landscape and thus
less training difficulty (best viewed in color)

prehensively evaluate our method on the mainstream deep CNN architectures,
including AlexNet [23], VGG [42], ResNet [15] and Wide ResNet [50].

4.1 Experimental setup

Network structure Since modified network structures can be the game-changer
for training BNNs, we follow the same settings as prior works to make fair com-
parisons. For AlexNet, we use the same architecture from XNOR-Net [37] where
batch normalization layers are added before activations and LRN layers are omit-
ted. ResNet-18/34 refer to the original structure introduced in [15], unless speci-
fied. In binary weights experiments, we simply replace full-precision convolution
layers with binary weights counterparts without any bells and whistles. When
both activations and weights are quantized to 1-bit (including 1×1 downsample
layers), we use batch-normalization before each activation function [10,37]. The
modified ResNet/WRN [13, 14, 27, 28] consist of double skip connections [28],
PReLU activations [7] and real-valued downsampling layers [28]. The operations
are reordered as Batch-Normalization→ Binarization→ Binary-Convolution→
Activation, as proposed in XNOR-Net [37]. VGG9 is a VGG-like structure with
six convolutional layers and three fully-connected layers, first described in Bina-
ryConnect [9]. We use the same modification as [37,46]. As in almost all previous
works, the first and last layers in all experiments are kept real.
Activation binarization There have been tremendous efforts on exploiting
binary activations [10, 28, 37, 46, 48]. To verify the robustness of ProxyBNN, we
consider two simple settings in our experiments: the signum function proposed
in BinaryNet [20] and round(clip(x)) introduced in DoReFa [52]. We conduct
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Table 2: Performances of ProxyBNN trained with different bases. Top-1 accura-
cies on benchmark datasets are reported (single stage, trained from scratch)

Model #Param. Dataset Orthogonal Random MSE

ResNet18
2.80M Cifar10 91.87 (±0.36) 88.36 (±0.49) 67.88 (±0.38)
2.82M Cifar100 67.17 (±0.73) 53.58 (±1.08) 30.69 (±0.84)

WRN22
4.30M Cifar10 92.96 (±0.11) 91.24 (±0.22) 86.77 (±0.72)
4.33M Cifar100 71.57 (±0.14) 68.93 (±0.29) 58.00 (±0.57)

ResNet-18 11.70M ImageNet 58.7 53.7 36.8

Table 3: Error rates (%) on CIFAR-100 using WRN22

(a) Ablation studies on penalty factor γ

γ Error (%)

0.001 30.28 (±0.11)
0.0001 28.51 (±0.10)
1e−5 28.43 (±0.14)
1e−6 29.94 (±0.50)
1e−7 31.33 (±0.47)

(b) Effect of using different initial
learning rates for R

init. lrR Error (%)

lrw 30.77 (±0.29)
lrw × 0.1 28.43 (±0.14)
lrw × 0.01 30.35 (±0.05)
lrw × 0.001 31.44 (±0.30)

the first setting in CIFAR experiments then we apply the second technique to
the ImageNet networks.

Ablation study In this section, we first evaluate the effects of the penalty
weight γ and different learning rates for the proxy matrix. Table 3a indicates that
a proper γ matters in the balance between cross-entropy loss and the penalty
term. We also observe that the basis should be updated a little slower than
the coordinates, as shown in Table 3b. To further verify the superiority of the
orthogonal scheme, we evaluate different bases on benchmarks (Table 2). The
performance gap is consistent with that in Table 1. Besides, Figure 8 shows
that the property of the orthogonal basis roughly remains after training, i.e.,
RTi Rj ≈ 0 ∀i 6= j (for clarity, we normalize the max value to 1). Based on Table
3, we apply the best settings to the following experiments without finetuning.

4.2 Results

CIFAR-10/100 The CIFAR-10/100 dataset consist of 50,000 train images and
a test set of 10,000 across 10/100 classes. Unless specified, the images are padded
by 4 pixels on each side then randomly cropped to 32 × 32 [13, 14, 27]. We use
a batch size of 128 for training, optimized by Adam [22] with cosine scheduler.
The initial learning rate for W is set to 0.005 and the weight decay is 1e−6 (same
for both R and W ). All networks are trained for 310 epochs.
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Fig. 8: Visualizations of RTR, where R is the learned proxy matrix

Table 4: Test accuracies on CIFAR-10/100, comparison with different 1-bit meth-
ods. † indicates modified architectures [28] (details in section 4.1). “MS” refers
to the multi-stage training strategy, e.g., binarizing the activations first, and
then using the model as initialization to train fully binarized networks. “Cen-
ter” means using center loss [47] during stage-2. “FP32” is the full-precision
baseline. “Aug” indicates 32× 32 random cropping with 4 pixels padding

Model Kernel-Stage Method Cifar10 (%) Cifar100 (%) MS Center Aug

ResNet18† 16-16-32-64

PCNN [13] 78.93 41.41 X – X
GBCN [27] 81.22 47.96 X X X
ProxyBNN 84.53 52.07 – – X

FP32 90.77 65.15 – – X

WRN22† 64-64-128-256

PCNN [13] 91.37 69.98 X – X
GBCN [27] 92.72 71.85 X X X
BONN [14] 92.36 – X X X
ProxyBNN 92.96 71.57 – – X

FP32 95.75 77.34 – – X

VGG9 128-256-512

BNN [20] 89.9 – – – –
XNOR [37] 89.8 – – – –
SiBNN [46] 90.2 – – – –
ProxyBNN 90.5 63.23 – – –

FP32 91.7 67.01 – – –

ResNet18† 32-64-128-256

PCNN [13] 87.76 60.29 X – X
GBCN [27] 87.69 62.01 X X X
ProxyBNN 91.87 67.17 – – X

FP32 93.88 72.51 – – X

We compare our results with prior state-of-the-arts, as shown in Table 4.
Both over-parameterized architectures, such as VGG/WRN with the kernel stage
of 64-64-128-256, and compact ResNet-18 are considered. Our method in the
worst case is still competitive with recent works (results reported in the original
papers), without other techniques.
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Table 5: Comparison with state-of-the-art methods on ResNets. “MS” refers to
the multi-stage training strategy, e.g., binarizing the activations first, and then
using the model as initialization to train fully binarized networks. For binary
weights experiments, “MS” is fine-tuning from full-precision weights. † indicates
indicates modified architectures [28] (details in section 4.1)

Model Method Weight Activation Top-1 (%) Top-5 (%) MS

ResNet-18

XNOR [37] 1 1 51.2 73.2 –
BNN+ [10] 1 1 53.0 72.6 X
QNet [48] 1 1 53.6 75.3 X

XNOR++ [6] 1 1 57.1 79.9 –
ProxyBNN 1 1 58.7 81.2 –
BWN [37] 1 32 60.8 83.0 –

BWHN [18] 1 32 64.3 85.9 X
ADMM [24] 1 32 64.8 86.2 –
IR-Net [36] 1 32 66.5 86.8 –
ProxyBNN 1 32 67.3 87.2 –

FP32 32 32 69.3 89.2 –

ResNet-18†

Bi-Real [28] 1 1 56.4 79.5 X
PCNN [13] 1 1 57.3 80.0 X
GBCN [27] 1 1 57.8 80.9 X
IR-Net [36] 1 1 58.1 80.0 –
BONN [14] 1 1 59.3 81.6 X
SiBNN [46] 1 1 59.7 81.8 –
ProxyBNN 1 1 63.3 84.3 –
ProxyBNN 1 1 63.7 84.8 X
PCNN [13] 1 32 63.5 85.1 –
ProxyBNN 1 32 67.7 87.7 –

FP32 32 32 68.5 88.3 –

ResNet-34
ProxyBNN 1 32 70.7 89.6 –

FP32 32 32 73.3 91.3 –

ResNet-34†

ABC [25] 1 1 52.4 76.5 –
WRPN [31] 1 1 60.5 – –
Bi-Real [28] 1 1 62.2 83.9 X
IR-Net [36] 1 1 62.9 84.1 –
SiBNN [46] 1 1 63.3 84.4 –
ProxyBNN 1 1 66.3 86.5 –

FP32 32 32 70.4 89.3 –

ImageNet ImageNet (ILSVRC2012) is one of the most challenging image clas-
sification benchmarks with over 1.2 million training images and 50K validation
images, that cover 1000 object classes. As in [13, 14, 27, 28], we conduct the s-
tandard PyTorch [34] data preprocessing for both training and inference, i.e.,
random resized 224× 224 (227× 227 for AlexNet) crop with the standard hori-
zontal flip. We follow the settings in CIFAR experiments, except that the initial
learning rate is set to 0.001 and the training time is 110 epochs.

For binary weights and further activation binarization, we compare the pro-
posed algorithm with the state-of-the-art approaches. Table 5 shows the per-
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Table 6: Comparison with state-of-the-art methods on AlexNet. “MS” refers
to the multi-stage training strategy. For binary weights experiments, “MS” is
fine-tuning from full-precision weights, otherwise, training from scratch

Model Method Weight Activation Top-1 (%) Top-5 (%) MS

AlexNet

DoReFa [52] 1 1 43.6 – –
XNOR [37] 1 1 44.2 69.2 –
RAD [11] 1 1 47.8 71.5 –
QNet [48] 1 1 47.9 72.5 X

SiBNN [46] 1 1 50.5 74.6 –
ProxyBNN 1 1 51.4 75.5 –

DoReFa [52] 1 32 53.9 76.3 –
BWN [37] 1 32 56.8 79.4 –

ADMM [24] 1 32 57.0 79.7 –
QNet [48] 1 32 58.8 81.7 X

ProxyBNN 1 32 59.3 81.3 –
FP32 32 32 61.8 83.5 –

formance gap between binary weights networks and full-precision counterparts
have been narrowed to less than three points. The performance improvement in
Table 6 is consistent with ResNet. When comparing to multi-bit methods such as
5 bases ABC-ResNet18 [25] with 85.9% Top-5 accuracy, our approach achieves
25× less computing cost, yet suffers only −1.1% accuracy loss.

5 Conclusions

In this paper, we present a new technique for training binarized neural net-
works, that decomposes pre-binarization weights into the basis and coordinates.
We consider different construction schemes for the basis and empirically analyze
the superiority of the orthogonal scheme. When jointly optimized by weights
quantization error and cross-entropy loss, the orthogonal scheme preserves the
unimodal distribution while minimizing the binarization error. Our experiments
demonstrate that ProxyBNN has a better generalization capacity than previous
methods on benchmark datasets. These results show that mainstream architec-
tures can generally benefit from the proposed proxy learning, which enables the
deployment of deep binarized neural networks on low-power devices.
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