
ProxyBNN: Learning Binarized Neural
Networks via Proxy Matrices

Xiangyu He1,2, Zitao Mo1, Ke Cheng1,2, Weixiang Xu1,2, Qinghao Hu1,
Peisong Wang1, Qingshan Liu4, and Jian Cheng1,2,3�[0000−0003−1289−2758]

1 NLPR, Institute of Automation, Chinese Academy of Sciences
2 School of Artificial Intelligence, University of Chinese Academy of Sciences

3 Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
{xiangyu.he, qinghao.hu, peisong.wang, jcheng}@nlpr.ia.ac.cn

4 Nanjing University of Information Science and Technology, Nanjing, China

Abstract. Training Binarized Neural Networks (BNNs) is challenging
due to the discreteness. In order to efficiently optimize BNNs through
backward propagations, real-valued auxiliary variables are commonly
used to accumulate gradient updates. Those auxiliary variables are then
directly quantized to binary weights in the forward pass, which brings
about large quantization errors. In this paper, by introducing an ap-
propriate proxy matrix, we reduce the weights quantization error while
circumventing explicit binary regularizations on the full-precision auxil-
iary variables. Specifically, we regard pre-binarization weights as a linear
combination of the basis vectors. The matrix composed of basis vectors is
referred to as the proxy matrix, and auxiliary variables serve as the coef-
ficients of this linear combination. We are the first to empirically identify
and study the effectiveness of learning both basis and coefficients to con-
struct the pre-binarization weights. This new proxy learning contributes
to new leading performances on benchmark datasets.

Keywords: Binarized Neural Networks · Proxy Matrix

1 Introduction

Binary embedding is a fundamental technique in machine learning applications,
such as retrival [12, 16], clustering [3, 19], matching [8, 38] and classification [9,
20]. The popular signum function quantizes data points to ±1, which enables
compact storage (i.e., 32× compression than floating point) and efficient bitwise
operations (i.e., replacing time-consuming inner-product with xnor-popcnt) [32].
However, sgn(·) is non-smooth with derivative 0 everywhere except at 0, which
makes gradient-driven optimizations incapable, especially for training BNNs.

Pioneer works present constructive training algorithms according to the sense
of growth of networks [30] and verify the information capacity of binary weight-
s [21]. Variational Bayes methods [43, 44] propose to train discrete multilayer
neural networks using Expectation Propagation (EP). Recent gradient-based
methods with Straight-Through-Estimator (STE) show that a linear backprop

2 X. He et al.

function for the non-linear activation surprisingly leads to promising results on
CIFAR-10 [9,20,49]. XNOR-Net [37] further introduces a scaling factor to relax
the binary constraint and show notable improvements on ImageNet dataset.
Regardless of their differences, a real-valued auxiliary variable is commonly
used to accumulate gradient updates and then binarized to ±1 at inference
time [6,20,28,37]. To minimize the weights binarization error, recent BNNs im-
pose explicit binary regularizations on the auxiliary variables that lead to the
bimodal distribution [10,13,14,45]. Though bimodality that encourages auxiliary
variables to be around binary values may facilitate binarization intuitively, it can
be hard to change positive auxiliary variables to negative by small gradient steps
and vice versa (Note that large gradient steps can be risky for BNNs training
since there are no accurate gradients for binary weights but approximations).

In this paper, we try to reduce weights quantization errors while avoiding the
explicit constraint that forces the full-precision auxiliary variables to be around
±1. To this end, we investigate the following question: is there a latent parameter
space which can serve our goal, to bridge full-precision auxiliary variables and
binary weights? We introduce proxy matrix R as a basis of the latent parameter
space. Every filter before binarization can be written as a linear combination of
basis vectors. The coefficients of this linear combination are referred to as the
auxiliary variables. Since the basis can be the key component in proxy learn-
ing, we conduct empirical studies on the construction of R, based on the view
of minimizing both weights quantization errors and the global cost function. It
is shown that a well-designed proxy matrix leads to smooth optimization land-
scapes with superior performances. Exhaustive experiments show that our proxy
learning strategy notably outperforms the state-of-the-art on ImageNet dataset.

2 Related works

Binarized neural network has been a long-standing topic in machine learning
community [32,33]. Due to its high memory and computing efficiency, it becomes
an ideal solution to the deployment of computation-intensive deep convolutional
neural networks on low-power devices [4,51]. Previous literatures prove that the
manual-designed backpropagation of binarization/ternarization still performs
well on small datasets, not only for weights compression but activations quan-
tization [9, 20, 26, 49]. DoReFa [52] further presents low-bit weights, activations
and gradients to accelerate both training and inference on customized devices.

To narrow the gap between BNNs and full-precision networks on the chal-
lenging ImageNet, XNOR-Net [37] proposes scaling factors for both weights and
activation functions to minimize the quantization error. The following works
further develop various regularization functions that encourage training weight-
s around binary values [10, 13, 14] and controls the range of activations [11]. In
light of the success of scaling factors, XNOR++ [6] improves the performances by
learned both spatial and channel-wise scaling factors. To compensate for the in-
formation loss of binarization, Bi-Real [28] proposes double residual connections
with full-precision downsampling layers and [6] replaces ReLU by PReLU. Due to

ProxyBNN 3

… …

𝑊 ∈ ℝ𝑛×𝑐×ℎ×𝑤 𝑊 ∈ ℝ[ℎ×𝑤×𝑛]×𝑐

𝑅 ∈ ℝ𝑐×𝑐

𝑐

…

𝑍 ∈ ℝ[ℎ×𝑤×𝑛]×𝑐

𝑟𝑒𝑠ℎ𝑎𝑝𝑒 𝑠𝑖𝑔𝑛(⋅)

…

𝐵 ∈ {±1}[ℎ×𝑤×𝑛]×𝑐

ℎ

𝑤

𝑐 𝑐 𝑐 𝑐

𝑐

𝑟𝑒𝑠ℎ𝑎𝑝𝑒

ℎ

𝑤

𝐵 ∈ {±1}𝑛×𝑐×ℎ×𝑤

…

𝐿𝑜𝑠𝑠

𝜕𝐿𝑜𝑠𝑠

𝜕𝑊

𝜕𝐿𝑜𝑠𝑠

𝜕𝑅

𝑇𝑎𝑛ℎ(⋅)

…

𝑐

𝑊′

Feed Forward Back Propagate Inference Time

∗ 𝛼

Fig. 1: Overview of the proxy learning for 3× 3 binary weights

the gradient mismatch, [10, 28, 48] formulate quantization forward/backward as
differentiable non-linear mapping functions. More recently, probabilistic training
methods [35, 41] circumvent the need to approximate the gradient of sign() by
sampling from the weight distribution. Since BNN training is not well-founded,
there are still tremendous efforts on the study of BNNs’ optimizations [1,5,17,29]
and how to explain the effectiveness of BNNs [2]. All those methods pave the
way for a better understanding of binarized neural networks.

3 Methodology

3.1 Formulation

We quickly revisit the popular gradient-based method proposed in BinaryCon-
nect [9], which maintains real-valued latent variables W for gradient updates. In
the forward pass, W are binarized to ±1 by

Wb = sgn(W) (1)

to perform binary convolutions Wb⊗sgn(X), where X is the input feature map.
Given a basis R of the latent parameter space, we decompose the previous

W into R and coordinates (or components) W ′. Thus, we present a new pattern
of learning binary weights

sgn(Z) = sgn(W ′R), W ′ = φ(W) (2)

where W ∈ R[h×w×n]×c, R ∈ Rc×c 1 and φ(·) is a nonlinear mapping. As illus-
trated in Figure 1, during gradient descent ProxyBNN learns coordinate repre-
sentations W ′ and updates the manual-designed basis R simultaneously. For bi-
nary activations, we assume that semantic information mainly distributed along
channel dimension (i.e., different channels may respond to different categories).
Hence, we split each filter in spatial dimension (i.e., “reshape” in Fig.1). In this

1 h,w, n and c are kernel height, width, kernel number and input channel number,
respectively. For 1×1 convolutions and FC layers, [h×w×n]×c degrades into n×c.

4 X. He et al.

way, every column of Z corresponding to the same input channel is construct-
ed by the same basis vector Ri ∈ Rc. Inspired by the common [−1, 1]-clip in
BNNs [9, 20], we introduce the hyperbolic tangent as the activation function φ
to cancel the gradients when W are too large. Note that W and R work as
high-precision temporal variables. The extra computing and storage cost of the
basis and coordinates only exist during training. At inference time, we utilize
the well-trained B which is the same as previous BNNs.

3.2 Proxy learning procedure

To optimize the global objective of deep neural networks with binary constraints,
we formulate the n layers BNN training to a constrained optimization problem

min
Z

`(Z), s.t. Zi = αiBi, Bi ∈ {+1,−1}[h×w]×c, i = 1, · · · , n (3)

where αi ∈ R is a real-valued scaling factor to relax the binary constraint on
Zi [37] and `(·) is cross-entropy loss. Note that we introduce αi and Bi as in-
dependent variables, which will be used in binary convolutions after training.
If the first equation constraint is brought to the objective via a regularization
parameter γ, we show that the resulting form can be solved by updating Bi, αi
and Zi iteratively,

Lγ = min
α,Z,B

`(ψ(Z)) + γ

n∑
i=1

||Zi − αiBi||2F , s.t. Bi ∈ {+1,−1}[h×w]×c, (4)

where ψ(·) is a binary mapping that relaxes Z to R[h×w×n]×c and guarantees
binary weights in the forward pass.

Fix Zi, αi, update Bi. In this step, we treat Zi and αi as constants and update
Bi to minimize Lγ . Since Bi only exists in the second term, we have

Bt+1
i = arg min ||Zti − αtiBi||2F = arg max tr(αtiB

T
i Z

t
i) (5)

where tr(αBTZ) =
∑c
m=1

∑h·w
n=1 = αBn,mZn,m. Given the binary constraint on

Bi, the solution is simply Bt+1
i = sgn(αtiZ

t
i).

Fix Zi, Bi, update αi. Here we use the updated Bt+1
i and minimize Lγ in terms

of αi. Since Zti and Bt+1
i are fixed in this step, problem (4) becomes independent

subtasks

min
αi

||Zti − αiBt+1
i ||2F = min

αi

(hwc)α2
i − 2tr(Bt+1

i

T
Zti)αi + const. (6)

Note that αi is a full-precision scalar and (6) is quadratic, the optimum can be

easily obtained as αt+1
i =

tr(Bt+1
i

T
Zt

i)

hwc .

Fix αi, Bi, update Zi. To update the latent variable Zi, we perform a gradient
descent step since the objective function `(·) for BNN is differentiable and the

ProxyBNN 5

second term in (4) is a quadratic regularization term, which is differentiable and
convex. Following the rule of SGD, the derivative of Zti is calculated as follow

∂Lγ
∂Zti

=
∂`

∂ψ(Zti)

∂ψ(Zti)

∂Zti
+ 2γ(Zti − αt+1

i Bt+1
i). (7)

Given the optimal solution of αi and Bi at each step, we obtain the binary

mapping ψ(Zi) = ||Zi||1
c×h×wsgn(Zi) in vector form (i.e., Zi ∈ R[h×w×c]×1). Then,

the gradient with respect to the k-th element in Zi is defined as 2

∂`

∂Zi,k
:=

sgn(Zi,k)

h · w · c

hwc∑
j=1

∂`

∂ψ(Zi)j
sgn(Zi,j) +

∂`

∂ψ(Zi)k
. (8)

Combining Eq.(7) and Eq.(8), we obtain the derivative to W ′, R as

∂Lγ
∂R

=
∂Lγ
∂Z

T

W ′,
∂Lγ
∂W ′

=
∂Lγ
∂Z

RT . (9)

Following the standard gradient update step in [22], W t+1 ← W t − β1∇WLγ
and Rt+1 ← Rt − β2∇RLγ where β1 and β2 are the learning rates, we have the
updated Zt+1 = φ(W t+1)Rt+1.

3.3 The construction of basis

Although the basis R can be trained end-to-end as shown in the previous sec-
tion, we empirically prove that the construction of the initial basis matters in
ProxyBNN training.

Random matrix. The most intuitive choice is a random initialization where
every element Ri,j ∼ N (0, 1). We include it as a baseline scheme to conduct fair
comparisons.

Minimizing Square Error (MSE) matrix. In light of the empirical success of
minimizing weights quantization error [10,13,14,24,37], we consider the following
square object

min
R
||W ′R− sgn(W ′R)||2F . (10)

Beginning with the identity matrix initialization of R, we adopt an iterative op-
timization procedure to find a local minimum of (10). In each iteration, W ′Rt

is first assigned to the binary codewords, and then Rt+1 is updated to mini-
mize the square error, i.e., calculating the Moore-Penrose inverse of W ′ then
multiplied by sgn(W ′Rt). Since the pseudo-inverse relies on Singular Value De-
composition (SVD), which is time-consuming for large matrix, we conduct MSE
construction only once and notice no accuracy improvement (even result in worse
performance) with more re-construction during training.

2 Further details in appendix 1.

6 X. He et al.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(a) W ′ original dis-
tribution

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(b) Random
matrix

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(c) MSE
matrix

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(d) Orthogonal
matrix

Fig. 2: Toy examples of the effects of different proxy matrices. (a) shows the
original distribution of W ′. (b-d) illustrate the distributions of W ′R, i.e., Z

Orthogonal matrix. The main idea of introducing orthogonal matrix is simply
that: similar coordinates w′i, w

′
j ∈ R1×c may correspond to similar representa-

tions zi, zj ∈ R1×c in Euclidean space, given zi = w′iR. That is, we try to pre-
serve the similarity relationship (locality structure) between coordinates while
minimizing the quantization error. In this case, an orthogonal matrix R with
||w′i − w′j ||2 = ||w′iR − w′jR||2 becomes an ideal solution. Then, we reformulate
problem (10) as

min
R
||W ′R− sgn(W ′R)||2F , s.t. RTR = I. (11)

The rows of coordinate matrix W ′ ∈ R[h×w×n]×c can be seen as a set of h×w×n
data points {w′1, w′2, · · · , w′h·w·n}, w′i ∈ R1×c, and (11) forms the classical hashing
problem. Here we use ITQ proposed in [12] for solving hashing codes to obtain
the optimal R. The alternating update is similar to MSE. We first binarize W ′R
in each step, then the objective function corresponds to the classic Orthogonal
Procrustes problem [40],

UΣV T = svd(sgn(W ′R)TW ′R), R = V UT . (12)

Before alternating optimization, we use a random orthogonal matrix to initialize
R and train 10 epochs to warm up W ′. We only conduct the construction once
and then update R with small gradient steps.

3.4 The effect of proxy learning

Toy example To better understand the proposed proxy learning, we first show
a 2D toy example then analyze the experimental phenomenon in real networks.
As shown in Figure (2b,2c), both random matrix and MSE matrix change the
original data structure, especially MSE minimizes quantization errors at the cost
of ruining the 2-dimensional Gaussian distribution, which approximates unifor-
m distributions. Figure 2d shows the orthogonal matrix serves as a similarity-
preserving rotation, which not only quantizes weights with small errors but main-
tains the structure of W ′.

ProxyBNN 7

0.5 0.0 0.5

Orth
Rand
MSE

(a) Layer2

0.5 0.0 0.5

Orth
Rand
MSE

(b) Layer8

0.5 0.0 0.5

Orth
Rand
MSE

(c) Layer9

0.5 0.0 0.5

Orth
Rand
MSE

(d) Layer16

0.5 0.0 0.5

Orth
Rand
MSE

(e) Layer21

Fig. 3: Histograms of W ′ of WRN22 on CIFAR-100 (best viewed in color)

0.02 0.04 0.06

Orth
Rand

0.0 0.2 0.4

Orth
MSE

Fig. 4: Histograms of the variance of
Z ∈ Rh·w·n·c in the channel dimen-
sion3

Besides, the variance of W ′ in each
direction is different. Directly quantizing
both low-variance directions and high-
variance directions (with more informa-
tion) to 1-bit can be suboptimal. An or-
thogonal matrix balances the variance of
different directions (e.g., different chan-
nels in real networks), which facilitates
the binary encoding.

Similar phenomena exist in practical
WRN22 network. As shown in Figure 4,
MSE matrix leads to the largest variance in the channel dimension among three
candidates, which is consistent with Fig.2. For the random matrix, it has a
wider distribution interval of variances than the orthogonal matrix, which reflects
imbalanced variances across different channels, as shown in Fig.2b (e.g., high
variance in x-dimension and low variance in y-dimension).

Weights distribution To clearly verify the effectiveness of the proxy matrix
R, we visualize the distributions of W ′ and W ′R. Figure 3 illustrates that all
schemes’ W ′ are approximate Gaussian distributions similar to weights in full-
precision counterparts. We further demonstrate Z in Figure 5. The baseline
random matrix (i.e., the first row) illustrates a bimodal distribution, which is a
sensible result for pre-binarization weights to minimize quantization error. Since
MSE matrix is based on min ||W ′R− sgn(W ′R)||F , the initial MSE basis natu-
rally makes two peaks move towards ±1, as shown in the second row of Figure
5. However, it seems counterintuitive, the orthogonal scheme still generates a u-
nimodal distribution. Here is the question: Does either the unimodal distribution
or the bimodal distribution contribute to “accurate” binary networks?

Quantization error v.s. classification error Table 1 details the trade-off
between layer-wise quantization error and the final accuracy. Here we define the

3 To be specific, we compute the variance of Zi ∈ Rh·w·n, i = 1, · · · , c then visualize
the distribution of c samples. The more concentrated distribution indicates the more
balanced variance.

8 X. He et al.

1 0 1

Random

1 0 1

MSE

1 0 1

Orthogonal

(a) Layer2

0.2 0.0 0.2

Random

1 0 1

MSE

0.500.250.000.250.50

Orthogonal

(b) Layer8

0.5 0.0 0.5

Random

1 0 1

MSE

0.5 0.0 0.5

Orthogonal

(c) Layer9

0.5 0.0 0.5

Random

1 0 1

MSE

0.4 0.2 0.0 0.2 0.4

Orthogonal

(d) Layer16

0.5 0.0 0.5

Random

1 0 1

MSE

0.5 0.0 0.5

Orthogonal

(e) Layer21

Fig. 5: Histograms of Z of WRN22 on CIFAR-100, i.e., the distributions of W ′R

Table 1: WRN-22 layer-wise weights quantization error and final accuracy. “Av-
erage” refers to the mean quantization error, averaged across all elements

Layer
ProxyBNN ProxyBNN ProxyBNN

Bi-Real [28]
Orthogonal Random MSE

Conv2 0.0473 0.0834 0.0695 0.1797
Conv3 0.0108 0.0248 0.0072 0.1022
Conv5 0.0081 0.0139 0.0021 0.0664
Conv6 0.0071 0.0114 0.0014 0.0086
Conv7 0.0043 0.0031 0.0011 0.0003
Conv8 0.0043 0.0006 0.0009 0.0001
Conv9 0.0043 0.0070 0.0073 0.0670
Conv10 0.0065 0.0036 0.0029 0.0390
Conv12 0.0039 0.0007 0.0018 0.0029
Conv13 0.0023 0.0005 0.0010 0.0002
Conv14 0.0014 0.0004 0.0007 0.0001
Conv15 0.0017 0.0003 0.0017 0.0001
Conv16 0.0031 0.0089 0.0079 0.0397
Conv17 0.0068 0.0076 0.0037 0.0374
Conv19 0.0060 0.0069 0.0035 0.0373
Conv20 0.0057 0.0068 0.0029 0.0331
Conv21 0.0055 0.0058 0.0035 0.0277
Conv22 0.0056 0.0055 0.0026 0.0235
Average 0.0054 0.0061 0.0035 0.0294

Acc. (%) 71.61 69.10 59.32 69.73

quantization error as: Q(Z,α,B) = 1
h·w·n·c

∑n
i=1 ||Zi−αiBi||2F . All proxy learn-

ing schemes obtain smaller average quantization errors compared with baseline
Bi-Real-Net [28]. To be specific, ProxyBNN minimizes the binarization loss in
the first and last few layers, which may facilitate feature extraction and semantic

ProxyBNN 9

0 5000 10000 15000 20000 25000
Steps

0.02

0.04

0.06

0.08

0.10

Ef
fe

ct
iv

e
-s

m
oo

th
ne

ss ProxyBNN Orth
ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

Ef
fe

ct
iv

e
-s

m
oo

th
ne

ss ProxyBNN Orth
ProxyBNN Rand

(a) Layer8

0 5000 10000 15000 20000 25000
Steps

0.05

0.10

0.15

Ef
fe

ct
iv

e
-s

m
oo

th
ne

ss ProxyBNN Orth
ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

0.05

Ef
fe

ct
iv

e
-s

m
oo

th
ne

ss ProxyBNN Orth
ProxyBNN Rand

(b) Layer16

0 5000 10000 15000 20000 25000
Steps

0.05

0.10

0.15

Ef
fe

ct
iv

e
-s

m
oo

th
ne

ss ProxyBNN Orth
ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

0.05

Ef
fe

ct
iv

e
-s

m
oo

th
ne

ss ProxyBNN Orth
ProxyBNN Rand

(c) Layer21

Fig. 6: Analysis of the “effective” β-smoothness [39] of WRN22 network. For a
layer we measure the maximum `2-norm difference in gradient. The lower the
values indicate the smoother loss landscape (best viewed in color)

analysis. Note that MSE focuses on how to quantize weights locally, which gener-
ates over 8× smaller average loss than Bi-Real, yet results in poor performance.
The orthogonal scheme presents a better trade-off between weights binarization
loss and the global cost function, and achieves the highest performance. It is
shown that unimodal weights distributions (i.e., the third row in Fig.5) can be
another group of solutions to minimizing quantization error, when jointly opti-
mized with cross-entropy loss `(·).

Optimization landscape If pre-binarization variables are close to zero, a s-
mall gradient step can change binary weights from positive to negative and vice
versa, which may make the training easier. Motivated by this hypothesis, we an-
alyze the optimization landscape of different bases and observe the superiority
of the orthogonal scheme. Following [39], we measure the stability and smooth-
ness of the landscape by Lipschitzness and “effective” β-smoothness of the loss
function. As shown in Figure 6, we observe consistent differences between these
schemes. The improved Lipschitzness encourages us to take a step in the direc-
tion of a computed gradient, which provides a fairly accurate estimate of the real
gradient [39]. Figure 7 also demonstrates the effect of different bases on the sta-
bility/Lipschitzness of the gradients. No matter how weights quantization loss
changes (Conv8/16/21 correspond to three cases in Table 1), the orthogonal
scheme still outperforms other candidates.

4 Experiments

To verify the effectiveness of the proposed approach, in this section, we intro-
duce three benchmark datasets: CIFAR-10, CIFAR-100, and ImageNet. We com-

10 X. He et al.

0 5000 10000 15000 20000 25000
Steps

0.02

0.04

0.06

0.08

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN Rand

(a) Layer8

0 5000 10000 15000 20000 25000
Steps

0.025

0.050

0.075

0.100

0.125

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN Rand

(b) Layer16

0 5000 10000 15000 20000 25000
Steps

0.025

0.050

0.075

0.100

0.125

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN MSE

0 5000 10000 15000 20000 25000
Steps

0.01

0.02

0.03

0.04

0.05

G
ra

di
en

t P
re

di
ct

iv
en

es
s ProxyBNN Orth

ProxyBNN Rand

(c) Layer21

Fig. 7: Analysis of the gradient predictiveness [39] of WRN22 network. The shad-
ed region corresponds to the variation in `2-norm changes in gradient over the
distance. The thinner shade in plots show the smoother loss landscape and thus
less training difficulty (best viewed in color)

prehensively evaluate our method on the mainstream deep CNN architectures,
including AlexNet [23], VGG [42], ResNet [15] and Wide ResNet [50].

4.1 Experimental setup

Network structure Since modified network structures can be the game-changer
for training BNNs, we follow the same settings as prior works to make fair com-
parisons. For AlexNet, we use the same architecture from XNOR-Net [37] where
batch normalization layers are added before activations and LRN layers are omit-
ted. ResNet-18/34 refer to the original structure introduced in [15], unless speci-
fied. In binary weights experiments, we simply replace full-precision convolution
layers with binary weights counterparts without any bells and whistles. When
both activations and weights are quantized to 1-bit (including 1×1 downsample
layers), we use batch-normalization before each activation function [10,37]. The
modified ResNet/WRN [13, 14, 27, 28] consist of double skip connections [28],
PReLU activations [7] and real-valued downsampling layers [28]. The operations
are reordered as Batch-Normalization→ Binarization→ Binary-Convolution→
Activation, as proposed in XNOR-Net [37]. VGG9 is a VGG-like structure with
six convolutional layers and three fully-connected layers, first described in Bina-
ryConnect [9]. We use the same modification as [37,46]. As in almost all previous
works, the first and last layers in all experiments are kept real.
Activation binarization There have been tremendous efforts on exploiting
binary activations [10, 28, 37, 46, 48]. To verify the robustness of ProxyBNN, we
consider two simple settings in our experiments: the signum function proposed
in BinaryNet [20] and round(clip(x)) introduced in DoReFa [52]. We conduct

ProxyBNN 11

Table 2: Performances of ProxyBNN trained with different bases. Top-1 accura-
cies on benchmark datasets are reported (single stage, trained from scratch)

Model #Param. Dataset Orthogonal Random MSE

ResNet18
2.80M Cifar10 91.87 (±0.36) 88.36 (±0.49) 67.88 (±0.38)
2.82M Cifar100 67.17 (±0.73) 53.58 (±1.08) 30.69 (±0.84)

WRN22
4.30M Cifar10 92.96 (±0.11) 91.24 (±0.22) 86.77 (±0.72)
4.33M Cifar100 71.57 (±0.14) 68.93 (±0.29) 58.00 (±0.57)

ResNet-18 11.70M ImageNet 58.7 53.7 36.8

Table 3: Error rates (%) on CIFAR-100 using WRN22

(a) Ablation studies on penalty factor γ

γ Error (%)

0.001 30.28 (±0.11)
0.0001 28.51 (±0.10)
1e−5 28.43 (±0.14)
1e−6 29.94 (±0.50)
1e−7 31.33 (±0.47)

(b) Effect of using different initial
learning rates for R

init. lrR Error (%)

lrw 30.77 (±0.29)
lrw × 0.1 28.43 (±0.14)
lrw × 0.01 30.35 (±0.05)
lrw × 0.001 31.44 (±0.30)

the first setting in CIFAR experiments then we apply the second technique to
the ImageNet networks.

Ablation study In this section, we first evaluate the effects of the penalty
weight γ and different learning rates for the proxy matrix. Table 3a indicates that
a proper γ matters in the balance between cross-entropy loss and the penalty
term. We also observe that the basis should be updated a little slower than
the coordinates, as shown in Table 3b. To further verify the superiority of the
orthogonal scheme, we evaluate different bases on benchmarks (Table 2). The
performance gap is consistent with that in Table 1. Besides, Figure 8 shows
that the property of the orthogonal basis roughly remains after training, i.e.,
RTi Rj ≈ 0 ∀i 6= j (for clarity, we normalize the max value to 1). Based on Table
3, we apply the best settings to the following experiments without finetuning.

4.2 Results

CIFAR-10/100 The CIFAR-10/100 dataset consist of 50,000 train images and
a test set of 10,000 across 10/100 classes. Unless specified, the images are padded
by 4 pixels on each side then randomly cropped to 32 × 32 [13, 14, 27]. We use
a batch size of 128 for training, optimized by Adam [22] with cosine scheduler.
The initial learning rate for W is set to 0.005 and the weight decay is 1e−6 (same
for both R and W). All networks are trained for 310 epochs.

12 X. He et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Orthogonal

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Random

0.25

0.00

0.25

0.50

0.75

1.00

(a) Layer2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62

Orthogonal

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62

Random

0.25

0.00

0.25

0.50

0.75

1.00

(b) Layer3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62

Orthogonal

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62

Random

0.25

0.00

0.25

0.50

0.75

1.00

(c) Layer9

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Orthogonal

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Random

0.25

0.00

0.25

0.50

0.75

1.00

(d) Layer10

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Orthogonal

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Random

0.25

0.00

0.25

0.50

0.75

1.00

(e) Layer16

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248

Orthogonal

0.0

0.2

0.4

0.6

0.8

1.0

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248

Random

0.25

0.00

0.25

0.50

0.75

1.00

(f) Layer17

Fig. 8: Visualizations of RTR, where R is the learned proxy matrix

Table 4: Test accuracies on CIFAR-10/100, comparison with different 1-bit meth-
ods. † indicates modified architectures [28] (details in section 4.1). “MS” refers
to the multi-stage training strategy, e.g., binarizing the activations first, and
then using the model as initialization to train fully binarized networks. “Cen-
ter” means using center loss [47] during stage-2. “FP32” is the full-precision
baseline. “Aug” indicates 32× 32 random cropping with 4 pixels padding

Model Kernel-Stage Method Cifar10 (%) Cifar100 (%) MS Center Aug

ResNet18† 16-16-32-64

PCNN [13] 78.93 41.41 X – X
GBCN [27] 81.22 47.96 X X X
ProxyBNN 84.53 52.07 – – X

FP32 90.77 65.15 – – X

WRN22† 64-64-128-256

PCNN [13] 91.37 69.98 X – X
GBCN [27] 92.72 71.85 X X X
BONN [14] 92.36 – X X X
ProxyBNN 92.96 71.57 – – X

FP32 95.75 77.34 – – X

VGG9 128-256-512

BNN [20] 89.9 – – – –
XNOR [37] 89.8 – – – –
SiBNN [46] 90.2 – – – –
ProxyBNN 90.5 63.23 – – –

FP32 91.7 67.01 – – –

ResNet18† 32-64-128-256

PCNN [13] 87.76 60.29 X – X
GBCN [27] 87.69 62.01 X X X
ProxyBNN 91.87 67.17 – – X

FP32 93.88 72.51 – – X

We compare our results with prior state-of-the-arts, as shown in Table 4.
Both over-parameterized architectures, such as VGG/WRN with the kernel stage
of 64-64-128-256, and compact ResNet-18 are considered. Our method in the
worst case is still competitive with recent works (results reported in the original
papers), without other techniques.

ProxyBNN 13

Table 5: Comparison with state-of-the-art methods on ResNets. “MS” refers to
the multi-stage training strategy, e.g., binarizing the activations first, and then
using the model as initialization to train fully binarized networks. For binary
weights experiments, “MS” is fine-tuning from full-precision weights. † indicates
indicates modified architectures [28] (details in section 4.1)

Model Method Weight Activation Top-1 (%) Top-5 (%) MS

ResNet-18

XNOR [37] 1 1 51.2 73.2 –
BNN+ [10] 1 1 53.0 72.6 X
QNet [48] 1 1 53.6 75.3 X

XNOR++ [6] 1 1 57.1 79.9 –
ProxyBNN 1 1 58.7 81.2 –
BWN [37] 1 32 60.8 83.0 –

BWHN [18] 1 32 64.3 85.9 X
ADMM [24] 1 32 64.8 86.2 –
IR-Net [36] 1 32 66.5 86.8 –
ProxyBNN 1 32 67.3 87.2 –

FP32 32 32 69.3 89.2 –

ResNet-18†

Bi-Real [28] 1 1 56.4 79.5 X
PCNN [13] 1 1 57.3 80.0 X
GBCN [27] 1 1 57.8 80.9 X
IR-Net [36] 1 1 58.1 80.0 –
BONN [14] 1 1 59.3 81.6 X
SiBNN [46] 1 1 59.7 81.8 –
ProxyBNN 1 1 63.3 84.3 –
ProxyBNN 1 1 63.7 84.8 X
PCNN [13] 1 32 63.5 85.1 –
ProxyBNN 1 32 67.7 87.7 –

FP32 32 32 68.5 88.3 –

ResNet-34
ProxyBNN 1 32 70.7 89.6 –

FP32 32 32 73.3 91.3 –

ResNet-34†

ABC [25] 1 1 52.4 76.5 –
WRPN [31] 1 1 60.5 – –
Bi-Real [28] 1 1 62.2 83.9 X
IR-Net [36] 1 1 62.9 84.1 –
SiBNN [46] 1 1 63.3 84.4 –
ProxyBNN 1 1 66.3 86.5 –

FP32 32 32 70.4 89.3 –

ImageNet ImageNet (ILSVRC2012) is one of the most challenging image clas-
sification benchmarks with over 1.2 million training images and 50K validation
images, that cover 1000 object classes. As in [13, 14, 27, 28], we conduct the s-
tandard PyTorch [34] data preprocessing for both training and inference, i.e.,
random resized 224× 224 (227× 227 for AlexNet) crop with the standard hori-
zontal flip. We follow the settings in CIFAR experiments, except that the initial
learning rate is set to 0.001 and the training time is 110 epochs.

For binary weights and further activation binarization, we compare the pro-
posed algorithm with the state-of-the-art approaches. Table 5 shows the per-

14 X. He et al.

Table 6: Comparison with state-of-the-art methods on AlexNet. “MS” refers
to the multi-stage training strategy. For binary weights experiments, “MS” is
fine-tuning from full-precision weights, otherwise, training from scratch

Model Method Weight Activation Top-1 (%) Top-5 (%) MS

AlexNet

DoReFa [52] 1 1 43.6 – –
XNOR [37] 1 1 44.2 69.2 –
RAD [11] 1 1 47.8 71.5 –
QNet [48] 1 1 47.9 72.5 X

SiBNN [46] 1 1 50.5 74.6 –
ProxyBNN 1 1 51.4 75.5 –

DoReFa [52] 1 32 53.9 76.3 –
BWN [37] 1 32 56.8 79.4 –

ADMM [24] 1 32 57.0 79.7 –
QNet [48] 1 32 58.8 81.7 X

ProxyBNN 1 32 59.3 81.3 –
FP32 32 32 61.8 83.5 –

formance gap between binary weights networks and full-precision counterparts
have been narrowed to less than three points. The performance improvement in
Table 6 is consistent with ResNet. When comparing to multi-bit methods such as
5 bases ABC-ResNet18 [25] with 85.9% Top-5 accuracy, our approach achieves
25× less computing cost, yet suffers only −1.1% accuracy loss.

5 Conclusions

In this paper, we present a new technique for training binarized neural net-
works, that decomposes pre-binarization weights into the basis and coordinates.
We consider different construction schemes for the basis and empirically analyze
the superiority of the orthogonal scheme. When jointly optimized by weights
quantization error and cross-entropy loss, the orthogonal scheme preserves the
unimodal distribution while minimizing the binarization error. Our experiments
demonstrate that ProxyBNN has a better generalization capacity than previous
methods on benchmark datasets. These results show that mainstream architec-
tures can generally benefit from the proposed proxy learning, which enables the
deployment of deep binarized neural networks on low-power devices.

Acknowledgement

This work was supported in part by National Natural Science Foundation of Chi-
na (No.61972396, 61876182, 61906193), National Key Research and Development
Program of China (No. 2019AAA0103402), the Strategic Priority Research Pro-
gram of Chinese Academy of Science(No.XDB32050200), the Advance Research
Program (No. 31511130301), and Jiangsu Frontier Technology Basic Research
Project (No. BK20192004).

ProxyBNN 15

References

1. Alizadeh, M., Fernndez-Marqus, J., Lane, N.D., Gal, Y.: A systematic study of
binary neural networks’ optimisation. In: International Conference on Learning
Representations (2019), https://openreview.net/forum?id=rJfUCoR5KX

2. Anderson, A.G., Berg, C.P.: The high-dimensional geometry of binary neural net-
works. In: International Conference on Learning Representations (2018), http-
s://openreview.net/forum?id=B1IDRdeCW

3. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Commun. ACM
51(1), 117–122 (2008). https://doi.org/10.1145/1327452.1327494,
http://doi.acm.org/10.1145/1327452.1327494

4. Bahou, A.A., Karunaratne, G., Andri, R., Cavigelli, L., Benini, L.: XNORBIN:
A 95 top/s/w hardware accelerator for binary convolutional neural network-
s. In: 2018 IEEE Symposium in Low-Power and High-Speed Chips, COOL
CHIPS 2018, Yokohama, Japan, April 18-20, 2018. pp. 1–3. IEEE Com-
puter Society (2018). https://doi.org/10.1109/CoolChips.2018.8373076, http-
s://doi.org/10.1109/CoolChips.2018.8373076

5. Bethge, J., Yang, H., Bornstein, M., Meinel, C.: Back to simplicity:
How to train accurate bnns from scratch? CoRR abs/1906.08637 (2019),
http://arxiv.org/abs/1906.08637

6. Bulat, A., Tzimiropoulos, G.: Xnor-net++: Improved binary neural networks. In:
British Machine Vision Conference, BMVC 2019 (2019)

7. Bulat, A., Tzimiropoulos, G., Kossaifi, J., Pantic, M.: Improved training of bi-
nary networks for human pose estimation and image recognition. CoRR ab-
s/1904.05868 (2019), http://arxiv.org/abs/1904.05868

8. Cheng, J., Leng, C., Wu, J., Cui, H., Lu, H.: Fast and accurate image match-
ing with cascade hashing for 3d reconstruction. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA,
June 23-28, 2014. pp. 1–8 (2014). https://doi.org/10.1109/CVPR.2014.8, http-
s://doi.org/10.1109/CVPR.2014.8

9. Courbariaux, M., Bengio, Y., David, J.: Binaryconnect: Training deep neural net-
works with binary weights during propagations. In: Advances in Neural Infor-
mation Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. pp.
3123–3131 (2015), http://papers.nips.cc/paper/5647-binaryconnect-training-deep-
neural-networks-with-binary-weights-during-propagations

10. Darabi, S., Belbahri, M., Courbariaux, M., Nia, V.P.: BNN+: improved binary net-
work training. CoRR abs/1812.11800 (2018), http://arxiv.org/abs/1812.11800

11. Ding, R., Chin, T., Liu, Z., Marculescu, D.: Regularizing activation distribution
for training binarized deep networks. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
pp. 11408–11417 (2019)

12. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: A
procrustean approach to learning binary codes for large-scale image retrieval.
IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013). http-
s://doi.org/10.1109/TPAMI.2012.193, https://doi.org/10.1109/TPAMI.2012.193

13. Gu, J., Li, C., Zhang, B., Han, J., Cao, X., Liu, J., Doermann, D.S.: Projec-
tion convolutional neural networks for 1-bit cnns via discrete back propagation.
In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,

16 X. He et al.

The Thirty-First Innovative Applications of Artificial Intelligence Conference, I-
AAI 2019, The Ninth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019. pp. 8344–8351 (2019). https://doi.org/10.1609/aaai.v33i01.33018344, http-
s://doi.org/10.1609/aaai.v33i01.33018344

14. Gu, J., Zhao, J., Jiang, X., Zhang, B., Jianzhuang, L., Guo, G., Ji, R.: Bayesian
optimized 1-bit cnns. In: IEEE Proceedings of the IEEE International Conference
on Computer Vision ICCV 2019, Seoul, South Korea (2019)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778 (2016). http-
s://doi.org/10.1109/CVPR.2016.90, https://doi.org/10.1109/CVPR.2016.90

16. He, X., Wang, P., Cheng, J.: K-nearest neighbors hashing. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. pp. 2839–2848
(2019), http://openaccess.thecvf.com/content CVPR 2019/html/He K-
Nearest Neighbors Hashing CVPR 2019 paper.html

17. Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng, K., Nusselder,
R.: Latent weights do not exist: Rethinking binarized neural network op-
timization. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada. pp.
7531–7542 (2019), http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-
rethinking-binarized-neural-network-optimization

18. Hu, Q., Wang, P., Cheng, J.: From hashing to cnns: Training binary
weight networks via hashing. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sympo-
sium on Educational Advances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018. pp. 3247–3254 (2018), http-
s://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16466

19. Hu, Q., Wu, J., Bai, L., Zhang, Y., Cheng, J.: Fast k-means for large s-
cale clustering. In: Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, CIKM 2017, Singapore, November 06 -
10, 2017. pp. 2099–2102 (2017). https://doi.org/10.1145/3132847.3133091, http-
s://doi.org/10.1145/3132847.3133091

20. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neu-
ral networks. In: Advances in Neural Information Processing Systems 29: Annu-
al Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. pp. 4107–4115 (2016), http://papers.nips.cc/paper/6573-
binarized-neural-networks

21. Ji, C., Psaltis, D.: Capacity of two-layer feedforward neural networks with bi-
nary weights. IEEE Trans. Information Theory 44(1), 256–268 (1998). http-
s://doi.org/10.1109/18.651033, https://doi.org/10.1109/18.651033

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

ProxyBNN 17

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). http-
s://doi.org/10.1145/3065386, http://doi.acm.org/10.1145/3065386

24. Leng, C., Dou, Z., Li, H., Zhu, S., Jin, R.: Extremely low bit neural net-
work: Squeeze the last bit out with ADMM. In: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th in-
novative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018. pp. 3466–3473 (2018), http-
s://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16767

25. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural net-
work. In: Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA. pp. 345–353 (2017), http://papers.nips.cc/paper/6638-towards-
accurate-binary-convolutional-neural-network

26. Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.: Neural networks with few
multiplications. In: 4th International Conference on Learning Representations, I-
CLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings
(2016), http://arxiv.org/abs/1510.03009

27. Liu, C., Ding, W., Hu, Y., Zhang, B., Liu, J., Guo, G.: Gbcns: Genetic bina-
ry convolutional networks for enhancing the performance of 1-bit dcnns. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) (February
2020)

28. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.: Bi-real net: En-
hancing the performance of 1-bit cnns with improved representational capa-
bility and advanced training algorithm. In: Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018, Proceed-
ings, Part XV. pp. 747–763 (2018). https://doi.org/10.1007/978-3-030-01267-0 44,
https://doi.org/10.1007/978-3-030-01267-0 44

29. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural net-
works with real-to-binary convolutions. In: International Conference on Learning
Representations (2020), https://openreview.net/forum?id=BJg4NgBKvH

30. Mayoraz, E., Aviolat, F.: Constructive training methods for feedforward neural
networks with binary weights. International journal of neural systems 7 2, 149–66
(1995)

31. Mishra, A.K., Nurvitadhi, E., Cook, J.J., Marr, D.: WRPN: wide reduced-precision
networks. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings (2018), https://openreview.net/forum?id=B1ZvaaeAZ

32. Oliveira, A.L., Sangiovanni-Vincentelli, A.L.: Learning complex boolean function-
s: Algorithms and applications. In: Advances in Neural Information Process-
ing Systems 6, [7th NIPS Conference, Denver, Colorado, USA, 1993]. pp. 911–
918 (1993), http://papers.nips.cc/paper/857-learning-complex-boolean-functions-
algorithms-and-applications

33. Pagallo, G., Haussler, D.: Boolean feature discovery in empirical learning.
Machine Learning 5, 71–99 (1990). https://doi.org/10.1007/BF00115895, http-
s://doi.org/10.1007/BF00115895

34. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: Pytorch: An imperative style, high-performance deep learning library. In:

18 X. He et al.

Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada. pp. 8024–8035 (2019), http://papers.nips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library

35. Peters, J.W., Genewein, T., Welling, M.: Probabilistic binary neural networks
(2019), https://openreview.net/forum?id=B1fysiAqK7

36. Qin, H., Gong, R., Liu, X., Wei, Z., Yu, F., Song, J.: Ir-net: Forward and back-
ward information retention for highly accurate binary neural networks. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle
Wastington, USA (June 2020)

37. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In: Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV. pp. 525–542 (2016). https://doi.org/10.1007/978-3-
319-46493-0 32, https://doi.org/10.1007/978-3-319-46493-0 32

38. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an ef-
ficient alternative to SIFT or SURF. In: IEEE International Confer-
ence on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13,
2011. pp. 2564–2571 (2011). https://doi.org/10.1109/ICCV.2011.6126544, http-
s://doi.org/10.1109/ICCV.2011.6126544

39. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch nor-
malization help optimization? In: Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Cana-
da. pp. 2488–2498 (2018), http://papers.nips.cc/paper/7515-how-does-batch-
normalization-help-optimization

40. Schonemann, P.H.: A generalized solution of the orthogonal procrustes problem.
Psychometrika 31(1), 1–10 (1966)

41. Shayer, O., Levi, D., Fetaya, E.: Learning discrete weights using the lo-
cal reparameterization trick. In: 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net (2018), http-
s://openreview.net/forum?id=BySRH6CpW

42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1409.1556

43. Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: Parameter-free
training of multilayer neural networks with continuous or discrete weights. In: Ad-
vances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada. pp. 963–971 (2014), http://papers.nips.cc/paper/5269-expectation-
backpropagation-parameter-free-training-of-multilayer-neural-networks-with-
continuous-or-discrete-weights

44. Soudry, D., Meir, R.: Mean field bayes backpropagation: scalable training of mul-
tilayer neural networks with binary weights (2013)

45. Tang, W., Hua, G., Wang, L.: How to train a compact binary neural network with
high accuracy? In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA. pp. 2625–2631
(2017), http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14619

ProxyBNN 19

46. Wang, P., He, X., Li, G., Zhao, T., Cheng, J.: Sparsity-inducing binarized neu-
ral networks. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-20) (February 2020)

47. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning ap-
proach for deep face recognition. In: Computer Vision - ECCV 2016 - 14th Eu-
ropean Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part VII. pp. 499–515 (2016). https://doi.org/10.1007/978-3-319-46478-7 31,
https://doi.org/10.1007/978-3-319-46478-7 31

48. Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., Hua, X.s.:
Quantization networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach CA, USA (June 2019)

49. Yazdani, M.: Linear backprop in non-linear networks. In: Compact Deep Neural
Network Representation with Industrial Applications Workshop, Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada
(2018)

50. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-
22, 2016 (2016), http://www.bmva.org/bmvc/2016/papers/paper087/index.html

51. Zhao, T., He, X., Cheng, J., Hu, J.: Bitstream: Efficient computing architecture
for real-time low-power inference of binary neural networks on cpus. In: Boll,
S., Lee, K.M., Luo, J., Zhu, W., Byun, H., Chen, C.W., Lienhart, R., Mei, T.
(eds.) 2018 ACM Multimedia Conference on Multimedia Conference, MM 2018,
Seoul, Republic of Korea, October 22-26, 2018. pp. 1545–1552. ACM (2018). http-
s://doi.org/10.1145/3240508.3240673, https://doi.org/10.1145/3240508.3240673

52. Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. CoRR ab-
s/1606.06160 (2016), http://arxiv.org/abs/1606.06160

